vm.c revision 1.192 1 1.192 andvar /* $NetBSD: vm.c,v 1.192 2021/09/16 21:29:42 andvar Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.114 pooka * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.76 pooka * Development of this software was supported by
7 1.76 pooka * The Finnish Cultural Foundation and the Research Foundation of
8 1.76 pooka * The Helsinki University of Technology.
9 1.1 pooka *
10 1.1 pooka * Redistribution and use in source and binary forms, with or without
11 1.1 pooka * modification, are permitted provided that the following conditions
12 1.1 pooka * are met:
13 1.1 pooka * 1. Redistributions of source code must retain the above copyright
14 1.1 pooka * notice, this list of conditions and the following disclaimer.
15 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pooka * notice, this list of conditions and the following disclaimer in the
17 1.1 pooka * documentation and/or other materials provided with the distribution.
18 1.1 pooka *
19 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 pooka * SUCH DAMAGE.
30 1.1 pooka */
31 1.1 pooka
32 1.1 pooka /*
33 1.88 pooka * Virtual memory emulation routines.
34 1.1 pooka */
35 1.1 pooka
36 1.1 pooka /*
37 1.5 pooka * XXX: we abuse pg->uanon for the virtual address of the storage
38 1.1 pooka * for each page. phys_addr would fit the job description better,
39 1.1 pooka * except that it will create unnecessary lossage on some platforms
40 1.1 pooka * due to not being a pointer type.
41 1.1 pooka */
42 1.1 pooka
43 1.48 pooka #include <sys/cdefs.h>
44 1.192 andvar __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.192 2021/09/16 21:29:42 andvar Exp $");
45 1.48 pooka
46 1.1 pooka #include <sys/param.h>
47 1.40 pooka #include <sys/atomic.h>
48 1.80 pooka #include <sys/buf.h>
49 1.80 pooka #include <sys/kernel.h>
50 1.67 pooka #include <sys/kmem.h>
51 1.121 para #include <sys/vmem.h>
52 1.69 pooka #include <sys/mman.h>
53 1.1 pooka #include <sys/null.h>
54 1.1 pooka #include <sys/vnode.h>
55 1.175 ad #include <sys/radixtree.h>
56 1.1 pooka
57 1.34 pooka #include <machine/pmap.h>
58 1.34 pooka
59 1.1 pooka #include <uvm/uvm.h>
60 1.56 pooka #include <uvm/uvm_ddb.h>
61 1.88 pooka #include <uvm/uvm_pdpolicy.h>
62 1.1 pooka #include <uvm/uvm_prot.h>
63 1.58 he #include <uvm/uvm_readahead.h>
64 1.160 chs #include <uvm/uvm_device.h>
65 1.1 pooka
66 1.169 pooka #include <rump-sys/kern.h>
67 1.169 pooka #include <rump-sys/vfs.h>
68 1.169 pooka
69 1.169 pooka #include <rump/rumpuser.h>
70 1.1 pooka
71 1.174 ad kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
72 1.88 pooka kmutex_t uvm_swap_data_lock;
73 1.25 ad
74 1.1 pooka struct uvmexp uvmexp;
75 1.7 pooka struct uvm uvm;
76 1.1 pooka
77 1.112 pooka #ifdef __uvmexp_pagesize
78 1.123 martin const int * const uvmexp_pagesize = &uvmexp.pagesize;
79 1.123 martin const int * const uvmexp_pagemask = &uvmexp.pagemask;
80 1.123 martin const int * const uvmexp_pageshift = &uvmexp.pageshift;
81 1.112 pooka #endif
82 1.112 pooka
83 1.121 para static struct vm_map kernel_map_store;
84 1.121 para struct vm_map *kernel_map = &kernel_map_store;
85 1.121 para
86 1.130 pooka static struct vm_map module_map_store;
87 1.130 pooka extern struct vm_map *module_map;
88 1.130 pooka
89 1.164 pooka static struct pmap pmap_kernel;
90 1.164 pooka struct pmap rump_pmap_local;
91 1.164 pooka struct pmap *const kernel_pmap_ptr = &pmap_kernel;
92 1.164 pooka
93 1.121 para vmem_t *kmem_arena;
94 1.121 para vmem_t *kmem_va_arena;
95 1.35 pooka
96 1.80 pooka static unsigned int pdaemon_waiters;
97 1.80 pooka static kmutex_t pdaemonmtx;
98 1.80 pooka static kcondvar_t pdaemoncv, oomwait;
99 1.80 pooka
100 1.162 pooka /* all local non-proc0 processes share this vmspace */
101 1.162 pooka struct vmspace *rump_vmspace_local;
102 1.162 pooka
103 1.91 pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
104 1.147 pooka static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
105 1.84 pooka static unsigned long curphysmem;
106 1.92 pooka static unsigned long dddlim; /* 90% of memory limit used */
107 1.92 pooka #define NEED_PAGEDAEMON() \
108 1.92 pooka (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
109 1.158 pooka #define PDRESERVE (2*MAXPHYS)
110 1.92 pooka
111 1.92 pooka /*
112 1.92 pooka * Try to free two pages worth of pages from objects.
113 1.192 andvar * If this successfully frees a full page cache page, we'll
114 1.120 yamt * free the released page plus PAGE_SIZE/sizeof(vm_page).
115 1.92 pooka */
116 1.92 pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
117 1.92 pooka
118 1.92 pooka /*
119 1.92 pooka * Keep a list of least recently used pages. Since the only way a
120 1.92 pooka * rump kernel can "access" a page is via lookup, we put the page
121 1.92 pooka * at the back of queue every time a lookup for it is done. If the
122 1.92 pooka * page is in front of this global queue and we're short of memory,
123 1.92 pooka * it's a candidate for pageout.
124 1.92 pooka */
125 1.92 pooka static struct pglist vmpage_lruqueue;
126 1.92 pooka static unsigned vmpage_onqueue;
127 1.84 pooka
128 1.1 pooka /*
129 1.1 pooka * vm pages
130 1.1 pooka */
131 1.1 pooka
132 1.90 pooka static int
133 1.90 pooka pgctor(void *arg, void *obj, int flags)
134 1.90 pooka {
135 1.90 pooka struct vm_page *pg = obj;
136 1.90 pooka
137 1.90 pooka memset(pg, 0, sizeof(*pg));
138 1.103 pooka pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
139 1.103 pooka (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
140 1.103 pooka return pg->uanon == NULL;
141 1.90 pooka }
142 1.90 pooka
143 1.90 pooka static void
144 1.90 pooka pgdtor(void *arg, void *obj)
145 1.90 pooka {
146 1.90 pooka struct vm_page *pg = obj;
147 1.90 pooka
148 1.90 pooka rump_hyperfree(pg->uanon, PAGE_SIZE);
149 1.90 pooka }
150 1.90 pooka
151 1.90 pooka static struct pool_cache pagecache;
152 1.90 pooka
153 1.92 pooka /*
154 1.92 pooka * Called with the object locked. We don't support anons.
155 1.92 pooka */
156 1.1 pooka struct vm_page *
157 1.76 pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
158 1.76 pooka int flags, int strat, int free_list)
159 1.1 pooka {
160 1.1 pooka struct vm_page *pg;
161 1.1 pooka
162 1.184 ad KASSERT(uobj && rw_write_held(uobj->vmobjlock));
163 1.92 pooka KASSERT(anon == NULL);
164 1.92 pooka
165 1.103 pooka pg = pool_cache_get(&pagecache, PR_NOWAIT);
166 1.104 pooka if (__predict_false(pg == NULL)) {
167 1.103 pooka return NULL;
168 1.104 pooka }
169 1.181 ad mutex_init(&pg->interlock, MUTEX_DEFAULT, IPL_NONE);
170 1.103 pooka
171 1.1 pooka pg->offset = off;
172 1.5 pooka pg->uobject = uobj;
173 1.1 pooka
174 1.175 ad if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
175 1.175 ad pg) != 0) {
176 1.175 ad pool_cache_put(&pagecache, pg);
177 1.175 ad return NULL;
178 1.175 ad }
179 1.185 ad
180 1.188 ad if (UVM_OBJ_IS_VNODE(uobj)) {
181 1.188 ad if (uobj->uo_npages == 0) {
182 1.188 ad struct vnode *vp = (struct vnode *)uobj;
183 1.188 ad mutex_enter(vp->v_interlock);
184 1.188 ad vp->v_iflag |= VI_PAGES;
185 1.188 ad mutex_exit(vp->v_interlock);
186 1.188 ad }
187 1.188 ad pg->flags |= PG_FILE;
188 1.188 ad }
189 1.189 ad uobj->uo_npages++;
190 1.188 ad
191 1.185 ad pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
192 1.185 ad if (flags & UVM_PGA_ZERO) {
193 1.185 ad uvm_pagezero(pg);
194 1.185 ad }
195 1.89 pooka
196 1.92 pooka /*
197 1.93 pooka * Don't put anons on the LRU page queue. We can't flush them
198 1.93 pooka * (there's no concept of swap in a rump kernel), so no reason
199 1.93 pooka * to bother with them.
200 1.92 pooka */
201 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
202 1.92 pooka atomic_inc_uint(&vmpage_onqueue);
203 1.174 ad mutex_enter(&vmpage_lruqueue_lock);
204 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
205 1.174 ad mutex_exit(&vmpage_lruqueue_lock);
206 1.188 ad } else {
207 1.188 ad pg->flags |= PG_AOBJ;
208 1.92 pooka }
209 1.92 pooka
210 1.1 pooka return pg;
211 1.1 pooka }
212 1.1 pooka
213 1.21 pooka /*
214 1.21 pooka * Release a page.
215 1.21 pooka *
216 1.22 pooka * Called with the vm object locked.
217 1.21 pooka */
218 1.1 pooka void
219 1.22 pooka uvm_pagefree(struct vm_page *pg)
220 1.1 pooka {
221 1.5 pooka struct uvm_object *uobj = pg->uobject;
222 1.175 ad struct vm_page *pg2 __unused;
223 1.1 pooka
224 1.184 ad KASSERT(rw_write_held(uobj->vmobjlock));
225 1.92 pooka
226 1.186 ad mutex_enter(&pg->interlock);
227 1.188 ad uvm_pagewakeup(pg);
228 1.186 ad mutex_exit(&pg->interlock);
229 1.22 pooka
230 1.59 pooka uobj->uo_npages--;
231 1.175 ad pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
232 1.175 ad KASSERT(pg == pg2);
233 1.92 pooka
234 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
235 1.174 ad mutex_enter(&vmpage_lruqueue_lock);
236 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
237 1.174 ad mutex_exit(&vmpage_lruqueue_lock);
238 1.92 pooka atomic_dec_uint(&vmpage_onqueue);
239 1.92 pooka }
240 1.92 pooka
241 1.185 ad if (UVM_OBJ_IS_VNODE(uobj) && uobj->uo_npages == 0) {
242 1.185 ad struct vnode *vp = (struct vnode *)uobj;
243 1.185 ad mutex_enter(vp->v_interlock);
244 1.185 ad vp->v_iflag &= ~VI_PAGES;
245 1.185 ad mutex_exit(vp->v_interlock);
246 1.185 ad }
247 1.185 ad
248 1.181 ad mutex_destroy(&pg->interlock);
249 1.90 pooka pool_cache_put(&pagecache, pg);
250 1.1 pooka }
251 1.1 pooka
252 1.15 pooka void
253 1.61 pooka uvm_pagezero(struct vm_page *pg)
254 1.15 pooka {
255 1.15 pooka
256 1.183 ad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
257 1.61 pooka memset((void *)pg->uanon, 0, PAGE_SIZE);
258 1.15 pooka }
259 1.15 pooka
260 1.1 pooka /*
261 1.178 ad * uvm_page_owner_locked_p: return true if object associated with page is
262 1.136 yamt * locked. this is a weak check for runtime assertions only.
263 1.136 yamt */
264 1.136 yamt
265 1.136 yamt bool
266 1.184 ad uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
267 1.136 yamt {
268 1.136 yamt
269 1.184 ad if (exclusive)
270 1.184 ad return rw_write_held(pg->uobject->vmobjlock);
271 1.184 ad else
272 1.184 ad return rw_lock_held(pg->uobject->vmobjlock);
273 1.136 yamt }
274 1.136 yamt
275 1.136 yamt /*
276 1.1 pooka * Misc routines
277 1.1 pooka */
278 1.1 pooka
279 1.61 pooka static kmutex_t pagermtx;
280 1.61 pooka
281 1.1 pooka void
282 1.79 pooka uvm_init(void)
283 1.1 pooka {
284 1.84 pooka char buf[64];
285 1.84 pooka
286 1.141 pooka if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
287 1.105 pooka unsigned long tmp;
288 1.105 pooka char *ep;
289 1.105 pooka int mult;
290 1.105 pooka
291 1.109 pooka tmp = strtoul(buf, &ep, 10);
292 1.105 pooka if (strlen(ep) > 1)
293 1.105 pooka panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
294 1.105 pooka
295 1.105 pooka /* mini-dehumanize-number */
296 1.105 pooka mult = 1;
297 1.105 pooka switch (*ep) {
298 1.105 pooka case 'k':
299 1.105 pooka mult = 1024;
300 1.105 pooka break;
301 1.105 pooka case 'm':
302 1.105 pooka mult = 1024*1024;
303 1.105 pooka break;
304 1.105 pooka case 'g':
305 1.105 pooka mult = 1024*1024*1024;
306 1.105 pooka break;
307 1.105 pooka case 0:
308 1.105 pooka break;
309 1.105 pooka default:
310 1.105 pooka panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
311 1.105 pooka }
312 1.105 pooka rump_physmemlimit = tmp * mult;
313 1.105 pooka
314 1.105 pooka if (rump_physmemlimit / mult != tmp)
315 1.105 pooka panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
316 1.147 pooka
317 1.147 pooka /* reserve some memory for the pager */
318 1.158 pooka if (rump_physmemlimit <= PDRESERVE)
319 1.158 pooka panic("uvm_init: system reserves %d bytes of mem, "
320 1.158 pooka "only %lu bytes given",
321 1.158 pooka PDRESERVE, rump_physmemlimit);
322 1.147 pooka pdlimit = rump_physmemlimit;
323 1.158 pooka rump_physmemlimit -= PDRESERVE;
324 1.105 pooka
325 1.157 pooka if (pdlimit < 1024*1024)
326 1.157 pooka printf("uvm_init: WARNING: <1MB RAM limit, "
327 1.157 pooka "hope you know what you're doing\n");
328 1.157 pooka
329 1.84 pooka #define HUMANIZE_BYTES 9
330 1.84 pooka CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
331 1.91 pooka format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
332 1.84 pooka #undef HUMANIZE_BYTES
333 1.92 pooka dddlim = 9 * (rump_physmemlimit / 10);
334 1.84 pooka } else {
335 1.84 pooka strlcpy(buf, "unlimited (host limit)", sizeof(buf));
336 1.84 pooka }
337 1.84 pooka aprint_verbose("total memory = %s\n", buf);
338 1.1 pooka
339 1.92 pooka TAILQ_INIT(&vmpage_lruqueue);
340 1.92 pooka
341 1.157 pooka if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
342 1.157 pooka uvmexp.npages = physmem;
343 1.157 pooka } else {
344 1.157 pooka uvmexp.npages = pdlimit >> PAGE_SHIFT;
345 1.158 pooka uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
346 1.157 pooka uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
347 1.157 pooka }
348 1.157 pooka /*
349 1.157 pooka * uvmexp.free is not used internally or updated. The reason is
350 1.157 pooka * that the memory hypercall allocator is allowed to allocate
351 1.157 pooka * non-page sized chunks. We use a byte count in curphysmem
352 1.157 pooka * instead.
353 1.157 pooka */
354 1.157 pooka uvmexp.free = uvmexp.npages;
355 1.21 pooka
356 1.112 pooka #ifndef __uvmexp_pagesize
357 1.112 pooka uvmexp.pagesize = PAGE_SIZE;
358 1.112 pooka uvmexp.pagemask = PAGE_MASK;
359 1.112 pooka uvmexp.pageshift = PAGE_SHIFT;
360 1.112 pooka #else
361 1.112 pooka #define FAKE_PAGE_SHIFT 12
362 1.112 pooka uvmexp.pageshift = FAKE_PAGE_SHIFT;
363 1.112 pooka uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
364 1.112 pooka uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
365 1.112 pooka #undef FAKE_PAGE_SHIFT
366 1.112 pooka #endif
367 1.112 pooka
368 1.140 pooka mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
369 1.174 ad mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
370 1.140 pooka mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
371 1.188 ad mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
372 1.35 pooka
373 1.80 pooka cv_init(&pdaemoncv, "pdaemon");
374 1.80 pooka cv_init(&oomwait, "oomwait");
375 1.80 pooka
376 1.130 pooka module_map = &module_map_store;
377 1.130 pooka
378 1.50 pooka kernel_map->pmap = pmap_kernel();
379 1.121 para
380 1.122 njoly pool_subsystem_init();
381 1.128 pooka
382 1.121 para kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
383 1.121 para NULL, NULL, NULL,
384 1.121 para 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
385 1.121 para
386 1.135 para vmem_subsystem_init(kmem_arena);
387 1.121 para
388 1.121 para kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
389 1.121 para vmem_alloc, vmem_free, kmem_arena,
390 1.124 para 8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
391 1.90 pooka
392 1.90 pooka pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
393 1.90 pooka "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
394 1.162 pooka
395 1.175 ad radix_tree_init();
396 1.175 ad
397 1.162 pooka /* create vmspace used by local clients */
398 1.162 pooka rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
399 1.164 pooka uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
400 1.1 pooka }
401 1.1 pooka
402 1.83 pooka void
403 1.145 martin uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
404 1.145 martin bool topdown)
405 1.83 pooka {
406 1.83 pooka
407 1.162 pooka vm->vm_map.pmap = pmap;
408 1.83 pooka vm->vm_refcnt = 1;
409 1.83 pooka }
410 1.1 pooka
411 1.173 nat int
412 1.173 nat uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
413 1.173 nat bool new_pageable, int lockflags)
414 1.173 nat {
415 1.173 nat return 0;
416 1.173 nat }
417 1.173 nat
418 1.1 pooka void
419 1.7 pooka uvm_pagewire(struct vm_page *pg)
420 1.7 pooka {
421 1.7 pooka
422 1.7 pooka /* nada */
423 1.7 pooka }
424 1.7 pooka
425 1.7 pooka void
426 1.7 pooka uvm_pageunwire(struct vm_page *pg)
427 1.7 pooka {
428 1.7 pooka
429 1.7 pooka /* nada */
430 1.7 pooka }
431 1.7 pooka
432 1.177 ad int
433 1.190 ad uvm_availmem(bool cached)
434 1.177 ad {
435 1.177 ad
436 1.177 ad return uvmexp.free;
437 1.177 ad }
438 1.177 ad
439 1.180 ad void
440 1.180 ad uvm_pagelock(struct vm_page *pg)
441 1.180 ad {
442 1.180 ad
443 1.180 ad mutex_enter(&pg->interlock);
444 1.180 ad }
445 1.180 ad
446 1.180 ad void
447 1.180 ad uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
448 1.180 ad {
449 1.180 ad
450 1.180 ad if (pg1 < pg2) {
451 1.180 ad mutex_enter(&pg1->interlock);
452 1.180 ad mutex_enter(&pg2->interlock);
453 1.180 ad } else {
454 1.180 ad mutex_enter(&pg2->interlock);
455 1.180 ad mutex_enter(&pg1->interlock);
456 1.180 ad }
457 1.180 ad }
458 1.180 ad
459 1.180 ad void
460 1.180 ad uvm_pageunlock(struct vm_page *pg)
461 1.180 ad {
462 1.180 ad
463 1.180 ad mutex_exit(&pg->interlock);
464 1.180 ad }
465 1.180 ad
466 1.180 ad void
467 1.180 ad uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
468 1.180 ad {
469 1.180 ad
470 1.180 ad mutex_exit(&pg1->interlock);
471 1.180 ad mutex_exit(&pg2->interlock);
472 1.180 ad }
473 1.180 ad
474 1.83 pooka /* where's your schmonz now? */
475 1.83 pooka #define PUNLIMIT(a) \
476 1.83 pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
477 1.83 pooka void
478 1.83 pooka uvm_init_limits(struct proc *p)
479 1.83 pooka {
480 1.83 pooka
481 1.155 pooka #ifndef DFLSSIZ
482 1.155 pooka #define DFLSSIZ (16*1024*1024)
483 1.155 pooka #endif
484 1.154 pooka p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
485 1.154 pooka p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
486 1.83 pooka PUNLIMIT(RLIMIT_DATA);
487 1.83 pooka PUNLIMIT(RLIMIT_RSS);
488 1.83 pooka PUNLIMIT(RLIMIT_AS);
489 1.83 pooka /* nice, cascade */
490 1.83 pooka }
491 1.83 pooka #undef PUNLIMIT
492 1.83 pooka
493 1.69 pooka /*
494 1.69 pooka * This satisfies the "disgusting mmap hack" used by proplib.
495 1.69 pooka */
496 1.49 pooka int
497 1.160 chs uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
498 1.49 pooka {
499 1.69 pooka int error;
500 1.49 pooka
501 1.69 pooka /* no reason in particular, but cf. uvm_default_mapaddr() */
502 1.160 chs if (*addrp != NULL)
503 1.69 pooka panic("uvm_mmap() variant unsupported");
504 1.69 pooka
505 1.106 pooka if (RUMP_LOCALPROC_P(curproc)) {
506 1.160 chs error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
507 1.98 pooka } else {
508 1.166 pooka error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
509 1.160 chs size, addrp);
510 1.98 pooka }
511 1.160 chs return error;
512 1.160 chs }
513 1.69 pooka
514 1.160 chs /*
515 1.160 chs * Stubs for things referenced from vfs_vnode.c but not used.
516 1.160 chs */
517 1.160 chs const dev_t zerodev;
518 1.160 chs
519 1.160 chs struct uvm_object *
520 1.160 chs udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
521 1.160 chs {
522 1.160 chs return NULL;
523 1.49 pooka }
524 1.49 pooka
525 1.61 pooka struct pagerinfo {
526 1.61 pooka vaddr_t pgr_kva;
527 1.61 pooka int pgr_npages;
528 1.61 pooka struct vm_page **pgr_pgs;
529 1.61 pooka bool pgr_read;
530 1.61 pooka
531 1.61 pooka LIST_ENTRY(pagerinfo) pgr_entries;
532 1.61 pooka };
533 1.61 pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
534 1.61 pooka
535 1.61 pooka /*
536 1.61 pooka * Pager "map" in routine. Instead of mapping, we allocate memory
537 1.159 pooka * and copy page contents there. The reason for copying instead of
538 1.159 pooka * mapping is simple: we do not assume we are running on virtual
539 1.159 pooka * memory. Even if we could emulate virtual memory in some envs
540 1.159 pooka * such as userspace, copying is much faster than trying to awkardly
541 1.159 pooka * cope with remapping (see "Design and Implementation" pp.95-98).
542 1.159 pooka * The downside of the approach is that the pager requires MAXPHYS
543 1.159 pooka * free memory to perform paging, but short of virtual memory or
544 1.159 pooka * making the pager do I/O in page-sized chunks we cannot do much
545 1.159 pooka * about that.
546 1.61 pooka */
547 1.7 pooka vaddr_t
548 1.61 pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
549 1.7 pooka {
550 1.61 pooka struct pagerinfo *pgri;
551 1.61 pooka vaddr_t curkva;
552 1.61 pooka int i;
553 1.61 pooka
554 1.61 pooka /* allocate structures */
555 1.61 pooka pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
556 1.61 pooka pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
557 1.61 pooka pgri->pgr_npages = npages;
558 1.61 pooka pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
559 1.61 pooka pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
560 1.61 pooka
561 1.61 pooka /* copy contents to "mapped" memory */
562 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
563 1.61 pooka i < npages;
564 1.61 pooka i++, curkva += PAGE_SIZE) {
565 1.61 pooka /*
566 1.61 pooka * We need to copy the previous contents of the pages to
567 1.61 pooka * the window even if we are reading from the
568 1.61 pooka * device, since the device might not fill the contents of
569 1.61 pooka * the full mapped range and we will end up corrupting
570 1.61 pooka * data when we unmap the window.
571 1.61 pooka */
572 1.61 pooka memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
573 1.61 pooka pgri->pgr_pgs[i] = pgs[i];
574 1.61 pooka }
575 1.61 pooka
576 1.61 pooka mutex_enter(&pagermtx);
577 1.61 pooka LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
578 1.61 pooka mutex_exit(&pagermtx);
579 1.7 pooka
580 1.61 pooka return pgri->pgr_kva;
581 1.7 pooka }
582 1.7 pooka
583 1.61 pooka /*
584 1.61 pooka * map out the pager window. return contents from VA to page storage
585 1.61 pooka * and free structures.
586 1.61 pooka *
587 1.61 pooka * Note: does not currently support partial frees
588 1.61 pooka */
589 1.61 pooka void
590 1.61 pooka uvm_pagermapout(vaddr_t kva, int npages)
591 1.7 pooka {
592 1.61 pooka struct pagerinfo *pgri;
593 1.61 pooka vaddr_t curkva;
594 1.61 pooka int i;
595 1.7 pooka
596 1.61 pooka mutex_enter(&pagermtx);
597 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
598 1.61 pooka if (pgri->pgr_kva == kva)
599 1.61 pooka break;
600 1.61 pooka }
601 1.61 pooka KASSERT(pgri);
602 1.61 pooka if (pgri->pgr_npages != npages)
603 1.61 pooka panic("uvm_pagermapout: partial unmapping not supported");
604 1.61 pooka LIST_REMOVE(pgri, pgr_entries);
605 1.61 pooka mutex_exit(&pagermtx);
606 1.61 pooka
607 1.61 pooka if (pgri->pgr_read) {
608 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
609 1.61 pooka i < pgri->pgr_npages;
610 1.61 pooka i++, curkva += PAGE_SIZE) {
611 1.61 pooka memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
612 1.21 pooka }
613 1.21 pooka }
614 1.10 pooka
615 1.61 pooka kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
616 1.61 pooka kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
617 1.61 pooka kmem_free(pgri, sizeof(*pgri));
618 1.7 pooka }
619 1.7 pooka
620 1.61 pooka /*
621 1.61 pooka * convert va in pager window to page structure.
622 1.61 pooka * XXX: how expensive is this (global lock, list traversal)?
623 1.61 pooka */
624 1.14 pooka struct vm_page *
625 1.14 pooka uvm_pageratop(vaddr_t va)
626 1.14 pooka {
627 1.61 pooka struct pagerinfo *pgri;
628 1.61 pooka struct vm_page *pg = NULL;
629 1.61 pooka int i;
630 1.14 pooka
631 1.61 pooka mutex_enter(&pagermtx);
632 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
633 1.61 pooka if (pgri->pgr_kva <= va
634 1.61 pooka && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
635 1.21 pooka break;
636 1.61 pooka }
637 1.61 pooka if (pgri) {
638 1.61 pooka i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
639 1.61 pooka pg = pgri->pgr_pgs[i];
640 1.61 pooka }
641 1.61 pooka mutex_exit(&pagermtx);
642 1.21 pooka
643 1.61 pooka return pg;
644 1.61 pooka }
645 1.15 pooka
646 1.97 pooka /*
647 1.97 pooka * Called with the vm object locked.
648 1.97 pooka *
649 1.97 pooka * Put vnode object pages at the end of the access queue to indicate
650 1.97 pooka * they have been recently accessed and should not be immediate
651 1.97 pooka * candidates for pageout. Do not do this for lookups done by
652 1.97 pooka * the pagedaemon to mimic pmap_kentered mappings which don't track
653 1.97 pooka * access information.
654 1.97 pooka */
655 1.61 pooka struct vm_page *
656 1.61 pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
657 1.61 pooka {
658 1.92 pooka struct vm_page *pg;
659 1.97 pooka bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
660 1.61 pooka
661 1.175 ad pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
662 1.97 pooka if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
663 1.174 ad mutex_enter(&vmpage_lruqueue_lock);
664 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
665 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
666 1.174 ad mutex_exit(&vmpage_lruqueue_lock);
667 1.92 pooka }
668 1.92 pooka
669 1.92 pooka return pg;
670 1.14 pooka }
671 1.14 pooka
672 1.7 pooka void
673 1.22 pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
674 1.22 pooka {
675 1.22 pooka struct vm_page *pg;
676 1.191 chs int i, pageout_done;
677 1.22 pooka
678 1.94 pooka KASSERT(npgs > 0);
679 1.94 pooka
680 1.191 chs pageout_done = 0;
681 1.22 pooka for (i = 0; i < npgs; i++) {
682 1.22 pooka pg = pgs[i];
683 1.191 chs if (pg == NULL || pg == PGO_DONTCARE) {
684 1.22 pooka continue;
685 1.191 chs }
686 1.22 pooka
687 1.191 chs #if 0
688 1.191 chs KASSERT(uvm_page_owner_locked_p(pg, true));
689 1.191 chs #else
690 1.191 chs /*
691 1.191 chs * uvm_page_owner_locked_p() is not available in rump,
692 1.191 chs * and rump doesn't support amaps anyway.
693 1.191 chs */
694 1.191 chs KASSERT(rw_write_held(pg->uobject->vmobjlock));
695 1.191 chs #endif
696 1.22 pooka KASSERT(pg->flags & PG_BUSY);
697 1.191 chs
698 1.191 chs if (pg->flags & PG_PAGEOUT) {
699 1.191 chs pg->flags &= ~PG_PAGEOUT;
700 1.191 chs pg->flags |= PG_RELEASED;
701 1.191 chs pageout_done++;
702 1.191 chs atomic_inc_uint(&uvmexp.pdfreed);
703 1.191 chs }
704 1.186 ad if (pg->flags & PG_RELEASED) {
705 1.191 chs KASSERT(pg->uobject != NULL ||
706 1.191 chs (pg->uanon != NULL && pg->uanon->an_ref > 0));
707 1.191 chs pg->flags &= ~PG_RELEASED;
708 1.36 pooka uvm_pagefree(pg);
709 1.186 ad } else {
710 1.191 chs KASSERT((pg->flags & PG_FAKE) == 0);
711 1.187 ad pg->flags &= ~PG_BUSY;
712 1.186 ad uvm_pagelock(pg);
713 1.187 ad uvm_pagewakeup(pg);
714 1.186 ad uvm_pageunlock(pg);
715 1.191 chs UVM_PAGE_OWN(pg, NULL);
716 1.186 ad }
717 1.186 ad }
718 1.191 chs if (pageout_done != 0) {
719 1.191 chs uvm_pageout_done(pageout_done);
720 1.191 chs }
721 1.186 ad }
722 1.186 ad
723 1.186 ad void
724 1.186 ad uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
725 1.186 ad {
726 1.186 ad
727 1.186 ad KASSERT(rw_lock_held(lock));
728 1.186 ad KASSERT((pg->flags & PG_BUSY) != 0);
729 1.186 ad
730 1.186 ad mutex_enter(&pg->interlock);
731 1.186 ad pg->pqflags |= PQ_WANTED;
732 1.186 ad rw_exit(lock);
733 1.186 ad UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
734 1.186 ad }
735 1.186 ad
736 1.186 ad void
737 1.187 ad uvm_pagewakeup(struct vm_page *pg)
738 1.186 ad {
739 1.186 ad
740 1.186 ad KASSERT(mutex_owned(&pg->interlock));
741 1.186 ad
742 1.186 ad if ((pg->pqflags & PQ_WANTED) != 0) {
743 1.186 ad pg->pqflags &= ~PQ_WANTED;
744 1.186 ad wakeup(pg);
745 1.22 pooka }
746 1.22 pooka }
747 1.22 pooka
748 1.22 pooka void
749 1.7 pooka uvm_estimatepageable(int *active, int *inactive)
750 1.7 pooka {
751 1.7 pooka
752 1.19 pooka /* XXX: guessing game */
753 1.19 pooka *active = 1024;
754 1.19 pooka *inactive = 1024;
755 1.7 pooka }
756 1.7 pooka
757 1.41 pooka int
758 1.41 pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
759 1.41 pooka {
760 1.41 pooka
761 1.41 pooka panic("%s: unimplemented", __func__);
762 1.41 pooka }
763 1.41 pooka
764 1.41 pooka void
765 1.41 pooka uvm_unloan(void *v, int npages, int flags)
766 1.41 pooka {
767 1.41 pooka
768 1.41 pooka panic("%s: unimplemented", __func__);
769 1.41 pooka }
770 1.41 pooka
771 1.43 pooka int
772 1.43 pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
773 1.43 pooka struct vm_page **opp)
774 1.43 pooka {
775 1.43 pooka
776 1.72 pooka return EBUSY;
777 1.43 pooka }
778 1.43 pooka
779 1.116 mrg struct vm_page *
780 1.116 mrg uvm_loanbreak(struct vm_page *pg)
781 1.116 mrg {
782 1.116 mrg
783 1.116 mrg panic("%s: unimplemented", __func__);
784 1.116 mrg }
785 1.116 mrg
786 1.116 mrg void
787 1.116 mrg ubc_purge(struct uvm_object *uobj)
788 1.116 mrg {
789 1.116 mrg
790 1.116 mrg }
791 1.116 mrg
792 1.68 pooka vaddr_t
793 1.168 martin uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
794 1.68 pooka {
795 1.68 pooka
796 1.68 pooka return 0;
797 1.68 pooka }
798 1.68 pooka
799 1.71 pooka int
800 1.71 pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
801 1.71 pooka vm_prot_t prot, bool set_max)
802 1.71 pooka {
803 1.71 pooka
804 1.71 pooka return EOPNOTSUPP;
805 1.71 pooka }
806 1.71 pooka
807 1.171 martin int
808 1.171 martin uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
809 1.171 martin struct uvm_object *uobj, voff_t uoffset, vsize_t align,
810 1.171 martin uvm_flag_t flags)
811 1.171 martin {
812 1.171 martin
813 1.172 martin *startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
814 1.172 martin return *startp != 0 ? 0 : ENOMEM;
815 1.172 martin }
816 1.172 martin
817 1.172 martin void
818 1.172 martin uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
819 1.172 martin {
820 1.172 martin
821 1.172 martin rump_hyperfree((void*)start, end-start);
822 1.171 martin }
823 1.171 martin
824 1.171 martin
825 1.9 pooka /*
826 1.12 pooka * UVM km
827 1.12 pooka */
828 1.12 pooka
829 1.12 pooka vaddr_t
830 1.12 pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
831 1.12 pooka {
832 1.82 pooka void *rv, *desired = NULL;
833 1.50 pooka int alignbit, error;
834 1.50 pooka
835 1.82 pooka #ifdef __x86_64__
836 1.82 pooka /*
837 1.82 pooka * On amd64, allocate all module memory from the lowest 2GB.
838 1.82 pooka * This is because NetBSD kernel modules are compiled
839 1.82 pooka * with -mcmodel=kernel and reserve only 4 bytes for
840 1.82 pooka * offsets. If we load code compiled with -mcmodel=kernel
841 1.82 pooka * anywhere except the lowest or highest 2GB, it will not
842 1.82 pooka * work. Since userspace does not have access to the highest
843 1.82 pooka * 2GB, use the lowest 2GB.
844 1.82 pooka *
845 1.82 pooka * Note: this assumes the rump kernel resides in
846 1.82 pooka * the lowest 2GB as well.
847 1.82 pooka *
848 1.82 pooka * Note2: yes, it's a quick hack, but since this the only
849 1.82 pooka * place where we care about the map we're allocating from,
850 1.82 pooka * just use a simple "if" instead of coming up with a fancy
851 1.82 pooka * generic solution.
852 1.82 pooka */
853 1.82 pooka if (map == module_map) {
854 1.82 pooka desired = (void *)(0x80000000 - size);
855 1.82 pooka }
856 1.82 pooka #endif
857 1.82 pooka
858 1.130 pooka if (__predict_false(map == module_map)) {
859 1.130 pooka alignbit = 0;
860 1.130 pooka if (align) {
861 1.130 pooka alignbit = ffs(align)-1;
862 1.130 pooka }
863 1.142 pooka error = rumpuser_anonmmap(desired, size, alignbit,
864 1.142 pooka flags & UVM_KMF_EXEC, &rv);
865 1.130 pooka } else {
866 1.142 pooka error = rumpuser_malloc(size, align, &rv);
867 1.50 pooka }
868 1.50 pooka
869 1.142 pooka if (error) {
870 1.50 pooka if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
871 1.50 pooka return 0;
872 1.50 pooka else
873 1.50 pooka panic("uvm_km_alloc failed");
874 1.50 pooka }
875 1.12 pooka
876 1.50 pooka if (flags & UVM_KMF_ZERO)
877 1.12 pooka memset(rv, 0, size);
878 1.12 pooka
879 1.12 pooka return (vaddr_t)rv;
880 1.12 pooka }
881 1.12 pooka
882 1.12 pooka void
883 1.12 pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
884 1.12 pooka {
885 1.12 pooka
886 1.130 pooka if (__predict_false(map == module_map))
887 1.130 pooka rumpuser_unmap((void *)vaddr, size);
888 1.130 pooka else
889 1.138 pooka rumpuser_free((void *)vaddr, size);
890 1.12 pooka }
891 1.12 pooka
892 1.170 christos int
893 1.170 christos uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
894 1.170 christos {
895 1.170 christos return 0;
896 1.170 christos }
897 1.170 christos
898 1.12 pooka struct vm_map *
899 1.12 pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
900 1.121 para vsize_t size, int pageable, bool fixed, struct vm_map *submap)
901 1.12 pooka {
902 1.12 pooka
903 1.12 pooka return (struct vm_map *)417416;
904 1.12 pooka }
905 1.40 pooka
906 1.121 para int
907 1.121 para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
908 1.121 para vmem_addr_t *addr)
909 1.40 pooka {
910 1.121 para vaddr_t va;
911 1.121 para va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
912 1.121 para (flags & VM_SLEEP), "kmalloc");
913 1.40 pooka
914 1.121 para if (va) {
915 1.121 para *addr = va;
916 1.121 para return 0;
917 1.121 para } else {
918 1.121 para return ENOMEM;
919 1.121 para }
920 1.40 pooka }
921 1.40 pooka
922 1.40 pooka void
923 1.121 para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
924 1.40 pooka {
925 1.40 pooka
926 1.121 para rump_hyperfree((void *)addr, size);
927 1.74 pooka }
928 1.74 pooka
929 1.57 pooka /*
930 1.102 pooka * VM space locking routines. We don't really have to do anything,
931 1.102 pooka * since the pages are always "wired" (both local and remote processes).
932 1.57 pooka */
933 1.57 pooka int
934 1.57 pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
935 1.57 pooka {
936 1.57 pooka
937 1.57 pooka return 0;
938 1.57 pooka }
939 1.57 pooka
940 1.57 pooka void
941 1.57 pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
942 1.57 pooka {
943 1.57 pooka
944 1.57 pooka }
945 1.57 pooka
946 1.102 pooka /*
947 1.102 pooka * For the local case the buffer mappers don't need to do anything.
948 1.102 pooka * For the remote case we need to reserve space and copy data in or
949 1.102 pooka * out, depending on B_READ/B_WRITE.
950 1.102 pooka */
951 1.111 pooka int
952 1.57 pooka vmapbuf(struct buf *bp, vsize_t len)
953 1.57 pooka {
954 1.111 pooka int error = 0;
955 1.57 pooka
956 1.57 pooka bp->b_saveaddr = bp->b_data;
957 1.102 pooka
958 1.102 pooka /* remote case */
959 1.106 pooka if (!RUMP_LOCALPROC_P(curproc)) {
960 1.102 pooka bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
961 1.102 pooka if (BUF_ISWRITE(bp)) {
962 1.111 pooka error = copyin(bp->b_saveaddr, bp->b_data, len);
963 1.111 pooka if (error) {
964 1.111 pooka rump_hyperfree(bp->b_data, len);
965 1.111 pooka bp->b_data = bp->b_saveaddr;
966 1.111 pooka bp->b_saveaddr = 0;
967 1.111 pooka }
968 1.102 pooka }
969 1.102 pooka }
970 1.111 pooka
971 1.111 pooka return error;
972 1.57 pooka }
973 1.57 pooka
974 1.57 pooka void
975 1.57 pooka vunmapbuf(struct buf *bp, vsize_t len)
976 1.57 pooka {
977 1.57 pooka
978 1.102 pooka /* remote case */
979 1.106 pooka if (!RUMP_LOCALPROC_P(bp->b_proc)) {
980 1.102 pooka if (BUF_ISREAD(bp)) {
981 1.110 pooka bp->b_error = copyout_proc(bp->b_proc,
982 1.102 pooka bp->b_data, bp->b_saveaddr, len);
983 1.102 pooka }
984 1.102 pooka rump_hyperfree(bp->b_data, len);
985 1.102 pooka }
986 1.102 pooka
987 1.57 pooka bp->b_data = bp->b_saveaddr;
988 1.57 pooka bp->b_saveaddr = 0;
989 1.57 pooka }
990 1.61 pooka
991 1.61 pooka void
992 1.83 pooka uvmspace_addref(struct vmspace *vm)
993 1.83 pooka {
994 1.83 pooka
995 1.83 pooka /*
996 1.103 pooka * No dynamically allocated vmspaces exist.
997 1.83 pooka */
998 1.83 pooka }
999 1.83 pooka
1000 1.83 pooka void
1001 1.66 pooka uvmspace_free(struct vmspace *vm)
1002 1.66 pooka {
1003 1.66 pooka
1004 1.66 pooka /* nothing for now */
1005 1.66 pooka }
1006 1.66 pooka
1007 1.61 pooka /*
1008 1.61 pooka * page life cycle stuff. it really doesn't exist, so just stubs.
1009 1.61 pooka */
1010 1.61 pooka
1011 1.61 pooka void
1012 1.61 pooka uvm_pageactivate(struct vm_page *pg)
1013 1.61 pooka {
1014 1.61 pooka
1015 1.61 pooka /* nada */
1016 1.61 pooka }
1017 1.61 pooka
1018 1.61 pooka void
1019 1.61 pooka uvm_pagedeactivate(struct vm_page *pg)
1020 1.61 pooka {
1021 1.61 pooka
1022 1.61 pooka /* nada */
1023 1.61 pooka }
1024 1.61 pooka
1025 1.61 pooka void
1026 1.61 pooka uvm_pagedequeue(struct vm_page *pg)
1027 1.61 pooka {
1028 1.61 pooka
1029 1.61 pooka /* nada*/
1030 1.61 pooka }
1031 1.61 pooka
1032 1.61 pooka void
1033 1.61 pooka uvm_pageenqueue(struct vm_page *pg)
1034 1.61 pooka {
1035 1.61 pooka
1036 1.61 pooka /* nada */
1037 1.61 pooka }
1038 1.80 pooka
1039 1.88 pooka void
1040 1.88 pooka uvmpdpol_anfree(struct vm_anon *an)
1041 1.88 pooka {
1042 1.88 pooka
1043 1.88 pooka /* nada */
1044 1.88 pooka }
1045 1.88 pooka
1046 1.80 pooka /*
1047 1.99 uebayasi * Physical address accessors.
1048 1.99 uebayasi */
1049 1.99 uebayasi
1050 1.99 uebayasi struct vm_page *
1051 1.99 uebayasi uvm_phys_to_vm_page(paddr_t pa)
1052 1.99 uebayasi {
1053 1.99 uebayasi
1054 1.99 uebayasi return NULL;
1055 1.99 uebayasi }
1056 1.99 uebayasi
1057 1.99 uebayasi paddr_t
1058 1.99 uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
1059 1.99 uebayasi {
1060 1.99 uebayasi
1061 1.99 uebayasi return 0;
1062 1.99 uebayasi }
1063 1.99 uebayasi
1064 1.153 pooka vaddr_t
1065 1.153 pooka uvm_uarea_alloc(void)
1066 1.153 pooka {
1067 1.153 pooka
1068 1.153 pooka /* non-zero */
1069 1.153 pooka return (vaddr_t)11;
1070 1.153 pooka }
1071 1.153 pooka
1072 1.153 pooka void
1073 1.153 pooka uvm_uarea_free(vaddr_t uarea)
1074 1.153 pooka {
1075 1.153 pooka
1076 1.153 pooka /* nata, so creamy */
1077 1.153 pooka }
1078 1.153 pooka
1079 1.99 uebayasi /*
1080 1.80 pooka * Routines related to the Page Baroness.
1081 1.80 pooka */
1082 1.80 pooka
1083 1.80 pooka void
1084 1.80 pooka uvm_wait(const char *msg)
1085 1.80 pooka {
1086 1.80 pooka
1087 1.80 pooka if (__predict_false(rump_threads == 0))
1088 1.80 pooka panic("pagedaemon missing (RUMP_THREADS = 0)");
1089 1.80 pooka
1090 1.147 pooka if (curlwp == uvm.pagedaemon_lwp) {
1091 1.147 pooka /* is it possible for us to later get memory? */
1092 1.147 pooka if (!uvmexp.paging)
1093 1.147 pooka panic("pagedaemon out of memory");
1094 1.147 pooka }
1095 1.147 pooka
1096 1.80 pooka mutex_enter(&pdaemonmtx);
1097 1.80 pooka pdaemon_waiters++;
1098 1.80 pooka cv_signal(&pdaemoncv);
1099 1.80 pooka cv_wait(&oomwait, &pdaemonmtx);
1100 1.80 pooka mutex_exit(&pdaemonmtx);
1101 1.80 pooka }
1102 1.80 pooka
1103 1.80 pooka void
1104 1.80 pooka uvm_pageout_start(int npages)
1105 1.80 pooka {
1106 1.80 pooka
1107 1.113 pooka mutex_enter(&pdaemonmtx);
1108 1.113 pooka uvmexp.paging += npages;
1109 1.113 pooka mutex_exit(&pdaemonmtx);
1110 1.80 pooka }
1111 1.80 pooka
1112 1.80 pooka void
1113 1.80 pooka uvm_pageout_done(int npages)
1114 1.80 pooka {
1115 1.80 pooka
1116 1.113 pooka if (!npages)
1117 1.113 pooka return;
1118 1.113 pooka
1119 1.113 pooka mutex_enter(&pdaemonmtx);
1120 1.113 pooka KASSERT(uvmexp.paging >= npages);
1121 1.113 pooka uvmexp.paging -= npages;
1122 1.113 pooka
1123 1.113 pooka if (pdaemon_waiters) {
1124 1.113 pooka pdaemon_waiters = 0;
1125 1.113 pooka cv_broadcast(&oomwait);
1126 1.113 pooka }
1127 1.113 pooka mutex_exit(&pdaemonmtx);
1128 1.80 pooka }
1129 1.80 pooka
1130 1.95 pooka static bool
1131 1.184 ad processpage(struct vm_page *pg)
1132 1.95 pooka {
1133 1.95 pooka struct uvm_object *uobj;
1134 1.95 pooka
1135 1.95 pooka uobj = pg->uobject;
1136 1.184 ad if (rw_tryenter(uobj->vmobjlock, RW_WRITER)) {
1137 1.95 pooka if ((pg->flags & PG_BUSY) == 0) {
1138 1.174 ad mutex_exit(&vmpage_lruqueue_lock);
1139 1.95 pooka uobj->pgops->pgo_put(uobj, pg->offset,
1140 1.95 pooka pg->offset + PAGE_SIZE,
1141 1.95 pooka PGO_CLEANIT|PGO_FREE);
1142 1.184 ad KASSERT(!rw_write_held(uobj->vmobjlock));
1143 1.95 pooka return true;
1144 1.95 pooka } else {
1145 1.184 ad rw_exit(uobj->vmobjlock);
1146 1.104 pooka }
1147 1.95 pooka }
1148 1.95 pooka
1149 1.95 pooka return false;
1150 1.95 pooka }
1151 1.95 pooka
1152 1.80 pooka /*
1153 1.92 pooka * The Diabolical pageDaemon Director (DDD).
1154 1.113 pooka *
1155 1.113 pooka * This routine can always use better heuristics.
1156 1.80 pooka */
1157 1.80 pooka void
1158 1.80 pooka uvm_pageout(void *arg)
1159 1.80 pooka {
1160 1.92 pooka struct vm_page *pg;
1161 1.80 pooka struct pool *pp, *pp_first;
1162 1.92 pooka int cleaned, skip, skipped;
1163 1.113 pooka bool succ;
1164 1.80 pooka
1165 1.80 pooka mutex_enter(&pdaemonmtx);
1166 1.80 pooka for (;;) {
1167 1.113 pooka if (pdaemon_waiters) {
1168 1.113 pooka pdaemon_waiters = 0;
1169 1.113 pooka cv_broadcast(&oomwait);
1170 1.104 pooka }
1171 1.188 ad if (!NEED_PAGEDAEMON()) {
1172 1.188 ad kernel_map->flags &= ~VM_MAP_WANTVA;
1173 1.188 ad cv_wait(&pdaemoncv, &pdaemonmtx);
1174 1.188 ad }
1175 1.113 pooka uvmexp.pdwoke++;
1176 1.113 pooka
1177 1.92 pooka /* tell the world that we are hungry */
1178 1.80 pooka kernel_map->flags |= VM_MAP_WANTVA;
1179 1.80 pooka mutex_exit(&pdaemonmtx);
1180 1.80 pooka
1181 1.92 pooka /*
1182 1.92 pooka * step one: reclaim the page cache. this should give
1183 1.92 pooka * us the biggest earnings since whole pages are released
1184 1.92 pooka * into backing memory.
1185 1.92 pooka */
1186 1.92 pooka pool_cache_reclaim(&pagecache);
1187 1.92 pooka if (!NEED_PAGEDAEMON()) {
1188 1.92 pooka mutex_enter(&pdaemonmtx);
1189 1.92 pooka continue;
1190 1.92 pooka }
1191 1.92 pooka
1192 1.92 pooka /*
1193 1.92 pooka * Ok, so that didn't help. Next, try to hunt memory
1194 1.92 pooka * by pushing out vnode pages. The pages might contain
1195 1.92 pooka * useful cached data, but we need the memory.
1196 1.92 pooka */
1197 1.92 pooka cleaned = 0;
1198 1.92 pooka skip = 0;
1199 1.92 pooka again:
1200 1.174 ad mutex_enter(&vmpage_lruqueue_lock);
1201 1.92 pooka while (cleaned < PAGEDAEMON_OBJCHUNK) {
1202 1.92 pooka skipped = 0;
1203 1.92 pooka TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1204 1.92 pooka
1205 1.92 pooka /*
1206 1.92 pooka * skip over pages we _might_ have tried
1207 1.92 pooka * to handle earlier. they might not be
1208 1.92 pooka * exactly the same ones, but I'm not too
1209 1.92 pooka * concerned.
1210 1.92 pooka */
1211 1.92 pooka while (skipped++ < skip)
1212 1.92 pooka continue;
1213 1.92 pooka
1214 1.184 ad if (processpage(pg)) {
1215 1.95 pooka cleaned++;
1216 1.95 pooka goto again;
1217 1.92 pooka }
1218 1.92 pooka
1219 1.92 pooka skip++;
1220 1.92 pooka }
1221 1.92 pooka break;
1222 1.92 pooka }
1223 1.174 ad mutex_exit(&vmpage_lruqueue_lock);
1224 1.92 pooka
1225 1.92 pooka /*
1226 1.92 pooka * And of course we need to reclaim the page cache
1227 1.92 pooka * again to actually release memory.
1228 1.92 pooka */
1229 1.92 pooka pool_cache_reclaim(&pagecache);
1230 1.92 pooka if (!NEED_PAGEDAEMON()) {
1231 1.92 pooka mutex_enter(&pdaemonmtx);
1232 1.92 pooka continue;
1233 1.92 pooka }
1234 1.92 pooka
1235 1.92 pooka /*
1236 1.92 pooka * And then drain the pools. Wipe them out ... all of them.
1237 1.92 pooka */
1238 1.127 jym for (pp_first = NULL;;) {
1239 1.156 pooka rump_vfs_drainbufs(10 /* XXX: estimate! */);
1240 1.92 pooka
1241 1.127 jym succ = pool_drain(&pp);
1242 1.127 jym if (succ || pp == pp_first)
1243 1.80 pooka break;
1244 1.127 jym
1245 1.127 jym if (pp_first == NULL)
1246 1.127 jym pp_first = pp;
1247 1.80 pooka }
1248 1.92 pooka
1249 1.92 pooka /*
1250 1.92 pooka * Need to use PYEC on our bag of tricks.
1251 1.92 pooka * Unfortunately, the wife just borrowed it.
1252 1.92 pooka */
1253 1.80 pooka
1254 1.113 pooka mutex_enter(&pdaemonmtx);
1255 1.113 pooka if (!succ && cleaned == 0 && pdaemon_waiters &&
1256 1.113 pooka uvmexp.paging == 0) {
1257 1.167 pooka kpause("pddlk", false, hz, &pdaemonmtx);
1258 1.80 pooka }
1259 1.80 pooka }
1260 1.80 pooka
1261 1.80 pooka panic("you can swap out any time you like, but you can never leave");
1262 1.80 pooka }
1263 1.80 pooka
1264 1.80 pooka void
1265 1.80 pooka uvm_kick_pdaemon()
1266 1.80 pooka {
1267 1.80 pooka
1268 1.92 pooka /*
1269 1.92 pooka * Wake up the diabolical pagedaemon director if we are over
1270 1.92 pooka * 90% of the memory limit. This is a complete and utter
1271 1.92 pooka * stetson-harrison decision which you are allowed to finetune.
1272 1.92 pooka * Don't bother locking. If we have some unflushed caches,
1273 1.92 pooka * other waker-uppers will deal with the issue.
1274 1.92 pooka */
1275 1.92 pooka if (NEED_PAGEDAEMON()) {
1276 1.92 pooka cv_signal(&pdaemoncv);
1277 1.92 pooka }
1278 1.80 pooka }
1279 1.80 pooka
1280 1.80 pooka void *
1281 1.80 pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1282 1.80 pooka {
1283 1.150 pooka const unsigned long thelimit =
1284 1.150 pooka curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
1285 1.84 pooka unsigned long newmem;
1286 1.80 pooka void *rv;
1287 1.142 pooka int error;
1288 1.80 pooka
1289 1.92 pooka uvm_kick_pdaemon(); /* ouch */
1290 1.92 pooka
1291 1.84 pooka /* first we must be within the limit */
1292 1.84 pooka limitagain:
1293 1.150 pooka if (thelimit != RUMPMEM_UNLIMITED) {
1294 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, howmuch);
1295 1.150 pooka if (newmem > thelimit) {
1296 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1297 1.103 pooka if (!waitok) {
1298 1.84 pooka return NULL;
1299 1.103 pooka }
1300 1.84 pooka uvm_wait(wmsg);
1301 1.84 pooka goto limitagain;
1302 1.84 pooka }
1303 1.84 pooka }
1304 1.84 pooka
1305 1.84 pooka /* second, we must get something from the backend */
1306 1.80 pooka again:
1307 1.142 pooka error = rumpuser_malloc(howmuch, alignment, &rv);
1308 1.142 pooka if (__predict_false(error && waitok)) {
1309 1.80 pooka uvm_wait(wmsg);
1310 1.80 pooka goto again;
1311 1.80 pooka }
1312 1.80 pooka
1313 1.80 pooka return rv;
1314 1.80 pooka }
1315 1.84 pooka
1316 1.84 pooka void
1317 1.84 pooka rump_hyperfree(void *what, size_t size)
1318 1.84 pooka {
1319 1.84 pooka
1320 1.91 pooka if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1321 1.84 pooka atomic_add_long(&curphysmem, -size);
1322 1.84 pooka }
1323 1.138 pooka rumpuser_free(what, size);
1324 1.84 pooka }
1325