vm.c revision 1.197 1 1.197 martin /* $NetBSD: vm.c,v 1.197 2023/09/24 09:33:26 martin Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.114 pooka * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.76 pooka * Development of this software was supported by
7 1.76 pooka * The Finnish Cultural Foundation and the Research Foundation of
8 1.76 pooka * The Helsinki University of Technology.
9 1.1 pooka *
10 1.1 pooka * Redistribution and use in source and binary forms, with or without
11 1.1 pooka * modification, are permitted provided that the following conditions
12 1.1 pooka * are met:
13 1.1 pooka * 1. Redistributions of source code must retain the above copyright
14 1.1 pooka * notice, this list of conditions and the following disclaimer.
15 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pooka * notice, this list of conditions and the following disclaimer in the
17 1.1 pooka * documentation and/or other materials provided with the distribution.
18 1.1 pooka *
19 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 pooka * SUCH DAMAGE.
30 1.1 pooka */
31 1.1 pooka
32 1.1 pooka /*
33 1.88 pooka * Virtual memory emulation routines.
34 1.1 pooka */
35 1.1 pooka
36 1.1 pooka /*
37 1.5 pooka * XXX: we abuse pg->uanon for the virtual address of the storage
38 1.1 pooka * for each page. phys_addr would fit the job description better,
39 1.1 pooka * except that it will create unnecessary lossage on some platforms
40 1.1 pooka * due to not being a pointer type.
41 1.1 pooka */
42 1.1 pooka
43 1.48 pooka #include <sys/cdefs.h>
44 1.197 martin __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.197 2023/09/24 09:33:26 martin Exp $");
45 1.48 pooka
46 1.1 pooka #include <sys/param.h>
47 1.40 pooka #include <sys/atomic.h>
48 1.80 pooka #include <sys/buf.h>
49 1.80 pooka #include <sys/kernel.h>
50 1.67 pooka #include <sys/kmem.h>
51 1.121 para #include <sys/vmem.h>
52 1.69 pooka #include <sys/mman.h>
53 1.1 pooka #include <sys/null.h>
54 1.1 pooka #include <sys/vnode.h>
55 1.175 ad #include <sys/radixtree.h>
56 1.194 riastrad #include <sys/module.h>
57 1.1 pooka
58 1.34 pooka #include <machine/pmap.h>
59 1.34 pooka
60 1.193 riastrad #if defined(__i386__) || defined(__x86_64__)
61 1.193 riastrad /*
62 1.193 riastrad * This file abuses the pmap abstraction to create its own statically
63 1.193 riastrad * allocated struct pmap object, even though it can't do anything
64 1.193 riastrad * useful with such a thing from userland. On x86 the struct pmap
65 1.193 riastrad * definition is private, so we have to go to extra effort to abuse it
66 1.193 riastrad * there. This should be fixed -- all of the struct pmap definitions
67 1.193 riastrad * should be private, and then rump can furnish its own fake struct
68 1.193 riastrad * pmap without clashing with anything.
69 1.193 riastrad */
70 1.193 riastrad #include <machine/pmap_private.h>
71 1.193 riastrad #endif
72 1.193 riastrad
73 1.1 pooka #include <uvm/uvm.h>
74 1.56 pooka #include <uvm/uvm_ddb.h>
75 1.88 pooka #include <uvm/uvm_pdpolicy.h>
76 1.1 pooka #include <uvm/uvm_prot.h>
77 1.58 he #include <uvm/uvm_readahead.h>
78 1.160 chs #include <uvm/uvm_device.h>
79 1.1 pooka
80 1.169 pooka #include <rump-sys/kern.h>
81 1.169 pooka #include <rump-sys/vfs.h>
82 1.169 pooka
83 1.169 pooka #include <rump/rumpuser.h>
84 1.1 pooka
85 1.174 ad kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
86 1.88 pooka kmutex_t uvm_swap_data_lock;
87 1.25 ad
88 1.1 pooka struct uvmexp uvmexp;
89 1.7 pooka struct uvm uvm;
90 1.1 pooka
91 1.112 pooka #ifdef __uvmexp_pagesize
92 1.123 martin const int * const uvmexp_pagesize = &uvmexp.pagesize;
93 1.123 martin const int * const uvmexp_pagemask = &uvmexp.pagemask;
94 1.123 martin const int * const uvmexp_pageshift = &uvmexp.pageshift;
95 1.112 pooka #endif
96 1.112 pooka
97 1.121 para static struct vm_map kernel_map_store;
98 1.121 para struct vm_map *kernel_map = &kernel_map_store;
99 1.121 para
100 1.130 pooka static struct vm_map module_map_store;
101 1.130 pooka
102 1.164 pooka static struct pmap pmap_kernel;
103 1.164 pooka struct pmap rump_pmap_local;
104 1.164 pooka struct pmap *const kernel_pmap_ptr = &pmap_kernel;
105 1.164 pooka
106 1.121 para vmem_t *kmem_arena;
107 1.121 para vmem_t *kmem_va_arena;
108 1.35 pooka
109 1.80 pooka static unsigned int pdaemon_waiters;
110 1.80 pooka static kmutex_t pdaemonmtx;
111 1.80 pooka static kcondvar_t pdaemoncv, oomwait;
112 1.80 pooka
113 1.162 pooka /* all local non-proc0 processes share this vmspace */
114 1.162 pooka struct vmspace *rump_vmspace_local;
115 1.162 pooka
116 1.91 pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
117 1.147 pooka static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
118 1.84 pooka static unsigned long curphysmem;
119 1.92 pooka static unsigned long dddlim; /* 90% of memory limit used */
120 1.92 pooka #define NEED_PAGEDAEMON() \
121 1.92 pooka (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
122 1.158 pooka #define PDRESERVE (2*MAXPHYS)
123 1.92 pooka
124 1.92 pooka /*
125 1.92 pooka * Try to free two pages worth of pages from objects.
126 1.192 andvar * If this successfully frees a full page cache page, we'll
127 1.120 yamt * free the released page plus PAGE_SIZE/sizeof(vm_page).
128 1.92 pooka */
129 1.92 pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
130 1.92 pooka
131 1.92 pooka /*
132 1.92 pooka * Keep a list of least recently used pages. Since the only way a
133 1.92 pooka * rump kernel can "access" a page is via lookup, we put the page
134 1.92 pooka * at the back of queue every time a lookup for it is done. If the
135 1.92 pooka * page is in front of this global queue and we're short of memory,
136 1.92 pooka * it's a candidate for pageout.
137 1.92 pooka */
138 1.92 pooka static struct pglist vmpage_lruqueue;
139 1.92 pooka static unsigned vmpage_onqueue;
140 1.84 pooka
141 1.1 pooka /*
142 1.1 pooka * vm pages
143 1.1 pooka */
144 1.1 pooka
145 1.90 pooka static int
146 1.90 pooka pgctor(void *arg, void *obj, int flags)
147 1.90 pooka {
148 1.90 pooka struct vm_page *pg = obj;
149 1.90 pooka
150 1.90 pooka memset(pg, 0, sizeof(*pg));
151 1.103 pooka pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
152 1.103 pooka (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
153 1.103 pooka return pg->uanon == NULL;
154 1.90 pooka }
155 1.90 pooka
156 1.90 pooka static void
157 1.90 pooka pgdtor(void *arg, void *obj)
158 1.90 pooka {
159 1.90 pooka struct vm_page *pg = obj;
160 1.90 pooka
161 1.90 pooka rump_hyperfree(pg->uanon, PAGE_SIZE);
162 1.90 pooka }
163 1.90 pooka
164 1.90 pooka static struct pool_cache pagecache;
165 1.90 pooka
166 1.195 riastrad /* stub for UVM_OBJ_IS_VNODE */
167 1.195 riastrad struct uvm_pagerops rump_uvm_vnodeops;
168 1.195 riastrad __weak_alias(uvm_vnodeops,rump_uvm_vnodeops);
169 1.195 riastrad
170 1.92 pooka /*
171 1.92 pooka * Called with the object locked. We don't support anons.
172 1.92 pooka */
173 1.1 pooka struct vm_page *
174 1.76 pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
175 1.76 pooka int flags, int strat, int free_list)
176 1.1 pooka {
177 1.1 pooka struct vm_page *pg;
178 1.1 pooka
179 1.184 ad KASSERT(uobj && rw_write_held(uobj->vmobjlock));
180 1.92 pooka KASSERT(anon == NULL);
181 1.92 pooka
182 1.103 pooka pg = pool_cache_get(&pagecache, PR_NOWAIT);
183 1.104 pooka if (__predict_false(pg == NULL)) {
184 1.103 pooka return NULL;
185 1.104 pooka }
186 1.181 ad mutex_init(&pg->interlock, MUTEX_DEFAULT, IPL_NONE);
187 1.103 pooka
188 1.1 pooka pg->offset = off;
189 1.5 pooka pg->uobject = uobj;
190 1.1 pooka
191 1.175 ad if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
192 1.175 ad pg) != 0) {
193 1.175 ad pool_cache_put(&pagecache, pg);
194 1.175 ad return NULL;
195 1.175 ad }
196 1.185 ad
197 1.188 ad if (UVM_OBJ_IS_VNODE(uobj)) {
198 1.188 ad if (uobj->uo_npages == 0) {
199 1.188 ad struct vnode *vp = (struct vnode *)uobj;
200 1.188 ad mutex_enter(vp->v_interlock);
201 1.188 ad vp->v_iflag |= VI_PAGES;
202 1.188 ad mutex_exit(vp->v_interlock);
203 1.188 ad }
204 1.188 ad pg->flags |= PG_FILE;
205 1.188 ad }
206 1.189 ad uobj->uo_npages++;
207 1.188 ad
208 1.185 ad pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
209 1.185 ad if (flags & UVM_PGA_ZERO) {
210 1.185 ad uvm_pagezero(pg);
211 1.185 ad }
212 1.89 pooka
213 1.92 pooka /*
214 1.93 pooka * Don't put anons on the LRU page queue. We can't flush them
215 1.93 pooka * (there's no concept of swap in a rump kernel), so no reason
216 1.93 pooka * to bother with them.
217 1.92 pooka */
218 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
219 1.92 pooka atomic_inc_uint(&vmpage_onqueue);
220 1.174 ad mutex_enter(&vmpage_lruqueue_lock);
221 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
222 1.174 ad mutex_exit(&vmpage_lruqueue_lock);
223 1.188 ad } else {
224 1.188 ad pg->flags |= PG_AOBJ;
225 1.92 pooka }
226 1.92 pooka
227 1.1 pooka return pg;
228 1.1 pooka }
229 1.1 pooka
230 1.21 pooka /*
231 1.21 pooka * Release a page.
232 1.21 pooka *
233 1.22 pooka * Called with the vm object locked.
234 1.21 pooka */
235 1.1 pooka void
236 1.22 pooka uvm_pagefree(struct vm_page *pg)
237 1.1 pooka {
238 1.5 pooka struct uvm_object *uobj = pg->uobject;
239 1.175 ad struct vm_page *pg2 __unused;
240 1.1 pooka
241 1.184 ad KASSERT(rw_write_held(uobj->vmobjlock));
242 1.92 pooka
243 1.186 ad mutex_enter(&pg->interlock);
244 1.188 ad uvm_pagewakeup(pg);
245 1.186 ad mutex_exit(&pg->interlock);
246 1.22 pooka
247 1.59 pooka uobj->uo_npages--;
248 1.175 ad pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
249 1.175 ad KASSERT(pg == pg2);
250 1.92 pooka
251 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
252 1.174 ad mutex_enter(&vmpage_lruqueue_lock);
253 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
254 1.174 ad mutex_exit(&vmpage_lruqueue_lock);
255 1.92 pooka atomic_dec_uint(&vmpage_onqueue);
256 1.92 pooka }
257 1.92 pooka
258 1.185 ad if (UVM_OBJ_IS_VNODE(uobj) && uobj->uo_npages == 0) {
259 1.185 ad struct vnode *vp = (struct vnode *)uobj;
260 1.185 ad mutex_enter(vp->v_interlock);
261 1.185 ad vp->v_iflag &= ~VI_PAGES;
262 1.185 ad mutex_exit(vp->v_interlock);
263 1.185 ad }
264 1.185 ad
265 1.181 ad mutex_destroy(&pg->interlock);
266 1.90 pooka pool_cache_put(&pagecache, pg);
267 1.1 pooka }
268 1.1 pooka
269 1.15 pooka void
270 1.61 pooka uvm_pagezero(struct vm_page *pg)
271 1.15 pooka {
272 1.15 pooka
273 1.183 ad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
274 1.61 pooka memset((void *)pg->uanon, 0, PAGE_SIZE);
275 1.15 pooka }
276 1.15 pooka
277 1.1 pooka /*
278 1.178 ad * uvm_page_owner_locked_p: return true if object associated with page is
279 1.136 yamt * locked. this is a weak check for runtime assertions only.
280 1.136 yamt */
281 1.136 yamt
282 1.136 yamt bool
283 1.184 ad uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
284 1.136 yamt {
285 1.136 yamt
286 1.184 ad if (exclusive)
287 1.184 ad return rw_write_held(pg->uobject->vmobjlock);
288 1.184 ad else
289 1.184 ad return rw_lock_held(pg->uobject->vmobjlock);
290 1.136 yamt }
291 1.136 yamt
292 1.136 yamt /*
293 1.1 pooka * Misc routines
294 1.1 pooka */
295 1.1 pooka
296 1.61 pooka static kmutex_t pagermtx;
297 1.61 pooka
298 1.1 pooka void
299 1.79 pooka uvm_init(void)
300 1.1 pooka {
301 1.84 pooka char buf[64];
302 1.84 pooka
303 1.141 pooka if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
304 1.105 pooka unsigned long tmp;
305 1.105 pooka char *ep;
306 1.105 pooka int mult;
307 1.105 pooka
308 1.109 pooka tmp = strtoul(buf, &ep, 10);
309 1.105 pooka if (strlen(ep) > 1)
310 1.105 pooka panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
311 1.105 pooka
312 1.105 pooka /* mini-dehumanize-number */
313 1.105 pooka mult = 1;
314 1.105 pooka switch (*ep) {
315 1.105 pooka case 'k':
316 1.105 pooka mult = 1024;
317 1.105 pooka break;
318 1.105 pooka case 'm':
319 1.105 pooka mult = 1024*1024;
320 1.105 pooka break;
321 1.105 pooka case 'g':
322 1.105 pooka mult = 1024*1024*1024;
323 1.105 pooka break;
324 1.105 pooka case 0:
325 1.105 pooka break;
326 1.105 pooka default:
327 1.105 pooka panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
328 1.105 pooka }
329 1.105 pooka rump_physmemlimit = tmp * mult;
330 1.105 pooka
331 1.105 pooka if (rump_physmemlimit / mult != tmp)
332 1.105 pooka panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
333 1.147 pooka
334 1.147 pooka /* reserve some memory for the pager */
335 1.158 pooka if (rump_physmemlimit <= PDRESERVE)
336 1.158 pooka panic("uvm_init: system reserves %d bytes of mem, "
337 1.158 pooka "only %lu bytes given",
338 1.158 pooka PDRESERVE, rump_physmemlimit);
339 1.147 pooka pdlimit = rump_physmemlimit;
340 1.158 pooka rump_physmemlimit -= PDRESERVE;
341 1.105 pooka
342 1.157 pooka if (pdlimit < 1024*1024)
343 1.157 pooka printf("uvm_init: WARNING: <1MB RAM limit, "
344 1.157 pooka "hope you know what you're doing\n");
345 1.157 pooka
346 1.84 pooka #define HUMANIZE_BYTES 9
347 1.84 pooka CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
348 1.91 pooka format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
349 1.84 pooka #undef HUMANIZE_BYTES
350 1.92 pooka dddlim = 9 * (rump_physmemlimit / 10);
351 1.84 pooka } else {
352 1.84 pooka strlcpy(buf, "unlimited (host limit)", sizeof(buf));
353 1.84 pooka }
354 1.84 pooka aprint_verbose("total memory = %s\n", buf);
355 1.1 pooka
356 1.92 pooka TAILQ_INIT(&vmpage_lruqueue);
357 1.92 pooka
358 1.157 pooka if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
359 1.157 pooka uvmexp.npages = physmem;
360 1.157 pooka } else {
361 1.157 pooka uvmexp.npages = pdlimit >> PAGE_SHIFT;
362 1.158 pooka uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
363 1.157 pooka uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
364 1.157 pooka }
365 1.157 pooka /*
366 1.157 pooka * uvmexp.free is not used internally or updated. The reason is
367 1.157 pooka * that the memory hypercall allocator is allowed to allocate
368 1.157 pooka * non-page sized chunks. We use a byte count in curphysmem
369 1.157 pooka * instead.
370 1.157 pooka */
371 1.157 pooka uvmexp.free = uvmexp.npages;
372 1.21 pooka
373 1.112 pooka #ifndef __uvmexp_pagesize
374 1.112 pooka uvmexp.pagesize = PAGE_SIZE;
375 1.112 pooka uvmexp.pagemask = PAGE_MASK;
376 1.112 pooka uvmexp.pageshift = PAGE_SHIFT;
377 1.112 pooka #else
378 1.197 martin uvmexp.pagesize = rumpuser_getpagesize();
379 1.197 martin uvmexp.pagemask = uvmexp.pagesize-1;
380 1.197 martin uvmexp.pageshift = ffs(uvmexp.pagesize)-1;
381 1.112 pooka #endif
382 1.112 pooka
383 1.140 pooka mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
384 1.174 ad mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
385 1.140 pooka mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
386 1.188 ad mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
387 1.35 pooka
388 1.80 pooka cv_init(&pdaemoncv, "pdaemon");
389 1.80 pooka cv_init(&oomwait, "oomwait");
390 1.80 pooka
391 1.130 pooka module_map = &module_map_store;
392 1.130 pooka
393 1.50 pooka kernel_map->pmap = pmap_kernel();
394 1.121 para
395 1.122 njoly pool_subsystem_init();
396 1.128 pooka
397 1.121 para kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
398 1.121 para NULL, NULL, NULL,
399 1.121 para 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
400 1.121 para
401 1.135 para vmem_subsystem_init(kmem_arena);
402 1.121 para
403 1.121 para kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
404 1.121 para vmem_alloc, vmem_free, kmem_arena,
405 1.124 para 8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
406 1.90 pooka
407 1.90 pooka pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
408 1.90 pooka "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
409 1.162 pooka
410 1.175 ad radix_tree_init();
411 1.175 ad
412 1.162 pooka /* create vmspace used by local clients */
413 1.162 pooka rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
414 1.164 pooka uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
415 1.1 pooka }
416 1.1 pooka
417 1.83 pooka void
418 1.145 martin uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
419 1.145 martin bool topdown)
420 1.83 pooka {
421 1.83 pooka
422 1.162 pooka vm->vm_map.pmap = pmap;
423 1.83 pooka vm->vm_refcnt = 1;
424 1.83 pooka }
425 1.1 pooka
426 1.173 nat int
427 1.173 nat uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
428 1.173 nat bool new_pageable, int lockflags)
429 1.173 nat {
430 1.173 nat return 0;
431 1.173 nat }
432 1.173 nat
433 1.1 pooka void
434 1.7 pooka uvm_pagewire(struct vm_page *pg)
435 1.7 pooka {
436 1.7 pooka
437 1.7 pooka /* nada */
438 1.7 pooka }
439 1.7 pooka
440 1.7 pooka void
441 1.7 pooka uvm_pageunwire(struct vm_page *pg)
442 1.7 pooka {
443 1.7 pooka
444 1.7 pooka /* nada */
445 1.7 pooka }
446 1.7 pooka
447 1.177 ad int
448 1.190 ad uvm_availmem(bool cached)
449 1.177 ad {
450 1.177 ad
451 1.177 ad return uvmexp.free;
452 1.177 ad }
453 1.177 ad
454 1.180 ad void
455 1.180 ad uvm_pagelock(struct vm_page *pg)
456 1.180 ad {
457 1.180 ad
458 1.180 ad mutex_enter(&pg->interlock);
459 1.180 ad }
460 1.180 ad
461 1.180 ad void
462 1.180 ad uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
463 1.180 ad {
464 1.180 ad
465 1.180 ad if (pg1 < pg2) {
466 1.180 ad mutex_enter(&pg1->interlock);
467 1.180 ad mutex_enter(&pg2->interlock);
468 1.180 ad } else {
469 1.180 ad mutex_enter(&pg2->interlock);
470 1.180 ad mutex_enter(&pg1->interlock);
471 1.180 ad }
472 1.180 ad }
473 1.180 ad
474 1.180 ad void
475 1.180 ad uvm_pageunlock(struct vm_page *pg)
476 1.180 ad {
477 1.180 ad
478 1.180 ad mutex_exit(&pg->interlock);
479 1.180 ad }
480 1.180 ad
481 1.180 ad void
482 1.180 ad uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
483 1.180 ad {
484 1.180 ad
485 1.180 ad mutex_exit(&pg1->interlock);
486 1.180 ad mutex_exit(&pg2->interlock);
487 1.180 ad }
488 1.180 ad
489 1.83 pooka /* where's your schmonz now? */
490 1.83 pooka #define PUNLIMIT(a) \
491 1.83 pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
492 1.83 pooka void
493 1.83 pooka uvm_init_limits(struct proc *p)
494 1.83 pooka {
495 1.83 pooka
496 1.155 pooka #ifndef DFLSSIZ
497 1.155 pooka #define DFLSSIZ (16*1024*1024)
498 1.155 pooka #endif
499 1.154 pooka p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
500 1.154 pooka p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
501 1.83 pooka PUNLIMIT(RLIMIT_DATA);
502 1.83 pooka PUNLIMIT(RLIMIT_RSS);
503 1.83 pooka PUNLIMIT(RLIMIT_AS);
504 1.83 pooka /* nice, cascade */
505 1.83 pooka }
506 1.83 pooka #undef PUNLIMIT
507 1.83 pooka
508 1.69 pooka /*
509 1.69 pooka * This satisfies the "disgusting mmap hack" used by proplib.
510 1.69 pooka */
511 1.49 pooka int
512 1.160 chs uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
513 1.49 pooka {
514 1.69 pooka int error;
515 1.49 pooka
516 1.69 pooka /* no reason in particular, but cf. uvm_default_mapaddr() */
517 1.160 chs if (*addrp != NULL)
518 1.69 pooka panic("uvm_mmap() variant unsupported");
519 1.69 pooka
520 1.106 pooka if (RUMP_LOCALPROC_P(curproc)) {
521 1.160 chs error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
522 1.98 pooka } else {
523 1.166 pooka error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
524 1.160 chs size, addrp);
525 1.98 pooka }
526 1.160 chs return error;
527 1.160 chs }
528 1.69 pooka
529 1.160 chs /*
530 1.160 chs * Stubs for things referenced from vfs_vnode.c but not used.
531 1.160 chs */
532 1.160 chs const dev_t zerodev;
533 1.160 chs
534 1.160 chs struct uvm_object *
535 1.160 chs udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
536 1.160 chs {
537 1.160 chs return NULL;
538 1.49 pooka }
539 1.49 pooka
540 1.61 pooka struct pagerinfo {
541 1.61 pooka vaddr_t pgr_kva;
542 1.61 pooka int pgr_npages;
543 1.61 pooka struct vm_page **pgr_pgs;
544 1.61 pooka bool pgr_read;
545 1.61 pooka
546 1.61 pooka LIST_ENTRY(pagerinfo) pgr_entries;
547 1.61 pooka };
548 1.61 pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
549 1.61 pooka
550 1.61 pooka /*
551 1.61 pooka * Pager "map" in routine. Instead of mapping, we allocate memory
552 1.159 pooka * and copy page contents there. The reason for copying instead of
553 1.159 pooka * mapping is simple: we do not assume we are running on virtual
554 1.159 pooka * memory. Even if we could emulate virtual memory in some envs
555 1.159 pooka * such as userspace, copying is much faster than trying to awkardly
556 1.159 pooka * cope with remapping (see "Design and Implementation" pp.95-98).
557 1.159 pooka * The downside of the approach is that the pager requires MAXPHYS
558 1.159 pooka * free memory to perform paging, but short of virtual memory or
559 1.159 pooka * making the pager do I/O in page-sized chunks we cannot do much
560 1.159 pooka * about that.
561 1.61 pooka */
562 1.7 pooka vaddr_t
563 1.61 pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
564 1.7 pooka {
565 1.61 pooka struct pagerinfo *pgri;
566 1.61 pooka vaddr_t curkva;
567 1.61 pooka int i;
568 1.61 pooka
569 1.61 pooka /* allocate structures */
570 1.61 pooka pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
571 1.61 pooka pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
572 1.61 pooka pgri->pgr_npages = npages;
573 1.61 pooka pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
574 1.61 pooka pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
575 1.61 pooka
576 1.61 pooka /* copy contents to "mapped" memory */
577 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
578 1.61 pooka i < npages;
579 1.61 pooka i++, curkva += PAGE_SIZE) {
580 1.61 pooka /*
581 1.61 pooka * We need to copy the previous contents of the pages to
582 1.61 pooka * the window even if we are reading from the
583 1.61 pooka * device, since the device might not fill the contents of
584 1.61 pooka * the full mapped range and we will end up corrupting
585 1.61 pooka * data when we unmap the window.
586 1.61 pooka */
587 1.61 pooka memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
588 1.61 pooka pgri->pgr_pgs[i] = pgs[i];
589 1.61 pooka }
590 1.61 pooka
591 1.61 pooka mutex_enter(&pagermtx);
592 1.61 pooka LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
593 1.61 pooka mutex_exit(&pagermtx);
594 1.7 pooka
595 1.61 pooka return pgri->pgr_kva;
596 1.7 pooka }
597 1.7 pooka
598 1.61 pooka /*
599 1.61 pooka * map out the pager window. return contents from VA to page storage
600 1.61 pooka * and free structures.
601 1.61 pooka *
602 1.61 pooka * Note: does not currently support partial frees
603 1.61 pooka */
604 1.61 pooka void
605 1.61 pooka uvm_pagermapout(vaddr_t kva, int npages)
606 1.7 pooka {
607 1.61 pooka struct pagerinfo *pgri;
608 1.61 pooka vaddr_t curkva;
609 1.61 pooka int i;
610 1.7 pooka
611 1.61 pooka mutex_enter(&pagermtx);
612 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
613 1.61 pooka if (pgri->pgr_kva == kva)
614 1.61 pooka break;
615 1.61 pooka }
616 1.61 pooka KASSERT(pgri);
617 1.61 pooka if (pgri->pgr_npages != npages)
618 1.61 pooka panic("uvm_pagermapout: partial unmapping not supported");
619 1.61 pooka LIST_REMOVE(pgri, pgr_entries);
620 1.61 pooka mutex_exit(&pagermtx);
621 1.61 pooka
622 1.61 pooka if (pgri->pgr_read) {
623 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
624 1.61 pooka i < pgri->pgr_npages;
625 1.61 pooka i++, curkva += PAGE_SIZE) {
626 1.61 pooka memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
627 1.21 pooka }
628 1.21 pooka }
629 1.10 pooka
630 1.61 pooka kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
631 1.61 pooka kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
632 1.61 pooka kmem_free(pgri, sizeof(*pgri));
633 1.7 pooka }
634 1.7 pooka
635 1.61 pooka /*
636 1.61 pooka * convert va in pager window to page structure.
637 1.61 pooka * XXX: how expensive is this (global lock, list traversal)?
638 1.61 pooka */
639 1.14 pooka struct vm_page *
640 1.14 pooka uvm_pageratop(vaddr_t va)
641 1.14 pooka {
642 1.61 pooka struct pagerinfo *pgri;
643 1.61 pooka struct vm_page *pg = NULL;
644 1.61 pooka int i;
645 1.14 pooka
646 1.61 pooka mutex_enter(&pagermtx);
647 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
648 1.61 pooka if (pgri->pgr_kva <= va
649 1.61 pooka && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
650 1.21 pooka break;
651 1.61 pooka }
652 1.61 pooka if (pgri) {
653 1.61 pooka i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
654 1.61 pooka pg = pgri->pgr_pgs[i];
655 1.61 pooka }
656 1.61 pooka mutex_exit(&pagermtx);
657 1.21 pooka
658 1.61 pooka return pg;
659 1.61 pooka }
660 1.15 pooka
661 1.97 pooka /*
662 1.97 pooka * Called with the vm object locked.
663 1.97 pooka *
664 1.97 pooka * Put vnode object pages at the end of the access queue to indicate
665 1.97 pooka * they have been recently accessed and should not be immediate
666 1.97 pooka * candidates for pageout. Do not do this for lookups done by
667 1.97 pooka * the pagedaemon to mimic pmap_kentered mappings which don't track
668 1.97 pooka * access information.
669 1.97 pooka */
670 1.61 pooka struct vm_page *
671 1.61 pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
672 1.61 pooka {
673 1.92 pooka struct vm_page *pg;
674 1.97 pooka bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
675 1.61 pooka
676 1.175 ad pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
677 1.97 pooka if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
678 1.174 ad mutex_enter(&vmpage_lruqueue_lock);
679 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
680 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
681 1.174 ad mutex_exit(&vmpage_lruqueue_lock);
682 1.92 pooka }
683 1.92 pooka
684 1.92 pooka return pg;
685 1.14 pooka }
686 1.14 pooka
687 1.7 pooka void
688 1.22 pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
689 1.22 pooka {
690 1.22 pooka struct vm_page *pg;
691 1.191 chs int i, pageout_done;
692 1.22 pooka
693 1.94 pooka KASSERT(npgs > 0);
694 1.94 pooka
695 1.191 chs pageout_done = 0;
696 1.22 pooka for (i = 0; i < npgs; i++) {
697 1.22 pooka pg = pgs[i];
698 1.191 chs if (pg == NULL || pg == PGO_DONTCARE) {
699 1.22 pooka continue;
700 1.191 chs }
701 1.22 pooka
702 1.191 chs #if 0
703 1.191 chs KASSERT(uvm_page_owner_locked_p(pg, true));
704 1.191 chs #else
705 1.191 chs /*
706 1.191 chs * uvm_page_owner_locked_p() is not available in rump,
707 1.191 chs * and rump doesn't support amaps anyway.
708 1.191 chs */
709 1.191 chs KASSERT(rw_write_held(pg->uobject->vmobjlock));
710 1.191 chs #endif
711 1.22 pooka KASSERT(pg->flags & PG_BUSY);
712 1.191 chs
713 1.191 chs if (pg->flags & PG_PAGEOUT) {
714 1.191 chs pg->flags &= ~PG_PAGEOUT;
715 1.191 chs pg->flags |= PG_RELEASED;
716 1.191 chs pageout_done++;
717 1.191 chs atomic_inc_uint(&uvmexp.pdfreed);
718 1.191 chs }
719 1.186 ad if (pg->flags & PG_RELEASED) {
720 1.191 chs KASSERT(pg->uobject != NULL ||
721 1.191 chs (pg->uanon != NULL && pg->uanon->an_ref > 0));
722 1.191 chs pg->flags &= ~PG_RELEASED;
723 1.36 pooka uvm_pagefree(pg);
724 1.186 ad } else {
725 1.191 chs KASSERT((pg->flags & PG_FAKE) == 0);
726 1.187 ad pg->flags &= ~PG_BUSY;
727 1.186 ad uvm_pagelock(pg);
728 1.187 ad uvm_pagewakeup(pg);
729 1.186 ad uvm_pageunlock(pg);
730 1.191 chs UVM_PAGE_OWN(pg, NULL);
731 1.186 ad }
732 1.186 ad }
733 1.191 chs if (pageout_done != 0) {
734 1.191 chs uvm_pageout_done(pageout_done);
735 1.191 chs }
736 1.186 ad }
737 1.186 ad
738 1.186 ad void
739 1.186 ad uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
740 1.186 ad {
741 1.186 ad
742 1.186 ad KASSERT(rw_lock_held(lock));
743 1.186 ad KASSERT((pg->flags & PG_BUSY) != 0);
744 1.186 ad
745 1.186 ad mutex_enter(&pg->interlock);
746 1.186 ad pg->pqflags |= PQ_WANTED;
747 1.186 ad rw_exit(lock);
748 1.186 ad UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
749 1.186 ad }
750 1.186 ad
751 1.186 ad void
752 1.187 ad uvm_pagewakeup(struct vm_page *pg)
753 1.186 ad {
754 1.186 ad
755 1.186 ad KASSERT(mutex_owned(&pg->interlock));
756 1.186 ad
757 1.186 ad if ((pg->pqflags & PQ_WANTED) != 0) {
758 1.186 ad pg->pqflags &= ~PQ_WANTED;
759 1.186 ad wakeup(pg);
760 1.22 pooka }
761 1.22 pooka }
762 1.22 pooka
763 1.22 pooka void
764 1.7 pooka uvm_estimatepageable(int *active, int *inactive)
765 1.7 pooka {
766 1.7 pooka
767 1.19 pooka /* XXX: guessing game */
768 1.19 pooka *active = 1024;
769 1.19 pooka *inactive = 1024;
770 1.7 pooka }
771 1.7 pooka
772 1.41 pooka int
773 1.41 pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
774 1.41 pooka {
775 1.41 pooka
776 1.41 pooka panic("%s: unimplemented", __func__);
777 1.41 pooka }
778 1.41 pooka
779 1.41 pooka void
780 1.41 pooka uvm_unloan(void *v, int npages, int flags)
781 1.41 pooka {
782 1.41 pooka
783 1.41 pooka panic("%s: unimplemented", __func__);
784 1.41 pooka }
785 1.41 pooka
786 1.43 pooka int
787 1.43 pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
788 1.43 pooka struct vm_page **opp)
789 1.43 pooka {
790 1.43 pooka
791 1.72 pooka return EBUSY;
792 1.43 pooka }
793 1.43 pooka
794 1.116 mrg struct vm_page *
795 1.116 mrg uvm_loanbreak(struct vm_page *pg)
796 1.116 mrg {
797 1.116 mrg
798 1.116 mrg panic("%s: unimplemented", __func__);
799 1.116 mrg }
800 1.116 mrg
801 1.116 mrg void
802 1.116 mrg ubc_purge(struct uvm_object *uobj)
803 1.116 mrg {
804 1.116 mrg
805 1.116 mrg }
806 1.116 mrg
807 1.68 pooka vaddr_t
808 1.168 martin uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
809 1.68 pooka {
810 1.68 pooka
811 1.68 pooka return 0;
812 1.68 pooka }
813 1.68 pooka
814 1.71 pooka int
815 1.71 pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
816 1.71 pooka vm_prot_t prot, bool set_max)
817 1.71 pooka {
818 1.71 pooka
819 1.71 pooka return EOPNOTSUPP;
820 1.71 pooka }
821 1.71 pooka
822 1.171 martin int
823 1.171 martin uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
824 1.171 martin struct uvm_object *uobj, voff_t uoffset, vsize_t align,
825 1.171 martin uvm_flag_t flags)
826 1.171 martin {
827 1.171 martin
828 1.172 martin *startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
829 1.172 martin return *startp != 0 ? 0 : ENOMEM;
830 1.172 martin }
831 1.172 martin
832 1.172 martin void
833 1.172 martin uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
834 1.172 martin {
835 1.172 martin
836 1.172 martin rump_hyperfree((void*)start, end-start);
837 1.171 martin }
838 1.171 martin
839 1.171 martin
840 1.9 pooka /*
841 1.12 pooka * UVM km
842 1.12 pooka */
843 1.12 pooka
844 1.12 pooka vaddr_t
845 1.12 pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
846 1.12 pooka {
847 1.82 pooka void *rv, *desired = NULL;
848 1.50 pooka int alignbit, error;
849 1.50 pooka
850 1.82 pooka #ifdef __x86_64__
851 1.82 pooka /*
852 1.82 pooka * On amd64, allocate all module memory from the lowest 2GB.
853 1.82 pooka * This is because NetBSD kernel modules are compiled
854 1.82 pooka * with -mcmodel=kernel and reserve only 4 bytes for
855 1.82 pooka * offsets. If we load code compiled with -mcmodel=kernel
856 1.82 pooka * anywhere except the lowest or highest 2GB, it will not
857 1.82 pooka * work. Since userspace does not have access to the highest
858 1.82 pooka * 2GB, use the lowest 2GB.
859 1.82 pooka *
860 1.82 pooka * Note: this assumes the rump kernel resides in
861 1.82 pooka * the lowest 2GB as well.
862 1.82 pooka *
863 1.82 pooka * Note2: yes, it's a quick hack, but since this the only
864 1.82 pooka * place where we care about the map we're allocating from,
865 1.82 pooka * just use a simple "if" instead of coming up with a fancy
866 1.82 pooka * generic solution.
867 1.82 pooka */
868 1.82 pooka if (map == module_map) {
869 1.82 pooka desired = (void *)(0x80000000 - size);
870 1.82 pooka }
871 1.82 pooka #endif
872 1.82 pooka
873 1.130 pooka if (__predict_false(map == module_map)) {
874 1.130 pooka alignbit = 0;
875 1.130 pooka if (align) {
876 1.130 pooka alignbit = ffs(align)-1;
877 1.130 pooka }
878 1.142 pooka error = rumpuser_anonmmap(desired, size, alignbit,
879 1.142 pooka flags & UVM_KMF_EXEC, &rv);
880 1.130 pooka } else {
881 1.142 pooka error = rumpuser_malloc(size, align, &rv);
882 1.50 pooka }
883 1.50 pooka
884 1.142 pooka if (error) {
885 1.50 pooka if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
886 1.50 pooka return 0;
887 1.50 pooka else
888 1.50 pooka panic("uvm_km_alloc failed");
889 1.50 pooka }
890 1.12 pooka
891 1.50 pooka if (flags & UVM_KMF_ZERO)
892 1.12 pooka memset(rv, 0, size);
893 1.12 pooka
894 1.12 pooka return (vaddr_t)rv;
895 1.12 pooka }
896 1.12 pooka
897 1.12 pooka void
898 1.12 pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
899 1.12 pooka {
900 1.12 pooka
901 1.130 pooka if (__predict_false(map == module_map))
902 1.130 pooka rumpuser_unmap((void *)vaddr, size);
903 1.130 pooka else
904 1.138 pooka rumpuser_free((void *)vaddr, size);
905 1.12 pooka }
906 1.12 pooka
907 1.170 christos int
908 1.170 christos uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
909 1.170 christos {
910 1.170 christos return 0;
911 1.170 christos }
912 1.170 christos
913 1.12 pooka struct vm_map *
914 1.12 pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
915 1.121 para vsize_t size, int pageable, bool fixed, struct vm_map *submap)
916 1.12 pooka {
917 1.12 pooka
918 1.12 pooka return (struct vm_map *)417416;
919 1.12 pooka }
920 1.40 pooka
921 1.121 para int
922 1.121 para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
923 1.121 para vmem_addr_t *addr)
924 1.40 pooka {
925 1.121 para vaddr_t va;
926 1.121 para va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
927 1.121 para (flags & VM_SLEEP), "kmalloc");
928 1.40 pooka
929 1.121 para if (va) {
930 1.121 para *addr = va;
931 1.121 para return 0;
932 1.121 para } else {
933 1.121 para return ENOMEM;
934 1.121 para }
935 1.40 pooka }
936 1.40 pooka
937 1.40 pooka void
938 1.121 para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
939 1.40 pooka {
940 1.40 pooka
941 1.121 para rump_hyperfree((void *)addr, size);
942 1.74 pooka }
943 1.74 pooka
944 1.57 pooka /*
945 1.102 pooka * VM space locking routines. We don't really have to do anything,
946 1.102 pooka * since the pages are always "wired" (both local and remote processes).
947 1.57 pooka */
948 1.57 pooka int
949 1.57 pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
950 1.57 pooka {
951 1.57 pooka
952 1.57 pooka return 0;
953 1.57 pooka }
954 1.57 pooka
955 1.57 pooka void
956 1.57 pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
957 1.57 pooka {
958 1.57 pooka
959 1.57 pooka }
960 1.57 pooka
961 1.102 pooka /*
962 1.102 pooka * For the local case the buffer mappers don't need to do anything.
963 1.102 pooka * For the remote case we need to reserve space and copy data in or
964 1.102 pooka * out, depending on B_READ/B_WRITE.
965 1.102 pooka */
966 1.111 pooka int
967 1.57 pooka vmapbuf(struct buf *bp, vsize_t len)
968 1.57 pooka {
969 1.111 pooka int error = 0;
970 1.57 pooka
971 1.57 pooka bp->b_saveaddr = bp->b_data;
972 1.102 pooka
973 1.102 pooka /* remote case */
974 1.106 pooka if (!RUMP_LOCALPROC_P(curproc)) {
975 1.102 pooka bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
976 1.102 pooka if (BUF_ISWRITE(bp)) {
977 1.111 pooka error = copyin(bp->b_saveaddr, bp->b_data, len);
978 1.111 pooka if (error) {
979 1.111 pooka rump_hyperfree(bp->b_data, len);
980 1.111 pooka bp->b_data = bp->b_saveaddr;
981 1.111 pooka bp->b_saveaddr = 0;
982 1.111 pooka }
983 1.102 pooka }
984 1.102 pooka }
985 1.111 pooka
986 1.111 pooka return error;
987 1.57 pooka }
988 1.57 pooka
989 1.57 pooka void
990 1.57 pooka vunmapbuf(struct buf *bp, vsize_t len)
991 1.57 pooka {
992 1.57 pooka
993 1.102 pooka /* remote case */
994 1.106 pooka if (!RUMP_LOCALPROC_P(bp->b_proc)) {
995 1.102 pooka if (BUF_ISREAD(bp)) {
996 1.110 pooka bp->b_error = copyout_proc(bp->b_proc,
997 1.102 pooka bp->b_data, bp->b_saveaddr, len);
998 1.102 pooka }
999 1.102 pooka rump_hyperfree(bp->b_data, len);
1000 1.102 pooka }
1001 1.102 pooka
1002 1.57 pooka bp->b_data = bp->b_saveaddr;
1003 1.57 pooka bp->b_saveaddr = 0;
1004 1.57 pooka }
1005 1.61 pooka
1006 1.61 pooka void
1007 1.83 pooka uvmspace_addref(struct vmspace *vm)
1008 1.83 pooka {
1009 1.83 pooka
1010 1.83 pooka /*
1011 1.103 pooka * No dynamically allocated vmspaces exist.
1012 1.83 pooka */
1013 1.83 pooka }
1014 1.83 pooka
1015 1.83 pooka void
1016 1.66 pooka uvmspace_free(struct vmspace *vm)
1017 1.66 pooka {
1018 1.66 pooka
1019 1.66 pooka /* nothing for now */
1020 1.66 pooka }
1021 1.66 pooka
1022 1.61 pooka /*
1023 1.61 pooka * page life cycle stuff. it really doesn't exist, so just stubs.
1024 1.61 pooka */
1025 1.61 pooka
1026 1.61 pooka void
1027 1.61 pooka uvm_pageactivate(struct vm_page *pg)
1028 1.61 pooka {
1029 1.61 pooka
1030 1.61 pooka /* nada */
1031 1.61 pooka }
1032 1.61 pooka
1033 1.61 pooka void
1034 1.61 pooka uvm_pagedeactivate(struct vm_page *pg)
1035 1.61 pooka {
1036 1.61 pooka
1037 1.61 pooka /* nada */
1038 1.61 pooka }
1039 1.61 pooka
1040 1.61 pooka void
1041 1.61 pooka uvm_pagedequeue(struct vm_page *pg)
1042 1.61 pooka {
1043 1.61 pooka
1044 1.61 pooka /* nada*/
1045 1.61 pooka }
1046 1.61 pooka
1047 1.61 pooka void
1048 1.61 pooka uvm_pageenqueue(struct vm_page *pg)
1049 1.61 pooka {
1050 1.61 pooka
1051 1.61 pooka /* nada */
1052 1.61 pooka }
1053 1.80 pooka
1054 1.88 pooka void
1055 1.88 pooka uvmpdpol_anfree(struct vm_anon *an)
1056 1.88 pooka {
1057 1.88 pooka
1058 1.88 pooka /* nada */
1059 1.88 pooka }
1060 1.88 pooka
1061 1.80 pooka /*
1062 1.99 uebayasi * Physical address accessors.
1063 1.99 uebayasi */
1064 1.99 uebayasi
1065 1.99 uebayasi struct vm_page *
1066 1.99 uebayasi uvm_phys_to_vm_page(paddr_t pa)
1067 1.99 uebayasi {
1068 1.99 uebayasi
1069 1.99 uebayasi return NULL;
1070 1.99 uebayasi }
1071 1.99 uebayasi
1072 1.99 uebayasi paddr_t
1073 1.99 uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
1074 1.99 uebayasi {
1075 1.99 uebayasi
1076 1.99 uebayasi return 0;
1077 1.99 uebayasi }
1078 1.99 uebayasi
1079 1.153 pooka vaddr_t
1080 1.153 pooka uvm_uarea_alloc(void)
1081 1.153 pooka {
1082 1.153 pooka
1083 1.153 pooka /* non-zero */
1084 1.153 pooka return (vaddr_t)11;
1085 1.153 pooka }
1086 1.153 pooka
1087 1.153 pooka void
1088 1.153 pooka uvm_uarea_free(vaddr_t uarea)
1089 1.153 pooka {
1090 1.153 pooka
1091 1.153 pooka /* nata, so creamy */
1092 1.153 pooka }
1093 1.153 pooka
1094 1.99 uebayasi /*
1095 1.80 pooka * Routines related to the Page Baroness.
1096 1.80 pooka */
1097 1.80 pooka
1098 1.80 pooka void
1099 1.80 pooka uvm_wait(const char *msg)
1100 1.80 pooka {
1101 1.80 pooka
1102 1.80 pooka if (__predict_false(rump_threads == 0))
1103 1.80 pooka panic("pagedaemon missing (RUMP_THREADS = 0)");
1104 1.80 pooka
1105 1.147 pooka if (curlwp == uvm.pagedaemon_lwp) {
1106 1.147 pooka /* is it possible for us to later get memory? */
1107 1.147 pooka if (!uvmexp.paging)
1108 1.147 pooka panic("pagedaemon out of memory");
1109 1.147 pooka }
1110 1.147 pooka
1111 1.80 pooka mutex_enter(&pdaemonmtx);
1112 1.80 pooka pdaemon_waiters++;
1113 1.80 pooka cv_signal(&pdaemoncv);
1114 1.80 pooka cv_wait(&oomwait, &pdaemonmtx);
1115 1.80 pooka mutex_exit(&pdaemonmtx);
1116 1.80 pooka }
1117 1.80 pooka
1118 1.80 pooka void
1119 1.80 pooka uvm_pageout_start(int npages)
1120 1.80 pooka {
1121 1.80 pooka
1122 1.113 pooka mutex_enter(&pdaemonmtx);
1123 1.113 pooka uvmexp.paging += npages;
1124 1.113 pooka mutex_exit(&pdaemonmtx);
1125 1.80 pooka }
1126 1.80 pooka
1127 1.80 pooka void
1128 1.80 pooka uvm_pageout_done(int npages)
1129 1.80 pooka {
1130 1.80 pooka
1131 1.113 pooka if (!npages)
1132 1.113 pooka return;
1133 1.113 pooka
1134 1.113 pooka mutex_enter(&pdaemonmtx);
1135 1.113 pooka KASSERT(uvmexp.paging >= npages);
1136 1.113 pooka uvmexp.paging -= npages;
1137 1.113 pooka
1138 1.113 pooka if (pdaemon_waiters) {
1139 1.113 pooka pdaemon_waiters = 0;
1140 1.113 pooka cv_broadcast(&oomwait);
1141 1.113 pooka }
1142 1.113 pooka mutex_exit(&pdaemonmtx);
1143 1.80 pooka }
1144 1.80 pooka
1145 1.95 pooka static bool
1146 1.184 ad processpage(struct vm_page *pg)
1147 1.95 pooka {
1148 1.95 pooka struct uvm_object *uobj;
1149 1.95 pooka
1150 1.95 pooka uobj = pg->uobject;
1151 1.184 ad if (rw_tryenter(uobj->vmobjlock, RW_WRITER)) {
1152 1.95 pooka if ((pg->flags & PG_BUSY) == 0) {
1153 1.174 ad mutex_exit(&vmpage_lruqueue_lock);
1154 1.95 pooka uobj->pgops->pgo_put(uobj, pg->offset,
1155 1.95 pooka pg->offset + PAGE_SIZE,
1156 1.95 pooka PGO_CLEANIT|PGO_FREE);
1157 1.184 ad KASSERT(!rw_write_held(uobj->vmobjlock));
1158 1.95 pooka return true;
1159 1.95 pooka } else {
1160 1.184 ad rw_exit(uobj->vmobjlock);
1161 1.104 pooka }
1162 1.95 pooka }
1163 1.95 pooka
1164 1.95 pooka return false;
1165 1.95 pooka }
1166 1.95 pooka
1167 1.80 pooka /*
1168 1.92 pooka * The Diabolical pageDaemon Director (DDD).
1169 1.113 pooka *
1170 1.113 pooka * This routine can always use better heuristics.
1171 1.80 pooka */
1172 1.80 pooka void
1173 1.80 pooka uvm_pageout(void *arg)
1174 1.80 pooka {
1175 1.92 pooka struct vm_page *pg;
1176 1.80 pooka struct pool *pp, *pp_first;
1177 1.92 pooka int cleaned, skip, skipped;
1178 1.113 pooka bool succ;
1179 1.80 pooka
1180 1.80 pooka mutex_enter(&pdaemonmtx);
1181 1.80 pooka for (;;) {
1182 1.113 pooka if (pdaemon_waiters) {
1183 1.113 pooka pdaemon_waiters = 0;
1184 1.113 pooka cv_broadcast(&oomwait);
1185 1.104 pooka }
1186 1.188 ad if (!NEED_PAGEDAEMON()) {
1187 1.188 ad kernel_map->flags &= ~VM_MAP_WANTVA;
1188 1.188 ad cv_wait(&pdaemoncv, &pdaemonmtx);
1189 1.188 ad }
1190 1.113 pooka uvmexp.pdwoke++;
1191 1.113 pooka
1192 1.92 pooka /* tell the world that we are hungry */
1193 1.80 pooka kernel_map->flags |= VM_MAP_WANTVA;
1194 1.80 pooka mutex_exit(&pdaemonmtx);
1195 1.80 pooka
1196 1.92 pooka /*
1197 1.92 pooka * step one: reclaim the page cache. this should give
1198 1.92 pooka * us the biggest earnings since whole pages are released
1199 1.92 pooka * into backing memory.
1200 1.92 pooka */
1201 1.92 pooka pool_cache_reclaim(&pagecache);
1202 1.92 pooka if (!NEED_PAGEDAEMON()) {
1203 1.92 pooka mutex_enter(&pdaemonmtx);
1204 1.92 pooka continue;
1205 1.92 pooka }
1206 1.92 pooka
1207 1.92 pooka /*
1208 1.92 pooka * Ok, so that didn't help. Next, try to hunt memory
1209 1.92 pooka * by pushing out vnode pages. The pages might contain
1210 1.92 pooka * useful cached data, but we need the memory.
1211 1.92 pooka */
1212 1.92 pooka cleaned = 0;
1213 1.92 pooka skip = 0;
1214 1.92 pooka again:
1215 1.174 ad mutex_enter(&vmpage_lruqueue_lock);
1216 1.92 pooka while (cleaned < PAGEDAEMON_OBJCHUNK) {
1217 1.92 pooka skipped = 0;
1218 1.92 pooka TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1219 1.92 pooka
1220 1.92 pooka /*
1221 1.92 pooka * skip over pages we _might_ have tried
1222 1.92 pooka * to handle earlier. they might not be
1223 1.92 pooka * exactly the same ones, but I'm not too
1224 1.92 pooka * concerned.
1225 1.92 pooka */
1226 1.92 pooka while (skipped++ < skip)
1227 1.92 pooka continue;
1228 1.92 pooka
1229 1.184 ad if (processpage(pg)) {
1230 1.95 pooka cleaned++;
1231 1.95 pooka goto again;
1232 1.92 pooka }
1233 1.92 pooka
1234 1.92 pooka skip++;
1235 1.92 pooka }
1236 1.92 pooka break;
1237 1.92 pooka }
1238 1.174 ad mutex_exit(&vmpage_lruqueue_lock);
1239 1.92 pooka
1240 1.92 pooka /*
1241 1.92 pooka * And of course we need to reclaim the page cache
1242 1.92 pooka * again to actually release memory.
1243 1.92 pooka */
1244 1.92 pooka pool_cache_reclaim(&pagecache);
1245 1.92 pooka if (!NEED_PAGEDAEMON()) {
1246 1.92 pooka mutex_enter(&pdaemonmtx);
1247 1.92 pooka continue;
1248 1.92 pooka }
1249 1.92 pooka
1250 1.92 pooka /*
1251 1.92 pooka * And then drain the pools. Wipe them out ... all of them.
1252 1.92 pooka */
1253 1.127 jym for (pp_first = NULL;;) {
1254 1.156 pooka rump_vfs_drainbufs(10 /* XXX: estimate! */);
1255 1.92 pooka
1256 1.127 jym succ = pool_drain(&pp);
1257 1.127 jym if (succ || pp == pp_first)
1258 1.80 pooka break;
1259 1.127 jym
1260 1.127 jym if (pp_first == NULL)
1261 1.127 jym pp_first = pp;
1262 1.80 pooka }
1263 1.92 pooka
1264 1.92 pooka /*
1265 1.92 pooka * Need to use PYEC on our bag of tricks.
1266 1.92 pooka * Unfortunately, the wife just borrowed it.
1267 1.92 pooka */
1268 1.80 pooka
1269 1.113 pooka mutex_enter(&pdaemonmtx);
1270 1.113 pooka if (!succ && cleaned == 0 && pdaemon_waiters &&
1271 1.113 pooka uvmexp.paging == 0) {
1272 1.167 pooka kpause("pddlk", false, hz, &pdaemonmtx);
1273 1.80 pooka }
1274 1.80 pooka }
1275 1.80 pooka
1276 1.80 pooka panic("you can swap out any time you like, but you can never leave");
1277 1.80 pooka }
1278 1.80 pooka
1279 1.80 pooka void
1280 1.80 pooka uvm_kick_pdaemon()
1281 1.80 pooka {
1282 1.80 pooka
1283 1.92 pooka /*
1284 1.92 pooka * Wake up the diabolical pagedaemon director if we are over
1285 1.92 pooka * 90% of the memory limit. This is a complete and utter
1286 1.92 pooka * stetson-harrison decision which you are allowed to finetune.
1287 1.92 pooka * Don't bother locking. If we have some unflushed caches,
1288 1.92 pooka * other waker-uppers will deal with the issue.
1289 1.92 pooka */
1290 1.92 pooka if (NEED_PAGEDAEMON()) {
1291 1.92 pooka cv_signal(&pdaemoncv);
1292 1.92 pooka }
1293 1.80 pooka }
1294 1.80 pooka
1295 1.80 pooka void *
1296 1.80 pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1297 1.80 pooka {
1298 1.150 pooka const unsigned long thelimit =
1299 1.150 pooka curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
1300 1.84 pooka unsigned long newmem;
1301 1.80 pooka void *rv;
1302 1.142 pooka int error;
1303 1.80 pooka
1304 1.92 pooka uvm_kick_pdaemon(); /* ouch */
1305 1.92 pooka
1306 1.84 pooka /* first we must be within the limit */
1307 1.84 pooka limitagain:
1308 1.150 pooka if (thelimit != RUMPMEM_UNLIMITED) {
1309 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, howmuch);
1310 1.150 pooka if (newmem > thelimit) {
1311 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1312 1.103 pooka if (!waitok) {
1313 1.84 pooka return NULL;
1314 1.103 pooka }
1315 1.84 pooka uvm_wait(wmsg);
1316 1.84 pooka goto limitagain;
1317 1.84 pooka }
1318 1.84 pooka }
1319 1.84 pooka
1320 1.84 pooka /* second, we must get something from the backend */
1321 1.80 pooka again:
1322 1.142 pooka error = rumpuser_malloc(howmuch, alignment, &rv);
1323 1.142 pooka if (__predict_false(error && waitok)) {
1324 1.80 pooka uvm_wait(wmsg);
1325 1.80 pooka goto again;
1326 1.80 pooka }
1327 1.80 pooka
1328 1.80 pooka return rv;
1329 1.80 pooka }
1330 1.84 pooka
1331 1.84 pooka void
1332 1.84 pooka rump_hyperfree(void *what, size_t size)
1333 1.84 pooka {
1334 1.84 pooka
1335 1.91 pooka if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1336 1.84 pooka atomic_add_long(&curphysmem, -size);
1337 1.84 pooka }
1338 1.138 pooka rumpuser_free(what, size);
1339 1.84 pooka }
1340 1.196 riastrad
1341 1.196 riastrad /*
1342 1.196 riastrad * UBC
1343 1.196 riastrad */
1344 1.196 riastrad
1345 1.196 riastrad #define PAGERFLAGS (PGO_SYNCIO | PGO_NOBLOCKALLOC | PGO_NOTIMESTAMP)
1346 1.196 riastrad
1347 1.196 riastrad void
1348 1.196 riastrad ubc_zerorange(struct uvm_object *uobj, off_t off, size_t len, int flags)
1349 1.196 riastrad {
1350 1.196 riastrad struct vm_page **pgs;
1351 1.196 riastrad int maxpages = MIN(32, round_page(len) >> PAGE_SHIFT);
1352 1.196 riastrad int npages, i;
1353 1.196 riastrad
1354 1.196 riastrad if (maxpages == 0)
1355 1.196 riastrad return;
1356 1.196 riastrad
1357 1.196 riastrad pgs = kmem_alloc(maxpages * sizeof(pgs), KM_SLEEP);
1358 1.196 riastrad rw_enter(uobj->vmobjlock, RW_WRITER);
1359 1.196 riastrad while (len) {
1360 1.196 riastrad npages = MIN(maxpages, round_page(len) >> PAGE_SHIFT);
1361 1.196 riastrad memset(pgs, 0, npages * sizeof(struct vm_page *));
1362 1.196 riastrad (void)uobj->pgops->pgo_get(uobj, trunc_page(off),
1363 1.196 riastrad pgs, &npages, 0, VM_PROT_READ | VM_PROT_WRITE,
1364 1.196 riastrad 0, PAGERFLAGS | PGO_PASTEOF);
1365 1.196 riastrad KASSERT(npages > 0);
1366 1.196 riastrad
1367 1.196 riastrad rw_enter(uobj->vmobjlock, RW_WRITER);
1368 1.196 riastrad for (i = 0; i < npages; i++) {
1369 1.196 riastrad struct vm_page *pg;
1370 1.196 riastrad uint8_t *start;
1371 1.196 riastrad size_t chunkoff, chunklen;
1372 1.196 riastrad
1373 1.196 riastrad pg = pgs[i];
1374 1.196 riastrad if (pg == NULL)
1375 1.196 riastrad break;
1376 1.196 riastrad
1377 1.196 riastrad KASSERT(pg->uobject != NULL);
1378 1.196 riastrad KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
1379 1.196 riastrad
1380 1.196 riastrad chunkoff = off & PAGE_MASK;
1381 1.196 riastrad chunklen = MIN(PAGE_SIZE - chunkoff, len);
1382 1.196 riastrad start = (uint8_t *)pg->uanon + chunkoff;
1383 1.196 riastrad
1384 1.196 riastrad memset(start, 0, chunklen);
1385 1.196 riastrad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1386 1.196 riastrad
1387 1.196 riastrad off += chunklen;
1388 1.196 riastrad len -= chunklen;
1389 1.196 riastrad }
1390 1.196 riastrad uvm_page_unbusy(pgs, npages);
1391 1.196 riastrad }
1392 1.196 riastrad rw_exit(uobj->vmobjlock);
1393 1.196 riastrad kmem_free(pgs, maxpages * sizeof(pgs));
1394 1.196 riastrad }
1395 1.196 riastrad
1396 1.196 riastrad #define len2npages(off, len) \
1397 1.196 riastrad ((round_page(off+len) - trunc_page(off)) >> PAGE_SHIFT)
1398 1.196 riastrad
1399 1.196 riastrad int
1400 1.196 riastrad ubc_uiomove(struct uvm_object *uobj, struct uio *uio, vsize_t todo,
1401 1.196 riastrad int advice, int flags)
1402 1.196 riastrad {
1403 1.196 riastrad struct vm_page **pgs;
1404 1.196 riastrad int npages = len2npages(uio->uio_offset, todo);
1405 1.196 riastrad size_t pgalloc;
1406 1.196 riastrad int i, rv, pagerflags;
1407 1.196 riastrad vm_prot_t prot;
1408 1.196 riastrad
1409 1.196 riastrad pgalloc = npages * sizeof(pgs);
1410 1.196 riastrad pgs = kmem_alloc(pgalloc, KM_SLEEP);
1411 1.196 riastrad
1412 1.196 riastrad pagerflags = PAGERFLAGS;
1413 1.196 riastrad if (flags & UBC_WRITE)
1414 1.196 riastrad pagerflags |= PGO_PASTEOF;
1415 1.196 riastrad if (flags & UBC_FAULTBUSY)
1416 1.196 riastrad pagerflags |= PGO_OVERWRITE;
1417 1.196 riastrad
1418 1.196 riastrad prot = VM_PROT_READ;
1419 1.196 riastrad if (flags & UBC_WRITE)
1420 1.196 riastrad prot |= VM_PROT_WRITE;
1421 1.196 riastrad
1422 1.196 riastrad rw_enter(uobj->vmobjlock, RW_WRITER);
1423 1.196 riastrad do {
1424 1.196 riastrad npages = len2npages(uio->uio_offset, todo);
1425 1.196 riastrad memset(pgs, 0, pgalloc);
1426 1.196 riastrad rv = uobj->pgops->pgo_get(uobj, trunc_page(uio->uio_offset),
1427 1.196 riastrad pgs, &npages, 0, prot, 0, pagerflags);
1428 1.196 riastrad if (rv)
1429 1.196 riastrad goto out;
1430 1.196 riastrad
1431 1.196 riastrad rw_enter(uobj->vmobjlock, RW_WRITER);
1432 1.196 riastrad for (i = 0; i < npages; i++) {
1433 1.196 riastrad struct vm_page *pg;
1434 1.196 riastrad size_t xfersize;
1435 1.196 riastrad off_t pageoff;
1436 1.196 riastrad
1437 1.196 riastrad pg = pgs[i];
1438 1.196 riastrad if (pg == NULL)
1439 1.196 riastrad break;
1440 1.196 riastrad
1441 1.196 riastrad KASSERT(pg->uobject != NULL);
1442 1.196 riastrad KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
1443 1.196 riastrad pageoff = uio->uio_offset & PAGE_MASK;
1444 1.196 riastrad
1445 1.196 riastrad xfersize = MIN(MIN(todo, PAGE_SIZE), PAGE_SIZE-pageoff);
1446 1.196 riastrad KASSERT(xfersize > 0);
1447 1.196 riastrad rv = uiomove((uint8_t *)pg->uanon + pageoff,
1448 1.196 riastrad xfersize, uio);
1449 1.196 riastrad if (rv) {
1450 1.196 riastrad uvm_page_unbusy(pgs, npages);
1451 1.196 riastrad rw_exit(uobj->vmobjlock);
1452 1.196 riastrad goto out;
1453 1.196 riastrad }
1454 1.196 riastrad if (uio->uio_rw == UIO_WRITE) {
1455 1.196 riastrad pg->flags &= ~PG_FAKE;
1456 1.196 riastrad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1457 1.196 riastrad }
1458 1.196 riastrad todo -= xfersize;
1459 1.196 riastrad }
1460 1.196 riastrad uvm_page_unbusy(pgs, npages);
1461 1.196 riastrad } while (todo);
1462 1.196 riastrad rw_exit(uobj->vmobjlock);
1463 1.196 riastrad
1464 1.196 riastrad out:
1465 1.196 riastrad kmem_free(pgs, pgalloc);
1466 1.196 riastrad return rv;
1467 1.196 riastrad }
1468