Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.190.2.1
      1  1.190.2.1   thorpej /*	$NetBSD: vm.c,v 1.190.2.1 2020/12/14 14:38:16 thorpej Exp $	*/
      2        1.1     pooka 
      3        1.1     pooka /*
      4      1.114     pooka  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5        1.1     pooka  *
      6       1.76     pooka  * Development of this software was supported by
      7       1.76     pooka  * The Finnish Cultural Foundation and the Research Foundation of
      8       1.76     pooka  * The Helsinki University of Technology.
      9        1.1     pooka  *
     10        1.1     pooka  * Redistribution and use in source and binary forms, with or without
     11        1.1     pooka  * modification, are permitted provided that the following conditions
     12        1.1     pooka  * are met:
     13        1.1     pooka  * 1. Redistributions of source code must retain the above copyright
     14        1.1     pooka  *    notice, this list of conditions and the following disclaimer.
     15        1.1     pooka  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.1     pooka  *    notice, this list of conditions and the following disclaimer in the
     17        1.1     pooka  *    documentation and/or other materials provided with the distribution.
     18        1.1     pooka  *
     19        1.1     pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20        1.1     pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21        1.1     pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22        1.1     pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23        1.1     pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24        1.1     pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25        1.1     pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26        1.1     pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27        1.1     pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28        1.1     pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29        1.1     pooka  * SUCH DAMAGE.
     30        1.1     pooka  */
     31        1.1     pooka 
     32        1.1     pooka /*
     33       1.88     pooka  * Virtual memory emulation routines.
     34        1.1     pooka  */
     35        1.1     pooka 
     36        1.1     pooka /*
     37        1.5     pooka  * XXX: we abuse pg->uanon for the virtual address of the storage
     38        1.1     pooka  * for each page.  phys_addr would fit the job description better,
     39        1.1     pooka  * except that it will create unnecessary lossage on some platforms
     40        1.1     pooka  * due to not being a pointer type.
     41        1.1     pooka  */
     42        1.1     pooka 
     43       1.48     pooka #include <sys/cdefs.h>
     44  1.190.2.1   thorpej __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.190.2.1 2020/12/14 14:38:16 thorpej Exp $");
     45       1.48     pooka 
     46        1.1     pooka #include <sys/param.h>
     47       1.40     pooka #include <sys/atomic.h>
     48       1.80     pooka #include <sys/buf.h>
     49       1.80     pooka #include <sys/kernel.h>
     50       1.67     pooka #include <sys/kmem.h>
     51      1.121      para #include <sys/vmem.h>
     52       1.69     pooka #include <sys/mman.h>
     53        1.1     pooka #include <sys/null.h>
     54        1.1     pooka #include <sys/vnode.h>
     55      1.175        ad #include <sys/radixtree.h>
     56        1.1     pooka 
     57       1.34     pooka #include <machine/pmap.h>
     58       1.34     pooka 
     59        1.1     pooka #include <uvm/uvm.h>
     60       1.56     pooka #include <uvm/uvm_ddb.h>
     61       1.88     pooka #include <uvm/uvm_pdpolicy.h>
     62        1.1     pooka #include <uvm/uvm_prot.h>
     63       1.58        he #include <uvm/uvm_readahead.h>
     64      1.160       chs #include <uvm/uvm_device.h>
     65        1.1     pooka 
     66      1.169     pooka #include <rump-sys/kern.h>
     67      1.169     pooka #include <rump-sys/vfs.h>
     68      1.169     pooka 
     69      1.169     pooka #include <rump/rumpuser.h>
     70        1.1     pooka 
     71      1.174        ad kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
     72       1.88     pooka kmutex_t uvm_swap_data_lock;
     73       1.25        ad 
     74        1.1     pooka struct uvmexp uvmexp;
     75        1.7     pooka struct uvm uvm;
     76        1.1     pooka 
     77      1.112     pooka #ifdef __uvmexp_pagesize
     78      1.123    martin const int * const uvmexp_pagesize = &uvmexp.pagesize;
     79      1.123    martin const int * const uvmexp_pagemask = &uvmexp.pagemask;
     80      1.123    martin const int * const uvmexp_pageshift = &uvmexp.pageshift;
     81      1.112     pooka #endif
     82      1.112     pooka 
     83      1.121      para static struct vm_map kernel_map_store;
     84      1.121      para struct vm_map *kernel_map = &kernel_map_store;
     85      1.121      para 
     86      1.130     pooka static struct vm_map module_map_store;
     87      1.130     pooka extern struct vm_map *module_map;
     88      1.130     pooka 
     89      1.164     pooka static struct pmap pmap_kernel;
     90      1.164     pooka struct pmap rump_pmap_local;
     91      1.164     pooka struct pmap *const kernel_pmap_ptr = &pmap_kernel;
     92      1.164     pooka 
     93      1.121      para vmem_t *kmem_arena;
     94      1.121      para vmem_t *kmem_va_arena;
     95       1.35     pooka 
     96       1.80     pooka static unsigned int pdaemon_waiters;
     97       1.80     pooka static kmutex_t pdaemonmtx;
     98       1.80     pooka static kcondvar_t pdaemoncv, oomwait;
     99       1.80     pooka 
    100      1.162     pooka /* all local non-proc0 processes share this vmspace */
    101      1.162     pooka struct vmspace *rump_vmspace_local;
    102      1.162     pooka 
    103       1.91     pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
    104      1.147     pooka static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
    105       1.84     pooka static unsigned long curphysmem;
    106       1.92     pooka static unsigned long dddlim;		/* 90% of memory limit used */
    107       1.92     pooka #define NEED_PAGEDAEMON() \
    108       1.92     pooka     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    109      1.158     pooka #define PDRESERVE (2*MAXPHYS)
    110       1.92     pooka 
    111       1.92     pooka /*
    112       1.92     pooka  * Try to free two pages worth of pages from objects.
    113       1.92     pooka  * If this succesfully frees a full page cache page, we'll
    114      1.120      yamt  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    115       1.92     pooka  */
    116       1.92     pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    117       1.92     pooka 
    118       1.92     pooka /*
    119       1.92     pooka  * Keep a list of least recently used pages.  Since the only way a
    120       1.92     pooka  * rump kernel can "access" a page is via lookup, we put the page
    121       1.92     pooka  * at the back of queue every time a lookup for it is done.  If the
    122       1.92     pooka  * page is in front of this global queue and we're short of memory,
    123       1.92     pooka  * it's a candidate for pageout.
    124       1.92     pooka  */
    125       1.92     pooka static struct pglist vmpage_lruqueue;
    126       1.92     pooka static unsigned vmpage_onqueue;
    127       1.84     pooka 
    128        1.1     pooka /*
    129        1.1     pooka  * vm pages
    130        1.1     pooka  */
    131        1.1     pooka 
    132       1.90     pooka static int
    133       1.90     pooka pgctor(void *arg, void *obj, int flags)
    134       1.90     pooka {
    135       1.90     pooka 	struct vm_page *pg = obj;
    136       1.90     pooka 
    137       1.90     pooka 	memset(pg, 0, sizeof(*pg));
    138      1.103     pooka 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    139      1.103     pooka 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    140      1.103     pooka 	return pg->uanon == NULL;
    141       1.90     pooka }
    142       1.90     pooka 
    143       1.90     pooka static void
    144       1.90     pooka pgdtor(void *arg, void *obj)
    145       1.90     pooka {
    146       1.90     pooka 	struct vm_page *pg = obj;
    147       1.90     pooka 
    148       1.90     pooka 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    149       1.90     pooka }
    150       1.90     pooka 
    151       1.90     pooka static struct pool_cache pagecache;
    152       1.90     pooka 
    153       1.92     pooka /*
    154       1.92     pooka  * Called with the object locked.  We don't support anons.
    155       1.92     pooka  */
    156        1.1     pooka struct vm_page *
    157       1.76     pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    158       1.76     pooka 	int flags, int strat, int free_list)
    159        1.1     pooka {
    160        1.1     pooka 	struct vm_page *pg;
    161        1.1     pooka 
    162      1.184        ad 	KASSERT(uobj && rw_write_held(uobj->vmobjlock));
    163       1.92     pooka 	KASSERT(anon == NULL);
    164       1.92     pooka 
    165      1.103     pooka 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    166      1.104     pooka 	if (__predict_false(pg == NULL)) {
    167      1.103     pooka 		return NULL;
    168      1.104     pooka 	}
    169      1.181        ad 	mutex_init(&pg->interlock, MUTEX_DEFAULT, IPL_NONE);
    170      1.103     pooka 
    171        1.1     pooka 	pg->offset = off;
    172        1.5     pooka 	pg->uobject = uobj;
    173        1.1     pooka 
    174      1.175        ad 	if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
    175      1.175        ad 	    pg) != 0) {
    176      1.175        ad 		pool_cache_put(&pagecache, pg);
    177      1.175        ad 		return NULL;
    178      1.175        ad 	}
    179      1.185        ad 
    180      1.188        ad 	if (UVM_OBJ_IS_VNODE(uobj)) {
    181      1.188        ad 		if (uobj->uo_npages == 0) {
    182      1.188        ad 			struct vnode *vp = (struct vnode *)uobj;
    183      1.188        ad 			mutex_enter(vp->v_interlock);
    184      1.188        ad 			vp->v_iflag |= VI_PAGES;
    185      1.188        ad 			mutex_exit(vp->v_interlock);
    186      1.188        ad 		}
    187      1.188        ad 		pg->flags |= PG_FILE;
    188      1.188        ad 	}
    189      1.189        ad 	uobj->uo_npages++;
    190      1.188        ad 
    191      1.185        ad 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    192      1.185        ad 	if (flags & UVM_PGA_ZERO) {
    193      1.185        ad 		uvm_pagezero(pg);
    194      1.185        ad 	}
    195       1.89     pooka 
    196       1.92     pooka 	/*
    197       1.93     pooka 	 * Don't put anons on the LRU page queue.  We can't flush them
    198       1.93     pooka 	 * (there's no concept of swap in a rump kernel), so no reason
    199       1.93     pooka 	 * to bother with them.
    200       1.92     pooka 	 */
    201       1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    202       1.92     pooka 		atomic_inc_uint(&vmpage_onqueue);
    203      1.174        ad 		mutex_enter(&vmpage_lruqueue_lock);
    204       1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    205      1.174        ad 		mutex_exit(&vmpage_lruqueue_lock);
    206      1.188        ad 	} else {
    207      1.188        ad 		pg->flags |= PG_AOBJ;
    208       1.92     pooka 	}
    209       1.92     pooka 
    210        1.1     pooka 	return pg;
    211        1.1     pooka }
    212        1.1     pooka 
    213       1.21     pooka /*
    214       1.21     pooka  * Release a page.
    215       1.21     pooka  *
    216       1.22     pooka  * Called with the vm object locked.
    217       1.21     pooka  */
    218        1.1     pooka void
    219       1.22     pooka uvm_pagefree(struct vm_page *pg)
    220        1.1     pooka {
    221        1.5     pooka 	struct uvm_object *uobj = pg->uobject;
    222      1.175        ad 	struct vm_page *pg2 __unused;
    223        1.1     pooka 
    224      1.184        ad 	KASSERT(rw_write_held(uobj->vmobjlock));
    225       1.92     pooka 
    226      1.186        ad 	mutex_enter(&pg->interlock);
    227      1.188        ad 	uvm_pagewakeup(pg);
    228      1.186        ad 	mutex_exit(&pg->interlock);
    229       1.22     pooka 
    230       1.59     pooka 	uobj->uo_npages--;
    231      1.175        ad 	pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    232      1.175        ad 	KASSERT(pg == pg2);
    233       1.92     pooka 
    234       1.93     pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    235      1.174        ad 		mutex_enter(&vmpage_lruqueue_lock);
    236       1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    237      1.174        ad 		mutex_exit(&vmpage_lruqueue_lock);
    238       1.92     pooka 		atomic_dec_uint(&vmpage_onqueue);
    239       1.92     pooka 	}
    240       1.92     pooka 
    241      1.185        ad 	if (UVM_OBJ_IS_VNODE(uobj) && uobj->uo_npages == 0) {
    242      1.185        ad 		struct vnode *vp = (struct vnode *)uobj;
    243      1.185        ad 		mutex_enter(vp->v_interlock);
    244      1.185        ad 		vp->v_iflag &= ~VI_PAGES;
    245      1.185        ad 		mutex_exit(vp->v_interlock);
    246      1.185        ad 	}
    247      1.185        ad 
    248      1.181        ad 	mutex_destroy(&pg->interlock);
    249       1.90     pooka 	pool_cache_put(&pagecache, pg);
    250        1.1     pooka }
    251        1.1     pooka 
    252       1.15     pooka void
    253       1.61     pooka uvm_pagezero(struct vm_page *pg)
    254       1.15     pooka {
    255       1.15     pooka 
    256      1.183        ad 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    257       1.61     pooka 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    258       1.15     pooka }
    259       1.15     pooka 
    260        1.1     pooka /*
    261      1.178        ad  * uvm_page_owner_locked_p: return true if object associated with page is
    262      1.136      yamt  * locked.  this is a weak check for runtime assertions only.
    263      1.136      yamt  */
    264      1.136      yamt 
    265      1.136      yamt bool
    266      1.184        ad uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
    267      1.136      yamt {
    268      1.136      yamt 
    269      1.184        ad 	if (exclusive)
    270      1.184        ad 		return rw_write_held(pg->uobject->vmobjlock);
    271      1.184        ad 	else
    272      1.184        ad 		return rw_lock_held(pg->uobject->vmobjlock);
    273      1.136      yamt }
    274      1.136      yamt 
    275      1.136      yamt /*
    276        1.1     pooka  * Misc routines
    277        1.1     pooka  */
    278        1.1     pooka 
    279       1.61     pooka static kmutex_t pagermtx;
    280       1.61     pooka 
    281        1.1     pooka void
    282       1.79     pooka uvm_init(void)
    283        1.1     pooka {
    284       1.84     pooka 	char buf[64];
    285       1.84     pooka 
    286      1.141     pooka 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    287      1.105     pooka 		unsigned long tmp;
    288      1.105     pooka 		char *ep;
    289      1.105     pooka 		int mult;
    290      1.105     pooka 
    291      1.109     pooka 		tmp = strtoul(buf, &ep, 10);
    292      1.105     pooka 		if (strlen(ep) > 1)
    293      1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    294      1.105     pooka 
    295      1.105     pooka 		/* mini-dehumanize-number */
    296      1.105     pooka 		mult = 1;
    297      1.105     pooka 		switch (*ep) {
    298      1.105     pooka 		case 'k':
    299      1.105     pooka 			mult = 1024;
    300      1.105     pooka 			break;
    301      1.105     pooka 		case 'm':
    302      1.105     pooka 			mult = 1024*1024;
    303      1.105     pooka 			break;
    304      1.105     pooka 		case 'g':
    305      1.105     pooka 			mult = 1024*1024*1024;
    306      1.105     pooka 			break;
    307      1.105     pooka 		case 0:
    308      1.105     pooka 			break;
    309      1.105     pooka 		default:
    310      1.105     pooka 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    311      1.105     pooka 		}
    312      1.105     pooka 		rump_physmemlimit = tmp * mult;
    313      1.105     pooka 
    314      1.105     pooka 		if (rump_physmemlimit / mult != tmp)
    315      1.105     pooka 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    316      1.147     pooka 
    317      1.147     pooka 		/* reserve some memory for the pager */
    318      1.158     pooka 		if (rump_physmemlimit <= PDRESERVE)
    319      1.158     pooka 			panic("uvm_init: system reserves %d bytes of mem, "
    320      1.158     pooka 			    "only %lu bytes given",
    321      1.158     pooka 			    PDRESERVE, rump_physmemlimit);
    322      1.147     pooka 		pdlimit = rump_physmemlimit;
    323      1.158     pooka 		rump_physmemlimit -= PDRESERVE;
    324      1.105     pooka 
    325      1.157     pooka 		if (pdlimit < 1024*1024)
    326      1.157     pooka 			printf("uvm_init: WARNING: <1MB RAM limit, "
    327      1.157     pooka 			    "hope you know what you're doing\n");
    328      1.157     pooka 
    329       1.84     pooka #define HUMANIZE_BYTES 9
    330       1.84     pooka 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    331       1.91     pooka 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    332       1.84     pooka #undef HUMANIZE_BYTES
    333       1.92     pooka 		dddlim = 9 * (rump_physmemlimit / 10);
    334       1.84     pooka 	} else {
    335       1.84     pooka 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    336       1.84     pooka 	}
    337       1.84     pooka 	aprint_verbose("total memory = %s\n", buf);
    338        1.1     pooka 
    339       1.92     pooka 	TAILQ_INIT(&vmpage_lruqueue);
    340       1.92     pooka 
    341      1.157     pooka 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
    342      1.157     pooka 		uvmexp.npages = physmem;
    343      1.157     pooka 	} else {
    344      1.157     pooka 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
    345      1.158     pooka 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
    346      1.157     pooka 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
    347      1.157     pooka 	}
    348      1.157     pooka 	/*
    349      1.157     pooka 	 * uvmexp.free is not used internally or updated.  The reason is
    350      1.157     pooka 	 * that the memory hypercall allocator is allowed to allocate
    351      1.157     pooka 	 * non-page sized chunks.  We use a byte count in curphysmem
    352      1.157     pooka 	 * instead.
    353      1.157     pooka 	 */
    354      1.157     pooka 	uvmexp.free = uvmexp.npages;
    355       1.21     pooka 
    356      1.112     pooka #ifndef __uvmexp_pagesize
    357      1.112     pooka 	uvmexp.pagesize = PAGE_SIZE;
    358      1.112     pooka 	uvmexp.pagemask = PAGE_MASK;
    359      1.112     pooka 	uvmexp.pageshift = PAGE_SHIFT;
    360      1.112     pooka #else
    361      1.112     pooka #define FAKE_PAGE_SHIFT 12
    362      1.112     pooka 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    363      1.112     pooka 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    364      1.112     pooka 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    365      1.112     pooka #undef FAKE_PAGE_SHIFT
    366      1.112     pooka #endif
    367      1.112     pooka 
    368      1.140     pooka 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    369      1.174        ad 	mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
    370      1.140     pooka 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    371      1.188        ad 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    372       1.35     pooka 
    373       1.80     pooka 	cv_init(&pdaemoncv, "pdaemon");
    374       1.80     pooka 	cv_init(&oomwait, "oomwait");
    375       1.80     pooka 
    376      1.130     pooka 	module_map = &module_map_store;
    377      1.130     pooka 
    378       1.50     pooka 	kernel_map->pmap = pmap_kernel();
    379      1.121      para 
    380      1.122     njoly 	pool_subsystem_init();
    381      1.128     pooka 
    382      1.121      para 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    383      1.121      para 	    NULL, NULL, NULL,
    384      1.121      para 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    385      1.121      para 
    386      1.135      para 	vmem_subsystem_init(kmem_arena);
    387      1.121      para 
    388      1.121      para 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    389      1.121      para 	    vmem_alloc, vmem_free, kmem_arena,
    390      1.124      para 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    391       1.90     pooka 
    392       1.90     pooka 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    393       1.90     pooka 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    394      1.162     pooka 
    395      1.175        ad 	radix_tree_init();
    396      1.175        ad 
    397      1.162     pooka 	/* create vmspace used by local clients */
    398      1.162     pooka 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
    399      1.164     pooka 	uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
    400        1.1     pooka }
    401        1.1     pooka 
    402       1.83     pooka void
    403      1.145    martin uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    404      1.145    martin     bool topdown)
    405       1.83     pooka {
    406       1.83     pooka 
    407      1.162     pooka 	vm->vm_map.pmap = pmap;
    408       1.83     pooka 	vm->vm_refcnt = 1;
    409       1.83     pooka }
    410        1.1     pooka 
    411      1.173       nat int
    412      1.173       nat uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
    413      1.173       nat     bool new_pageable, int lockflags)
    414      1.173       nat {
    415      1.173       nat 	return 0;
    416      1.173       nat }
    417      1.173       nat 
    418        1.1     pooka void
    419        1.7     pooka uvm_pagewire(struct vm_page *pg)
    420        1.7     pooka {
    421        1.7     pooka 
    422        1.7     pooka 	/* nada */
    423        1.7     pooka }
    424        1.7     pooka 
    425        1.7     pooka void
    426        1.7     pooka uvm_pageunwire(struct vm_page *pg)
    427        1.7     pooka {
    428        1.7     pooka 
    429        1.7     pooka 	/* nada */
    430        1.7     pooka }
    431        1.7     pooka 
    432      1.177        ad int
    433      1.190        ad uvm_availmem(bool cached)
    434      1.177        ad {
    435      1.177        ad 
    436      1.177        ad 	return uvmexp.free;
    437      1.177        ad }
    438      1.177        ad 
    439      1.180        ad void
    440      1.180        ad uvm_pagelock(struct vm_page *pg)
    441      1.180        ad {
    442      1.180        ad 
    443      1.180        ad 	mutex_enter(&pg->interlock);
    444      1.180        ad }
    445      1.180        ad 
    446      1.180        ad void
    447      1.180        ad uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
    448      1.180        ad {
    449      1.180        ad 
    450      1.180        ad 	if (pg1 < pg2) {
    451      1.180        ad 		mutex_enter(&pg1->interlock);
    452      1.180        ad 		mutex_enter(&pg2->interlock);
    453      1.180        ad 	} else {
    454      1.180        ad 		mutex_enter(&pg2->interlock);
    455      1.180        ad 		mutex_enter(&pg1->interlock);
    456      1.180        ad 	}
    457      1.180        ad }
    458      1.180        ad 
    459      1.180        ad void
    460      1.180        ad uvm_pageunlock(struct vm_page *pg)
    461      1.180        ad {
    462      1.180        ad 
    463      1.180        ad 	mutex_exit(&pg->interlock);
    464      1.180        ad }
    465      1.180        ad 
    466      1.180        ad void
    467      1.180        ad uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
    468      1.180        ad {
    469      1.180        ad 
    470      1.180        ad 	mutex_exit(&pg1->interlock);
    471      1.180        ad 	mutex_exit(&pg2->interlock);
    472      1.180        ad }
    473      1.180        ad 
    474       1.83     pooka /* where's your schmonz now? */
    475       1.83     pooka #define PUNLIMIT(a)	\
    476       1.83     pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    477       1.83     pooka void
    478       1.83     pooka uvm_init_limits(struct proc *p)
    479       1.83     pooka {
    480       1.83     pooka 
    481      1.155     pooka #ifndef DFLSSIZ
    482      1.155     pooka #define DFLSSIZ (16*1024*1024)
    483      1.155     pooka #endif
    484      1.154     pooka 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    485      1.154     pooka 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    486       1.83     pooka 	PUNLIMIT(RLIMIT_DATA);
    487       1.83     pooka 	PUNLIMIT(RLIMIT_RSS);
    488       1.83     pooka 	PUNLIMIT(RLIMIT_AS);
    489       1.83     pooka 	/* nice, cascade */
    490       1.83     pooka }
    491       1.83     pooka #undef PUNLIMIT
    492       1.83     pooka 
    493       1.69     pooka /*
    494       1.69     pooka  * This satisfies the "disgusting mmap hack" used by proplib.
    495       1.69     pooka  */
    496       1.49     pooka int
    497      1.160       chs uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
    498       1.49     pooka {
    499       1.69     pooka 	int error;
    500       1.49     pooka 
    501       1.69     pooka 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    502      1.160       chs 	if (*addrp != NULL)
    503       1.69     pooka 		panic("uvm_mmap() variant unsupported");
    504       1.69     pooka 
    505      1.106     pooka 	if (RUMP_LOCALPROC_P(curproc)) {
    506      1.160       chs 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
    507       1.98     pooka 	} else {
    508      1.166     pooka 		error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
    509      1.160       chs 		    size, addrp);
    510       1.98     pooka 	}
    511      1.160       chs 	return error;
    512      1.160       chs }
    513       1.69     pooka 
    514      1.160       chs /*
    515      1.160       chs  * Stubs for things referenced from vfs_vnode.c but not used.
    516      1.160       chs  */
    517      1.160       chs const dev_t zerodev;
    518      1.160       chs 
    519      1.160       chs struct uvm_object *
    520      1.160       chs udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
    521      1.160       chs {
    522      1.160       chs 	return NULL;
    523       1.49     pooka }
    524       1.49     pooka 
    525       1.61     pooka struct pagerinfo {
    526       1.61     pooka 	vaddr_t pgr_kva;
    527       1.61     pooka 	int pgr_npages;
    528       1.61     pooka 	struct vm_page **pgr_pgs;
    529       1.61     pooka 	bool pgr_read;
    530       1.61     pooka 
    531       1.61     pooka 	LIST_ENTRY(pagerinfo) pgr_entries;
    532       1.61     pooka };
    533       1.61     pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    534       1.61     pooka 
    535       1.61     pooka /*
    536       1.61     pooka  * Pager "map" in routine.  Instead of mapping, we allocate memory
    537      1.159     pooka  * and copy page contents there.  The reason for copying instead of
    538      1.159     pooka  * mapping is simple: we do not assume we are running on virtual
    539      1.159     pooka  * memory.  Even if we could emulate virtual memory in some envs
    540      1.159     pooka  * such as userspace, copying is much faster than trying to awkardly
    541      1.159     pooka  * cope with remapping (see "Design and Implementation" pp.95-98).
    542      1.159     pooka  * The downside of the approach is that the pager requires MAXPHYS
    543      1.159     pooka  * free memory to perform paging, but short of virtual memory or
    544      1.159     pooka  * making the pager do I/O in page-sized chunks we cannot do much
    545      1.159     pooka  * about that.
    546       1.61     pooka  */
    547        1.7     pooka vaddr_t
    548       1.61     pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    549        1.7     pooka {
    550       1.61     pooka 	struct pagerinfo *pgri;
    551       1.61     pooka 	vaddr_t curkva;
    552       1.61     pooka 	int i;
    553       1.61     pooka 
    554       1.61     pooka 	/* allocate structures */
    555       1.61     pooka 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    556       1.61     pooka 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    557       1.61     pooka 	pgri->pgr_npages = npages;
    558       1.61     pooka 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    559       1.61     pooka 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    560       1.61     pooka 
    561       1.61     pooka 	/* copy contents to "mapped" memory */
    562       1.61     pooka 	for (i = 0, curkva = pgri->pgr_kva;
    563       1.61     pooka 	    i < npages;
    564       1.61     pooka 	    i++, curkva += PAGE_SIZE) {
    565       1.61     pooka 		/*
    566       1.61     pooka 		 * We need to copy the previous contents of the pages to
    567       1.61     pooka 		 * the window even if we are reading from the
    568       1.61     pooka 		 * device, since the device might not fill the contents of
    569       1.61     pooka 		 * the full mapped range and we will end up corrupting
    570       1.61     pooka 		 * data when we unmap the window.
    571       1.61     pooka 		 */
    572       1.61     pooka 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    573       1.61     pooka 		pgri->pgr_pgs[i] = pgs[i];
    574       1.61     pooka 	}
    575       1.61     pooka 
    576       1.61     pooka 	mutex_enter(&pagermtx);
    577       1.61     pooka 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    578       1.61     pooka 	mutex_exit(&pagermtx);
    579        1.7     pooka 
    580       1.61     pooka 	return pgri->pgr_kva;
    581        1.7     pooka }
    582        1.7     pooka 
    583       1.61     pooka /*
    584       1.61     pooka  * map out the pager window.  return contents from VA to page storage
    585       1.61     pooka  * and free structures.
    586       1.61     pooka  *
    587       1.61     pooka  * Note: does not currently support partial frees
    588       1.61     pooka  */
    589       1.61     pooka void
    590       1.61     pooka uvm_pagermapout(vaddr_t kva, int npages)
    591        1.7     pooka {
    592       1.61     pooka 	struct pagerinfo *pgri;
    593       1.61     pooka 	vaddr_t curkva;
    594       1.61     pooka 	int i;
    595        1.7     pooka 
    596       1.61     pooka 	mutex_enter(&pagermtx);
    597       1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    598       1.61     pooka 		if (pgri->pgr_kva == kva)
    599       1.61     pooka 			break;
    600       1.61     pooka 	}
    601       1.61     pooka 	KASSERT(pgri);
    602       1.61     pooka 	if (pgri->pgr_npages != npages)
    603       1.61     pooka 		panic("uvm_pagermapout: partial unmapping not supported");
    604       1.61     pooka 	LIST_REMOVE(pgri, pgr_entries);
    605       1.61     pooka 	mutex_exit(&pagermtx);
    606       1.61     pooka 
    607       1.61     pooka 	if (pgri->pgr_read) {
    608       1.61     pooka 		for (i = 0, curkva = pgri->pgr_kva;
    609       1.61     pooka 		    i < pgri->pgr_npages;
    610       1.61     pooka 		    i++, curkva += PAGE_SIZE) {
    611       1.61     pooka 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    612       1.21     pooka 		}
    613       1.21     pooka 	}
    614       1.10     pooka 
    615       1.61     pooka 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    616       1.61     pooka 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    617       1.61     pooka 	kmem_free(pgri, sizeof(*pgri));
    618        1.7     pooka }
    619        1.7     pooka 
    620       1.61     pooka /*
    621       1.61     pooka  * convert va in pager window to page structure.
    622       1.61     pooka  * XXX: how expensive is this (global lock, list traversal)?
    623       1.61     pooka  */
    624       1.14     pooka struct vm_page *
    625       1.14     pooka uvm_pageratop(vaddr_t va)
    626       1.14     pooka {
    627       1.61     pooka 	struct pagerinfo *pgri;
    628       1.61     pooka 	struct vm_page *pg = NULL;
    629       1.61     pooka 	int i;
    630       1.14     pooka 
    631       1.61     pooka 	mutex_enter(&pagermtx);
    632       1.61     pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    633       1.61     pooka 		if (pgri->pgr_kva <= va
    634       1.61     pooka 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    635       1.21     pooka 			break;
    636       1.61     pooka 	}
    637       1.61     pooka 	if (pgri) {
    638       1.61     pooka 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    639       1.61     pooka 		pg = pgri->pgr_pgs[i];
    640       1.61     pooka 	}
    641       1.61     pooka 	mutex_exit(&pagermtx);
    642       1.21     pooka 
    643       1.61     pooka 	return pg;
    644       1.61     pooka }
    645       1.15     pooka 
    646       1.97     pooka /*
    647       1.97     pooka  * Called with the vm object locked.
    648       1.97     pooka  *
    649       1.97     pooka  * Put vnode object pages at the end of the access queue to indicate
    650       1.97     pooka  * they have been recently accessed and should not be immediate
    651       1.97     pooka  * candidates for pageout.  Do not do this for lookups done by
    652       1.97     pooka  * the pagedaemon to mimic pmap_kentered mappings which don't track
    653       1.97     pooka  * access information.
    654       1.97     pooka  */
    655       1.61     pooka struct vm_page *
    656       1.61     pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    657       1.61     pooka {
    658       1.92     pooka 	struct vm_page *pg;
    659       1.97     pooka 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    660       1.61     pooka 
    661      1.175        ad 	pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
    662       1.97     pooka 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    663      1.174        ad 		mutex_enter(&vmpage_lruqueue_lock);
    664       1.92     pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    665       1.92     pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    666      1.174        ad 		mutex_exit(&vmpage_lruqueue_lock);
    667       1.92     pooka 	}
    668       1.92     pooka 
    669       1.92     pooka 	return pg;
    670       1.14     pooka }
    671       1.14     pooka 
    672        1.7     pooka void
    673       1.22     pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
    674       1.22     pooka {
    675       1.22     pooka 	struct vm_page *pg;
    676  1.190.2.1   thorpej 	int i, pageout_done;
    677       1.22     pooka 
    678       1.94     pooka 	KASSERT(npgs > 0);
    679       1.94     pooka 
    680  1.190.2.1   thorpej 	pageout_done = 0;
    681       1.22     pooka 	for (i = 0; i < npgs; i++) {
    682       1.22     pooka 		pg = pgs[i];
    683  1.190.2.1   thorpej 		if (pg == NULL || pg == PGO_DONTCARE) {
    684       1.22     pooka 			continue;
    685  1.190.2.1   thorpej 		}
    686       1.22     pooka 
    687  1.190.2.1   thorpej #if 0
    688  1.190.2.1   thorpej 		KASSERT(uvm_page_owner_locked_p(pg, true));
    689  1.190.2.1   thorpej #else
    690  1.190.2.1   thorpej 		/*
    691  1.190.2.1   thorpej 		 * uvm_page_owner_locked_p() is not available in rump,
    692  1.190.2.1   thorpej 		 * and rump doesn't support amaps anyway.
    693  1.190.2.1   thorpej 		 */
    694  1.190.2.1   thorpej 		KASSERT(rw_write_held(pg->uobject->vmobjlock));
    695  1.190.2.1   thorpej #endif
    696       1.22     pooka 		KASSERT(pg->flags & PG_BUSY);
    697  1.190.2.1   thorpej 
    698  1.190.2.1   thorpej 		if (pg->flags & PG_PAGEOUT) {
    699  1.190.2.1   thorpej 			pg->flags &= ~PG_PAGEOUT;
    700  1.190.2.1   thorpej 			pg->flags |= PG_RELEASED;
    701  1.190.2.1   thorpej 			pageout_done++;
    702  1.190.2.1   thorpej 			atomic_inc_uint(&uvmexp.pdfreed);
    703  1.190.2.1   thorpej 		}
    704      1.186        ad 		if (pg->flags & PG_RELEASED) {
    705  1.190.2.1   thorpej 			KASSERT(pg->uobject != NULL ||
    706  1.190.2.1   thorpej 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
    707  1.190.2.1   thorpej 			pg->flags &= ~PG_RELEASED;
    708       1.36     pooka 			uvm_pagefree(pg);
    709      1.186        ad 		} else {
    710  1.190.2.1   thorpej 			KASSERT((pg->flags & PG_FAKE) == 0);
    711      1.187        ad 			pg->flags &= ~PG_BUSY;
    712      1.186        ad 			uvm_pagelock(pg);
    713      1.187        ad 			uvm_pagewakeup(pg);
    714      1.186        ad 			uvm_pageunlock(pg);
    715  1.190.2.1   thorpej 			UVM_PAGE_OWN(pg, NULL);
    716      1.186        ad 		}
    717      1.186        ad 	}
    718  1.190.2.1   thorpej 	if (pageout_done != 0) {
    719  1.190.2.1   thorpej 		uvm_pageout_done(pageout_done);
    720  1.190.2.1   thorpej 	}
    721      1.186        ad }
    722      1.186        ad 
    723      1.186        ad void
    724      1.186        ad uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
    725      1.186        ad {
    726      1.186        ad 
    727      1.186        ad 	KASSERT(rw_lock_held(lock));
    728      1.186        ad 	KASSERT((pg->flags & PG_BUSY) != 0);
    729      1.186        ad 
    730      1.186        ad 	mutex_enter(&pg->interlock);
    731      1.186        ad 	pg->pqflags |= PQ_WANTED;
    732      1.186        ad 	rw_exit(lock);
    733      1.186        ad 	UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
    734      1.186        ad }
    735      1.186        ad 
    736      1.186        ad void
    737      1.187        ad uvm_pagewakeup(struct vm_page *pg)
    738      1.186        ad {
    739      1.186        ad 
    740      1.186        ad 	KASSERT(mutex_owned(&pg->interlock));
    741      1.186        ad 
    742      1.186        ad 	if ((pg->pqflags & PQ_WANTED) != 0) {
    743      1.186        ad 		pg->pqflags &= ~PQ_WANTED;
    744      1.186        ad 		wakeup(pg);
    745       1.22     pooka 	}
    746       1.22     pooka }
    747       1.22     pooka 
    748       1.22     pooka void
    749        1.7     pooka uvm_estimatepageable(int *active, int *inactive)
    750        1.7     pooka {
    751        1.7     pooka 
    752       1.19     pooka 	/* XXX: guessing game */
    753       1.19     pooka 	*active = 1024;
    754       1.19     pooka 	*inactive = 1024;
    755        1.7     pooka }
    756        1.7     pooka 
    757       1.41     pooka int
    758       1.41     pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    759       1.41     pooka {
    760       1.41     pooka 
    761       1.41     pooka 	panic("%s: unimplemented", __func__);
    762       1.41     pooka }
    763       1.41     pooka 
    764       1.41     pooka void
    765       1.41     pooka uvm_unloan(void *v, int npages, int flags)
    766       1.41     pooka {
    767       1.41     pooka 
    768       1.41     pooka 	panic("%s: unimplemented", __func__);
    769       1.41     pooka }
    770       1.41     pooka 
    771       1.43     pooka int
    772       1.43     pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    773       1.43     pooka 	struct vm_page **opp)
    774       1.43     pooka {
    775       1.43     pooka 
    776       1.72     pooka 	return EBUSY;
    777       1.43     pooka }
    778       1.43     pooka 
    779      1.116       mrg struct vm_page *
    780      1.116       mrg uvm_loanbreak(struct vm_page *pg)
    781      1.116       mrg {
    782      1.116       mrg 
    783      1.116       mrg 	panic("%s: unimplemented", __func__);
    784      1.116       mrg }
    785      1.116       mrg 
    786      1.116       mrg void
    787      1.116       mrg ubc_purge(struct uvm_object *uobj)
    788      1.116       mrg {
    789      1.116       mrg 
    790      1.116       mrg }
    791      1.116       mrg 
    792       1.68     pooka vaddr_t
    793      1.168    martin uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
    794       1.68     pooka {
    795       1.68     pooka 
    796       1.68     pooka 	return 0;
    797       1.68     pooka }
    798       1.68     pooka 
    799       1.71     pooka int
    800       1.71     pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    801       1.71     pooka 	vm_prot_t prot, bool set_max)
    802       1.71     pooka {
    803       1.71     pooka 
    804       1.71     pooka 	return EOPNOTSUPP;
    805       1.71     pooka }
    806       1.71     pooka 
    807      1.171    martin int
    808      1.171    martin uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
    809      1.171    martin     struct uvm_object *uobj, voff_t uoffset, vsize_t align,
    810      1.171    martin     uvm_flag_t flags)
    811      1.171    martin {
    812      1.171    martin 
    813      1.172    martin 	*startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
    814      1.172    martin 	return *startp != 0 ? 0 : ENOMEM;
    815      1.172    martin }
    816      1.172    martin 
    817      1.172    martin void
    818      1.172    martin uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
    819      1.172    martin {
    820      1.172    martin 
    821      1.172    martin 	rump_hyperfree((void*)start, end-start);
    822      1.171    martin }
    823      1.171    martin 
    824      1.171    martin 
    825        1.9     pooka /*
    826       1.12     pooka  * UVM km
    827       1.12     pooka  */
    828       1.12     pooka 
    829       1.12     pooka vaddr_t
    830       1.12     pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    831       1.12     pooka {
    832       1.82     pooka 	void *rv, *desired = NULL;
    833       1.50     pooka 	int alignbit, error;
    834       1.50     pooka 
    835       1.82     pooka #ifdef __x86_64__
    836       1.82     pooka 	/*
    837       1.82     pooka 	 * On amd64, allocate all module memory from the lowest 2GB.
    838       1.82     pooka 	 * This is because NetBSD kernel modules are compiled
    839       1.82     pooka 	 * with -mcmodel=kernel and reserve only 4 bytes for
    840       1.82     pooka 	 * offsets.  If we load code compiled with -mcmodel=kernel
    841       1.82     pooka 	 * anywhere except the lowest or highest 2GB, it will not
    842       1.82     pooka 	 * work.  Since userspace does not have access to the highest
    843       1.82     pooka 	 * 2GB, use the lowest 2GB.
    844       1.82     pooka 	 *
    845       1.82     pooka 	 * Note: this assumes the rump kernel resides in
    846       1.82     pooka 	 * the lowest 2GB as well.
    847       1.82     pooka 	 *
    848       1.82     pooka 	 * Note2: yes, it's a quick hack, but since this the only
    849       1.82     pooka 	 * place where we care about the map we're allocating from,
    850       1.82     pooka 	 * just use a simple "if" instead of coming up with a fancy
    851       1.82     pooka 	 * generic solution.
    852       1.82     pooka 	 */
    853       1.82     pooka 	if (map == module_map) {
    854       1.82     pooka 		desired = (void *)(0x80000000 - size);
    855       1.82     pooka 	}
    856       1.82     pooka #endif
    857       1.82     pooka 
    858      1.130     pooka 	if (__predict_false(map == module_map)) {
    859      1.130     pooka 		alignbit = 0;
    860      1.130     pooka 		if (align) {
    861      1.130     pooka 			alignbit = ffs(align)-1;
    862      1.130     pooka 		}
    863      1.142     pooka 		error = rumpuser_anonmmap(desired, size, alignbit,
    864      1.142     pooka 		    flags & UVM_KMF_EXEC, &rv);
    865      1.130     pooka 	} else {
    866      1.142     pooka 		error = rumpuser_malloc(size, align, &rv);
    867       1.50     pooka 	}
    868       1.50     pooka 
    869      1.142     pooka 	if (error) {
    870       1.50     pooka 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    871       1.50     pooka 			return 0;
    872       1.50     pooka 		else
    873       1.50     pooka 			panic("uvm_km_alloc failed");
    874       1.50     pooka 	}
    875       1.12     pooka 
    876       1.50     pooka 	if (flags & UVM_KMF_ZERO)
    877       1.12     pooka 		memset(rv, 0, size);
    878       1.12     pooka 
    879       1.12     pooka 	return (vaddr_t)rv;
    880       1.12     pooka }
    881       1.12     pooka 
    882       1.12     pooka void
    883       1.12     pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    884       1.12     pooka {
    885       1.12     pooka 
    886      1.130     pooka 	if (__predict_false(map == module_map))
    887      1.130     pooka 		rumpuser_unmap((void *)vaddr, size);
    888      1.130     pooka 	else
    889      1.138     pooka 		rumpuser_free((void *)vaddr, size);
    890       1.12     pooka }
    891       1.12     pooka 
    892      1.170  christos int
    893      1.170  christos uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
    894      1.170  christos {
    895      1.170  christos 	return 0;
    896      1.170  christos }
    897      1.170  christos 
    898       1.12     pooka struct vm_map *
    899       1.12     pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    900      1.121      para 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    901       1.12     pooka {
    902       1.12     pooka 
    903       1.12     pooka 	return (struct vm_map *)417416;
    904       1.12     pooka }
    905       1.40     pooka 
    906      1.121      para int
    907      1.121      para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    908      1.121      para     vmem_addr_t *addr)
    909       1.40     pooka {
    910      1.121      para 	vaddr_t va;
    911      1.121      para 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    912      1.121      para 	    (flags & VM_SLEEP), "kmalloc");
    913       1.40     pooka 
    914      1.121      para 	if (va) {
    915      1.121      para 		*addr = va;
    916      1.121      para 		return 0;
    917      1.121      para 	} else {
    918      1.121      para 		return ENOMEM;
    919      1.121      para 	}
    920       1.40     pooka }
    921       1.40     pooka 
    922       1.40     pooka void
    923      1.121      para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    924       1.40     pooka {
    925       1.40     pooka 
    926      1.121      para 	rump_hyperfree((void *)addr, size);
    927       1.74     pooka }
    928       1.74     pooka 
    929       1.57     pooka /*
    930      1.102     pooka  * VM space locking routines.  We don't really have to do anything,
    931      1.102     pooka  * since the pages are always "wired" (both local and remote processes).
    932       1.57     pooka  */
    933       1.57     pooka int
    934       1.57     pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    935       1.57     pooka {
    936       1.57     pooka 
    937       1.57     pooka 	return 0;
    938       1.57     pooka }
    939       1.57     pooka 
    940       1.57     pooka void
    941       1.57     pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    942       1.57     pooka {
    943       1.57     pooka 
    944       1.57     pooka }
    945       1.57     pooka 
    946      1.102     pooka /*
    947      1.102     pooka  * For the local case the buffer mappers don't need to do anything.
    948      1.102     pooka  * For the remote case we need to reserve space and copy data in or
    949      1.102     pooka  * out, depending on B_READ/B_WRITE.
    950      1.102     pooka  */
    951      1.111     pooka int
    952       1.57     pooka vmapbuf(struct buf *bp, vsize_t len)
    953       1.57     pooka {
    954      1.111     pooka 	int error = 0;
    955       1.57     pooka 
    956       1.57     pooka 	bp->b_saveaddr = bp->b_data;
    957      1.102     pooka 
    958      1.102     pooka 	/* remote case */
    959      1.106     pooka 	if (!RUMP_LOCALPROC_P(curproc)) {
    960      1.102     pooka 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    961      1.102     pooka 		if (BUF_ISWRITE(bp)) {
    962      1.111     pooka 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    963      1.111     pooka 			if (error) {
    964      1.111     pooka 				rump_hyperfree(bp->b_data, len);
    965      1.111     pooka 				bp->b_data = bp->b_saveaddr;
    966      1.111     pooka 				bp->b_saveaddr = 0;
    967      1.111     pooka 			}
    968      1.102     pooka 		}
    969      1.102     pooka 	}
    970      1.111     pooka 
    971      1.111     pooka 	return error;
    972       1.57     pooka }
    973       1.57     pooka 
    974       1.57     pooka void
    975       1.57     pooka vunmapbuf(struct buf *bp, vsize_t len)
    976       1.57     pooka {
    977       1.57     pooka 
    978      1.102     pooka 	/* remote case */
    979      1.106     pooka 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    980      1.102     pooka 		if (BUF_ISREAD(bp)) {
    981      1.110     pooka 			bp->b_error = copyout_proc(bp->b_proc,
    982      1.102     pooka 			    bp->b_data, bp->b_saveaddr, len);
    983      1.102     pooka 		}
    984      1.102     pooka 		rump_hyperfree(bp->b_data, len);
    985      1.102     pooka 	}
    986      1.102     pooka 
    987       1.57     pooka 	bp->b_data = bp->b_saveaddr;
    988       1.57     pooka 	bp->b_saveaddr = 0;
    989       1.57     pooka }
    990       1.61     pooka 
    991       1.61     pooka void
    992       1.83     pooka uvmspace_addref(struct vmspace *vm)
    993       1.83     pooka {
    994       1.83     pooka 
    995       1.83     pooka 	/*
    996      1.103     pooka 	 * No dynamically allocated vmspaces exist.
    997       1.83     pooka 	 */
    998       1.83     pooka }
    999       1.83     pooka 
   1000       1.83     pooka void
   1001       1.66     pooka uvmspace_free(struct vmspace *vm)
   1002       1.66     pooka {
   1003       1.66     pooka 
   1004       1.66     pooka 	/* nothing for now */
   1005       1.66     pooka }
   1006       1.66     pooka 
   1007       1.61     pooka /*
   1008       1.61     pooka  * page life cycle stuff.  it really doesn't exist, so just stubs.
   1009       1.61     pooka  */
   1010       1.61     pooka 
   1011       1.61     pooka void
   1012       1.61     pooka uvm_pageactivate(struct vm_page *pg)
   1013       1.61     pooka {
   1014       1.61     pooka 
   1015       1.61     pooka 	/* nada */
   1016       1.61     pooka }
   1017       1.61     pooka 
   1018       1.61     pooka void
   1019       1.61     pooka uvm_pagedeactivate(struct vm_page *pg)
   1020       1.61     pooka {
   1021       1.61     pooka 
   1022       1.61     pooka 	/* nada */
   1023       1.61     pooka }
   1024       1.61     pooka 
   1025       1.61     pooka void
   1026       1.61     pooka uvm_pagedequeue(struct vm_page *pg)
   1027       1.61     pooka {
   1028       1.61     pooka 
   1029       1.61     pooka 	/* nada*/
   1030       1.61     pooka }
   1031       1.61     pooka 
   1032       1.61     pooka void
   1033       1.61     pooka uvm_pageenqueue(struct vm_page *pg)
   1034       1.61     pooka {
   1035       1.61     pooka 
   1036       1.61     pooka 	/* nada */
   1037       1.61     pooka }
   1038       1.80     pooka 
   1039       1.88     pooka void
   1040       1.88     pooka uvmpdpol_anfree(struct vm_anon *an)
   1041       1.88     pooka {
   1042       1.88     pooka 
   1043       1.88     pooka 	/* nada */
   1044       1.88     pooka }
   1045       1.88     pooka 
   1046       1.80     pooka /*
   1047       1.99  uebayasi  * Physical address accessors.
   1048       1.99  uebayasi  */
   1049       1.99  uebayasi 
   1050       1.99  uebayasi struct vm_page *
   1051       1.99  uebayasi uvm_phys_to_vm_page(paddr_t pa)
   1052       1.99  uebayasi {
   1053       1.99  uebayasi 
   1054       1.99  uebayasi 	return NULL;
   1055       1.99  uebayasi }
   1056       1.99  uebayasi 
   1057       1.99  uebayasi paddr_t
   1058       1.99  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
   1059       1.99  uebayasi {
   1060       1.99  uebayasi 
   1061       1.99  uebayasi 	return 0;
   1062       1.99  uebayasi }
   1063       1.99  uebayasi 
   1064      1.153     pooka vaddr_t
   1065      1.153     pooka uvm_uarea_alloc(void)
   1066      1.153     pooka {
   1067      1.153     pooka 
   1068      1.153     pooka 	/* non-zero */
   1069      1.153     pooka 	return (vaddr_t)11;
   1070      1.153     pooka }
   1071      1.153     pooka 
   1072      1.153     pooka void
   1073      1.153     pooka uvm_uarea_free(vaddr_t uarea)
   1074      1.153     pooka {
   1075      1.153     pooka 
   1076      1.153     pooka 	/* nata, so creamy */
   1077      1.153     pooka }
   1078      1.153     pooka 
   1079       1.99  uebayasi /*
   1080       1.80     pooka  * Routines related to the Page Baroness.
   1081       1.80     pooka  */
   1082       1.80     pooka 
   1083       1.80     pooka void
   1084       1.80     pooka uvm_wait(const char *msg)
   1085       1.80     pooka {
   1086       1.80     pooka 
   1087       1.80     pooka 	if (__predict_false(rump_threads == 0))
   1088       1.80     pooka 		panic("pagedaemon missing (RUMP_THREADS = 0)");
   1089       1.80     pooka 
   1090      1.147     pooka 	if (curlwp == uvm.pagedaemon_lwp) {
   1091      1.147     pooka 		/* is it possible for us to later get memory? */
   1092      1.147     pooka 		if (!uvmexp.paging)
   1093      1.147     pooka 			panic("pagedaemon out of memory");
   1094      1.147     pooka 	}
   1095      1.147     pooka 
   1096       1.80     pooka 	mutex_enter(&pdaemonmtx);
   1097       1.80     pooka 	pdaemon_waiters++;
   1098       1.80     pooka 	cv_signal(&pdaemoncv);
   1099       1.80     pooka 	cv_wait(&oomwait, &pdaemonmtx);
   1100       1.80     pooka 	mutex_exit(&pdaemonmtx);
   1101       1.80     pooka }
   1102       1.80     pooka 
   1103       1.80     pooka void
   1104       1.80     pooka uvm_pageout_start(int npages)
   1105       1.80     pooka {
   1106       1.80     pooka 
   1107      1.113     pooka 	mutex_enter(&pdaemonmtx);
   1108      1.113     pooka 	uvmexp.paging += npages;
   1109      1.113     pooka 	mutex_exit(&pdaemonmtx);
   1110       1.80     pooka }
   1111       1.80     pooka 
   1112       1.80     pooka void
   1113       1.80     pooka uvm_pageout_done(int npages)
   1114       1.80     pooka {
   1115       1.80     pooka 
   1116      1.113     pooka 	if (!npages)
   1117      1.113     pooka 		return;
   1118      1.113     pooka 
   1119      1.113     pooka 	mutex_enter(&pdaemonmtx);
   1120      1.113     pooka 	KASSERT(uvmexp.paging >= npages);
   1121      1.113     pooka 	uvmexp.paging -= npages;
   1122      1.113     pooka 
   1123      1.113     pooka 	if (pdaemon_waiters) {
   1124      1.113     pooka 		pdaemon_waiters = 0;
   1125      1.113     pooka 		cv_broadcast(&oomwait);
   1126      1.113     pooka 	}
   1127      1.113     pooka 	mutex_exit(&pdaemonmtx);
   1128       1.80     pooka }
   1129       1.80     pooka 
   1130       1.95     pooka static bool
   1131      1.184        ad processpage(struct vm_page *pg)
   1132       1.95     pooka {
   1133       1.95     pooka 	struct uvm_object *uobj;
   1134       1.95     pooka 
   1135       1.95     pooka 	uobj = pg->uobject;
   1136      1.184        ad 	if (rw_tryenter(uobj->vmobjlock, RW_WRITER)) {
   1137       1.95     pooka 		if ((pg->flags & PG_BUSY) == 0) {
   1138      1.174        ad 			mutex_exit(&vmpage_lruqueue_lock);
   1139       1.95     pooka 			uobj->pgops->pgo_put(uobj, pg->offset,
   1140       1.95     pooka 			    pg->offset + PAGE_SIZE,
   1141       1.95     pooka 			    PGO_CLEANIT|PGO_FREE);
   1142      1.184        ad 			KASSERT(!rw_write_held(uobj->vmobjlock));
   1143       1.95     pooka 			return true;
   1144       1.95     pooka 		} else {
   1145      1.184        ad 			rw_exit(uobj->vmobjlock);
   1146      1.104     pooka 		}
   1147       1.95     pooka 	}
   1148       1.95     pooka 
   1149       1.95     pooka 	return false;
   1150       1.95     pooka }
   1151       1.95     pooka 
   1152       1.80     pooka /*
   1153       1.92     pooka  * The Diabolical pageDaemon Director (DDD).
   1154      1.113     pooka  *
   1155      1.113     pooka  * This routine can always use better heuristics.
   1156       1.80     pooka  */
   1157       1.80     pooka void
   1158       1.80     pooka uvm_pageout(void *arg)
   1159       1.80     pooka {
   1160       1.92     pooka 	struct vm_page *pg;
   1161       1.80     pooka 	struct pool *pp, *pp_first;
   1162       1.92     pooka 	int cleaned, skip, skipped;
   1163      1.113     pooka 	bool succ;
   1164       1.80     pooka 
   1165       1.80     pooka 	mutex_enter(&pdaemonmtx);
   1166       1.80     pooka 	for (;;) {
   1167      1.113     pooka 		if (pdaemon_waiters) {
   1168      1.113     pooka 			pdaemon_waiters = 0;
   1169      1.113     pooka 			cv_broadcast(&oomwait);
   1170      1.104     pooka 		}
   1171      1.188        ad 		if (!NEED_PAGEDAEMON()) {
   1172      1.188        ad 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1173      1.188        ad 			cv_wait(&pdaemoncv, &pdaemonmtx);
   1174      1.188        ad 		}
   1175      1.113     pooka 		uvmexp.pdwoke++;
   1176      1.113     pooka 
   1177       1.92     pooka 		/* tell the world that we are hungry */
   1178       1.80     pooka 		kernel_map->flags |= VM_MAP_WANTVA;
   1179       1.80     pooka 		mutex_exit(&pdaemonmtx);
   1180       1.80     pooka 
   1181       1.92     pooka 		/*
   1182       1.92     pooka 		 * step one: reclaim the page cache.  this should give
   1183       1.92     pooka 		 * us the biggest earnings since whole pages are released
   1184       1.92     pooka 		 * into backing memory.
   1185       1.92     pooka 		 */
   1186       1.92     pooka 		pool_cache_reclaim(&pagecache);
   1187       1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1188       1.92     pooka 			mutex_enter(&pdaemonmtx);
   1189       1.92     pooka 			continue;
   1190       1.92     pooka 		}
   1191       1.92     pooka 
   1192       1.92     pooka 		/*
   1193       1.92     pooka 		 * Ok, so that didn't help.  Next, try to hunt memory
   1194       1.92     pooka 		 * by pushing out vnode pages.  The pages might contain
   1195       1.92     pooka 		 * useful cached data, but we need the memory.
   1196       1.92     pooka 		 */
   1197       1.92     pooka 		cleaned = 0;
   1198       1.92     pooka 		skip = 0;
   1199       1.92     pooka  again:
   1200      1.174        ad 		mutex_enter(&vmpage_lruqueue_lock);
   1201       1.92     pooka 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1202       1.92     pooka 			skipped = 0;
   1203       1.92     pooka 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1204       1.92     pooka 
   1205       1.92     pooka 				/*
   1206       1.92     pooka 				 * skip over pages we _might_ have tried
   1207       1.92     pooka 				 * to handle earlier.  they might not be
   1208       1.92     pooka 				 * exactly the same ones, but I'm not too
   1209       1.92     pooka 				 * concerned.
   1210       1.92     pooka 				 */
   1211       1.92     pooka 				while (skipped++ < skip)
   1212       1.92     pooka 					continue;
   1213       1.92     pooka 
   1214      1.184        ad 				if (processpage(pg)) {
   1215       1.95     pooka 					cleaned++;
   1216       1.95     pooka 					goto again;
   1217       1.92     pooka 				}
   1218       1.92     pooka 
   1219       1.92     pooka 				skip++;
   1220       1.92     pooka 			}
   1221       1.92     pooka 			break;
   1222       1.92     pooka 		}
   1223      1.174        ad 		mutex_exit(&vmpage_lruqueue_lock);
   1224       1.92     pooka 
   1225       1.92     pooka 		/*
   1226       1.92     pooka 		 * And of course we need to reclaim the page cache
   1227       1.92     pooka 		 * again to actually release memory.
   1228       1.92     pooka 		 */
   1229       1.92     pooka 		pool_cache_reclaim(&pagecache);
   1230       1.92     pooka 		if (!NEED_PAGEDAEMON()) {
   1231       1.92     pooka 			mutex_enter(&pdaemonmtx);
   1232       1.92     pooka 			continue;
   1233       1.92     pooka 		}
   1234       1.92     pooka 
   1235       1.92     pooka 		/*
   1236       1.92     pooka 		 * And then drain the pools.  Wipe them out ... all of them.
   1237       1.92     pooka 		 */
   1238      1.127       jym 		for (pp_first = NULL;;) {
   1239      1.156     pooka 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1240       1.92     pooka 
   1241      1.127       jym 			succ = pool_drain(&pp);
   1242      1.127       jym 			if (succ || pp == pp_first)
   1243       1.80     pooka 				break;
   1244      1.127       jym 
   1245      1.127       jym 			if (pp_first == NULL)
   1246      1.127       jym 				pp_first = pp;
   1247       1.80     pooka 		}
   1248       1.92     pooka 
   1249       1.92     pooka 		/*
   1250       1.92     pooka 		 * Need to use PYEC on our bag of tricks.
   1251       1.92     pooka 		 * Unfortunately, the wife just borrowed it.
   1252       1.92     pooka 		 */
   1253       1.80     pooka 
   1254      1.113     pooka 		mutex_enter(&pdaemonmtx);
   1255      1.113     pooka 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1256      1.113     pooka 		    uvmexp.paging == 0) {
   1257      1.167     pooka 			kpause("pddlk", false, hz, &pdaemonmtx);
   1258       1.80     pooka 		}
   1259       1.80     pooka 	}
   1260       1.80     pooka 
   1261       1.80     pooka 	panic("you can swap out any time you like, but you can never leave");
   1262       1.80     pooka }
   1263       1.80     pooka 
   1264       1.80     pooka void
   1265       1.80     pooka uvm_kick_pdaemon()
   1266       1.80     pooka {
   1267       1.80     pooka 
   1268       1.92     pooka 	/*
   1269       1.92     pooka 	 * Wake up the diabolical pagedaemon director if we are over
   1270       1.92     pooka 	 * 90% of the memory limit.  This is a complete and utter
   1271       1.92     pooka 	 * stetson-harrison decision which you are allowed to finetune.
   1272       1.92     pooka 	 * Don't bother locking.  If we have some unflushed caches,
   1273       1.92     pooka 	 * other waker-uppers will deal with the issue.
   1274       1.92     pooka 	 */
   1275       1.92     pooka 	if (NEED_PAGEDAEMON()) {
   1276       1.92     pooka 		cv_signal(&pdaemoncv);
   1277       1.92     pooka 	}
   1278       1.80     pooka }
   1279       1.80     pooka 
   1280       1.80     pooka void *
   1281       1.80     pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1282       1.80     pooka {
   1283      1.150     pooka 	const unsigned long thelimit =
   1284      1.150     pooka 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1285       1.84     pooka 	unsigned long newmem;
   1286       1.80     pooka 	void *rv;
   1287      1.142     pooka 	int error;
   1288       1.80     pooka 
   1289       1.92     pooka 	uvm_kick_pdaemon(); /* ouch */
   1290       1.92     pooka 
   1291       1.84     pooka 	/* first we must be within the limit */
   1292       1.84     pooka  limitagain:
   1293      1.150     pooka 	if (thelimit != RUMPMEM_UNLIMITED) {
   1294       1.84     pooka 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1295      1.150     pooka 		if (newmem > thelimit) {
   1296       1.84     pooka 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1297      1.103     pooka 			if (!waitok) {
   1298       1.84     pooka 				return NULL;
   1299      1.103     pooka 			}
   1300       1.84     pooka 			uvm_wait(wmsg);
   1301       1.84     pooka 			goto limitagain;
   1302       1.84     pooka 		}
   1303       1.84     pooka 	}
   1304       1.84     pooka 
   1305       1.84     pooka 	/* second, we must get something from the backend */
   1306       1.80     pooka  again:
   1307      1.142     pooka 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1308      1.142     pooka 	if (__predict_false(error && waitok)) {
   1309       1.80     pooka 		uvm_wait(wmsg);
   1310       1.80     pooka 		goto again;
   1311       1.80     pooka 	}
   1312       1.80     pooka 
   1313       1.80     pooka 	return rv;
   1314       1.80     pooka }
   1315       1.84     pooka 
   1316       1.84     pooka void
   1317       1.84     pooka rump_hyperfree(void *what, size_t size)
   1318       1.84     pooka {
   1319       1.84     pooka 
   1320       1.91     pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1321       1.84     pooka 		atomic_add_long(&curphysmem, -size);
   1322       1.84     pooka 	}
   1323      1.138     pooka 	rumpuser_free(what, size);
   1324       1.84     pooka }
   1325