vm.c revision 1.30.4.5 1 1.30.4.5 yamt /* $NetBSD: vm.c,v 1.30.4.5 2010/08/11 22:55:07 yamt Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.30.4.5 yamt * Copyright (c) 2007-2010 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.30.4.5 yamt * Development of this software was supported by
7 1.30.4.5 yamt * The Finnish Cultural Foundation and the Research Foundation of
8 1.30.4.5 yamt * The Helsinki University of Technology.
9 1.1 pooka *
10 1.1 pooka * Redistribution and use in source and binary forms, with or without
11 1.1 pooka * modification, are permitted provided that the following conditions
12 1.1 pooka * are met:
13 1.1 pooka * 1. Redistributions of source code must retain the above copyright
14 1.1 pooka * notice, this list of conditions and the following disclaimer.
15 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pooka * notice, this list of conditions and the following disclaimer in the
17 1.1 pooka * documentation and/or other materials provided with the distribution.
18 1.1 pooka *
19 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 pooka * SUCH DAMAGE.
30 1.1 pooka */
31 1.1 pooka
32 1.1 pooka /*
33 1.1 pooka * Virtual memory emulation routines. Contents:
34 1.1 pooka * + anon objects & pager
35 1.1 pooka * + misc support routines
36 1.1 pooka */
37 1.1 pooka
38 1.1 pooka /*
39 1.5 pooka * XXX: we abuse pg->uanon for the virtual address of the storage
40 1.1 pooka * for each page. phys_addr would fit the job description better,
41 1.1 pooka * except that it will create unnecessary lossage on some platforms
42 1.1 pooka * due to not being a pointer type.
43 1.1 pooka */
44 1.1 pooka
45 1.30.4.1 yamt #include <sys/cdefs.h>
46 1.30.4.5 yamt __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.30.4.5 2010/08/11 22:55:07 yamt Exp $");
47 1.30.4.1 yamt
48 1.1 pooka #include <sys/param.h>
49 1.30.4.1 yamt #include <sys/atomic.h>
50 1.30.4.5 yamt #include <sys/buf.h>
51 1.30.4.5 yamt #include <sys/kernel.h>
52 1.30.4.4 yamt #include <sys/kmem.h>
53 1.30.4.4 yamt #include <sys/mman.h>
54 1.1 pooka #include <sys/null.h>
55 1.1 pooka #include <sys/vnode.h>
56 1.1 pooka
57 1.30.4.1 yamt #include <machine/pmap.h>
58 1.30.4.1 yamt
59 1.30.4.1 yamt #include <rump/rumpuser.h>
60 1.30.4.1 yamt
61 1.1 pooka #include <uvm/uvm.h>
62 1.30.4.1 yamt #include <uvm/uvm_ddb.h>
63 1.1 pooka #include <uvm/uvm_prot.h>
64 1.30.4.2 yamt #include <uvm/uvm_readahead.h>
65 1.1 pooka
66 1.13 pooka #include "rump_private.h"
67 1.1 pooka
68 1.24 yamt static int ao_get(struct uvm_object *, voff_t, struct vm_page **,
69 1.24 yamt int *, int, vm_prot_t, int, int);
70 1.24 yamt static int ao_put(struct uvm_object *, voff_t, voff_t, int);
71 1.24 yamt
72 1.24 yamt const struct uvm_pagerops aobj_pager = {
73 1.24 yamt .pgo_get = ao_get,
74 1.24 yamt .pgo_put = ao_put,
75 1.24 yamt };
76 1.24 yamt
77 1.25 ad kmutex_t uvm_pageqlock;
78 1.25 ad
79 1.1 pooka struct uvmexp uvmexp;
80 1.7 pooka struct uvm uvm;
81 1.1 pooka
82 1.1 pooka struct vm_map rump_vmmap;
83 1.30.4.1 yamt static struct vm_map_kernel kmem_map_store;
84 1.30.4.1 yamt struct vm_map *kmem_map = &kmem_map_store.vmk_map;
85 1.30.4.1 yamt const struct rb_tree_ops uvm_page_tree_ops;
86 1.30.4.1 yamt
87 1.30.4.1 yamt static struct vm_map_kernel kernel_map_store;
88 1.30.4.1 yamt struct vm_map *kernel_map = &kernel_map_store.vmk_map;
89 1.1 pooka
90 1.30.4.5 yamt static unsigned int pdaemon_waiters;
91 1.30.4.5 yamt static kmutex_t pdaemonmtx;
92 1.30.4.5 yamt static kcondvar_t pdaemoncv, oomwait;
93 1.30.4.5 yamt
94 1.30.4.5 yamt #define RUMPMEM_UNLIMITED ((unsigned long)-1)
95 1.30.4.5 yamt static unsigned long physmemlimit = RUMPMEM_UNLIMITED;
96 1.30.4.5 yamt static unsigned long curphysmem;
97 1.30.4.5 yamt
98 1.1 pooka /*
99 1.1 pooka * vm pages
100 1.1 pooka */
101 1.1 pooka
102 1.22 pooka /* called with the object locked */
103 1.1 pooka struct vm_page *
104 1.30.4.5 yamt uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
105 1.30.4.5 yamt int flags, int strat, int free_list)
106 1.1 pooka {
107 1.1 pooka struct vm_page *pg;
108 1.1 pooka
109 1.27 pooka pg = kmem_zalloc(sizeof(struct vm_page), KM_SLEEP);
110 1.1 pooka pg->offset = off;
111 1.5 pooka pg->uobject = uobj;
112 1.1 pooka
113 1.30.4.5 yamt pg->uanon = (void *)kmem_alloc(PAGE_SIZE, KM_SLEEP);
114 1.30.4.5 yamt if (flags & UVM_PGA_ZERO)
115 1.30.4.5 yamt memset(pg->uanon, 0, PAGE_SIZE);
116 1.22 pooka pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
117 1.1 pooka
118 1.30.4.1 yamt TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
119 1.30.4.3 yamt uobj->uo_npages++;
120 1.21 pooka
121 1.1 pooka return pg;
122 1.1 pooka }
123 1.1 pooka
124 1.21 pooka /*
125 1.21 pooka * Release a page.
126 1.21 pooka *
127 1.22 pooka * Called with the vm object locked.
128 1.21 pooka */
129 1.1 pooka void
130 1.22 pooka uvm_pagefree(struct vm_page *pg)
131 1.1 pooka {
132 1.5 pooka struct uvm_object *uobj = pg->uobject;
133 1.1 pooka
134 1.22 pooka if (pg->flags & PG_WANTED)
135 1.22 pooka wakeup(pg);
136 1.22 pooka
137 1.30.4.3 yamt uobj->uo_npages--;
138 1.30.4.1 yamt TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
139 1.27 pooka kmem_free((void *)pg->uanon, PAGE_SIZE);
140 1.27 pooka kmem_free(pg, sizeof(*pg));
141 1.1 pooka }
142 1.1 pooka
143 1.15 pooka void
144 1.30.4.3 yamt uvm_pagezero(struct vm_page *pg)
145 1.15 pooka {
146 1.15 pooka
147 1.30.4.3 yamt pg->flags &= ~PG_CLEAN;
148 1.30.4.3 yamt memset((void *)pg->uanon, 0, PAGE_SIZE);
149 1.15 pooka }
150 1.15 pooka
151 1.1 pooka /*
152 1.1 pooka * Anon object stuff
153 1.1 pooka */
154 1.1 pooka
155 1.1 pooka static int
156 1.1 pooka ao_get(struct uvm_object *uobj, voff_t off, struct vm_page **pgs,
157 1.1 pooka int *npages, int centeridx, vm_prot_t access_type,
158 1.1 pooka int advice, int flags)
159 1.1 pooka {
160 1.1 pooka struct vm_page *pg;
161 1.1 pooka int i;
162 1.1 pooka
163 1.1 pooka if (centeridx)
164 1.1 pooka panic("%s: centeridx != 0 not supported", __func__);
165 1.1 pooka
166 1.1 pooka /* loop over pages */
167 1.1 pooka off = trunc_page(off);
168 1.1 pooka for (i = 0; i < *npages; i++) {
169 1.23 pooka retrylookup:
170 1.10 pooka pg = uvm_pagelookup(uobj, off + (i << PAGE_SHIFT));
171 1.1 pooka if (pg) {
172 1.23 pooka if (pg->flags & PG_BUSY) {
173 1.23 pooka pg->flags |= PG_WANTED;
174 1.23 pooka UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
175 1.23 pooka "aogetpg", 0);
176 1.23 pooka goto retrylookup;
177 1.23 pooka }
178 1.23 pooka pg->flags |= PG_BUSY;
179 1.1 pooka pgs[i] = pg;
180 1.1 pooka } else {
181 1.30.4.5 yamt pg = uvm_pagealloc(uobj,
182 1.30.4.5 yamt off + (i << PAGE_SHIFT), NULL, UVM_PGA_ZERO);
183 1.1 pooka pgs[i] = pg;
184 1.1 pooka }
185 1.1 pooka }
186 1.26 pooka mutex_exit(&uobj->vmobjlock);
187 1.1 pooka
188 1.1 pooka return 0;
189 1.1 pooka
190 1.1 pooka }
191 1.1 pooka
192 1.1 pooka static int
193 1.1 pooka ao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
194 1.1 pooka {
195 1.1 pooka struct vm_page *pg;
196 1.1 pooka
197 1.1 pooka /* we only free all pages for now */
198 1.23 pooka if ((flags & PGO_FREE) == 0 || (flags & PGO_ALLPAGES) == 0) {
199 1.26 pooka mutex_exit(&uobj->vmobjlock);
200 1.1 pooka return 0;
201 1.23 pooka }
202 1.1 pooka
203 1.1 pooka while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL)
204 1.22 pooka uvm_pagefree(pg);
205 1.26 pooka mutex_exit(&uobj->vmobjlock);
206 1.1 pooka
207 1.1 pooka return 0;
208 1.1 pooka }
209 1.1 pooka
210 1.1 pooka struct uvm_object *
211 1.1 pooka uao_create(vsize_t size, int flags)
212 1.1 pooka {
213 1.1 pooka struct uvm_object *uobj;
214 1.1 pooka
215 1.27 pooka uobj = kmem_zalloc(sizeof(struct uvm_object), KM_SLEEP);
216 1.1 pooka uobj->pgops = &aobj_pager;
217 1.1 pooka TAILQ_INIT(&uobj->memq);
218 1.26 pooka mutex_init(&uobj->vmobjlock, MUTEX_DEFAULT, IPL_NONE);
219 1.1 pooka
220 1.1 pooka return uobj;
221 1.1 pooka }
222 1.1 pooka
223 1.1 pooka void
224 1.1 pooka uao_detach(struct uvm_object *uobj)
225 1.1 pooka {
226 1.1 pooka
227 1.29 pooka mutex_enter(&uobj->vmobjlock);
228 1.1 pooka ao_put(uobj, 0, 0, PGO_ALLPAGES | PGO_FREE);
229 1.30.4.1 yamt mutex_destroy(&uobj->vmobjlock);
230 1.27 pooka kmem_free(uobj, sizeof(*uobj));
231 1.1 pooka }
232 1.1 pooka
233 1.1 pooka /*
234 1.1 pooka * Misc routines
235 1.1 pooka */
236 1.1 pooka
237 1.30.4.3 yamt static kmutex_t pagermtx;
238 1.30.4.1 yamt
239 1.1 pooka void
240 1.30.4.5 yamt uvm_init(void)
241 1.1 pooka {
242 1.30.4.5 yamt char buf[64];
243 1.30.4.5 yamt int error;
244 1.1 pooka
245 1.30.4.5 yamt if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
246 1.30.4.5 yamt physmemlimit = strtoll(buf, NULL, 10);
247 1.30.4.5 yamt /* it's not like we'd get far with, say, 1 byte, but ... */
248 1.30.4.5 yamt if (physmemlimit == 0)
249 1.30.4.5 yamt panic("uvm_init: no memory available");
250 1.30.4.5 yamt #define HUMANIZE_BYTES 9
251 1.30.4.5 yamt CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
252 1.30.4.5 yamt format_bytes(buf, HUMANIZE_BYTES, physmemlimit);
253 1.30.4.5 yamt #undef HUMANIZE_BYTES
254 1.30.4.5 yamt } else {
255 1.30.4.5 yamt strlcpy(buf, "unlimited (host limit)", sizeof(buf));
256 1.30.4.5 yamt }
257 1.30.4.5 yamt aprint_verbose("total memory = %s\n", buf);
258 1.30.4.5 yamt
259 1.30.4.5 yamt uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
260 1.21 pooka
261 1.30.4.3 yamt mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
262 1.25 ad mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
263 1.30.4.1 yamt
264 1.30.4.5 yamt mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
265 1.30.4.5 yamt cv_init(&pdaemoncv, "pdaemon");
266 1.30.4.5 yamt cv_init(&oomwait, "oomwait");
267 1.30.4.5 yamt
268 1.30.4.1 yamt kernel_map->pmap = pmap_kernel();
269 1.30.4.1 yamt callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
270 1.30.4.1 yamt kmem_map->pmap = pmap_kernel();
271 1.30.4.1 yamt callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
272 1.1 pooka }
273 1.1 pooka
274 1.30.4.5 yamt void
275 1.30.4.5 yamt uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
276 1.30.4.5 yamt {
277 1.30.4.5 yamt
278 1.30.4.5 yamt vm->vm_map.pmap = pmap_kernel();
279 1.30.4.5 yamt vm->vm_refcnt = 1;
280 1.30.4.5 yamt }
281 1.1 pooka
282 1.1 pooka void
283 1.7 pooka uvm_pagewire(struct vm_page *pg)
284 1.7 pooka {
285 1.7 pooka
286 1.7 pooka /* nada */
287 1.7 pooka }
288 1.7 pooka
289 1.7 pooka void
290 1.7 pooka uvm_pageunwire(struct vm_page *pg)
291 1.7 pooka {
292 1.7 pooka
293 1.7 pooka /* nada */
294 1.7 pooka }
295 1.7 pooka
296 1.30.4.5 yamt /* where's your schmonz now? */
297 1.30.4.5 yamt #define PUNLIMIT(a) \
298 1.30.4.5 yamt p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
299 1.30.4.5 yamt void
300 1.30.4.5 yamt uvm_init_limits(struct proc *p)
301 1.30.4.5 yamt {
302 1.30.4.5 yamt
303 1.30.4.5 yamt PUNLIMIT(RLIMIT_STACK);
304 1.30.4.5 yamt PUNLIMIT(RLIMIT_DATA);
305 1.30.4.5 yamt PUNLIMIT(RLIMIT_RSS);
306 1.30.4.5 yamt PUNLIMIT(RLIMIT_AS);
307 1.30.4.5 yamt /* nice, cascade */
308 1.30.4.5 yamt }
309 1.30.4.5 yamt #undef PUNLIMIT
310 1.30.4.5 yamt
311 1.30.4.4 yamt /*
312 1.30.4.4 yamt * This satisfies the "disgusting mmap hack" used by proplib.
313 1.30.4.4 yamt * We probably should grow some more assertables to make sure we're
314 1.30.4.4 yamt * not satisfying anything we shouldn't be satisfying. At least we
315 1.30.4.4 yamt * should make sure it's the local machine we're mmapping ...
316 1.30.4.4 yamt */
317 1.30.4.1 yamt int
318 1.30.4.1 yamt uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
319 1.30.4.1 yamt vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
320 1.30.4.1 yamt {
321 1.30.4.4 yamt void *uaddr;
322 1.30.4.4 yamt int error;
323 1.30.4.1 yamt
324 1.30.4.4 yamt if (prot != (VM_PROT_READ | VM_PROT_WRITE))
325 1.30.4.4 yamt panic("uvm_mmap() variant unsupported");
326 1.30.4.4 yamt if (flags != (MAP_PRIVATE | MAP_ANON))
327 1.30.4.4 yamt panic("uvm_mmap() variant unsupported");
328 1.30.4.4 yamt /* no reason in particular, but cf. uvm_default_mapaddr() */
329 1.30.4.4 yamt if (*addr != 0)
330 1.30.4.4 yamt panic("uvm_mmap() variant unsupported");
331 1.30.4.4 yamt
332 1.30.4.5 yamt uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
333 1.30.4.4 yamt if (uaddr == NULL)
334 1.30.4.4 yamt return error;
335 1.30.4.4 yamt
336 1.30.4.4 yamt *addr = (vaddr_t)uaddr;
337 1.30.4.4 yamt return 0;
338 1.30.4.1 yamt }
339 1.30.4.1 yamt
340 1.30.4.3 yamt struct pagerinfo {
341 1.30.4.3 yamt vaddr_t pgr_kva;
342 1.30.4.3 yamt int pgr_npages;
343 1.30.4.3 yamt struct vm_page **pgr_pgs;
344 1.30.4.3 yamt bool pgr_read;
345 1.30.4.3 yamt
346 1.30.4.3 yamt LIST_ENTRY(pagerinfo) pgr_entries;
347 1.30.4.3 yamt };
348 1.30.4.3 yamt static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
349 1.30.4.3 yamt
350 1.30.4.3 yamt /*
351 1.30.4.3 yamt * Pager "map" in routine. Instead of mapping, we allocate memory
352 1.30.4.3 yamt * and copy page contents there. Not optimal or even strictly
353 1.30.4.3 yamt * correct (the caller might modify the page contents after mapping
354 1.30.4.3 yamt * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
355 1.30.4.3 yamt */
356 1.7 pooka vaddr_t
357 1.30.4.3 yamt uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
358 1.7 pooka {
359 1.30.4.3 yamt struct pagerinfo *pgri;
360 1.30.4.3 yamt vaddr_t curkva;
361 1.30.4.3 yamt int i;
362 1.7 pooka
363 1.30.4.3 yamt /* allocate structures */
364 1.30.4.3 yamt pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
365 1.30.4.3 yamt pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
366 1.30.4.3 yamt pgri->pgr_npages = npages;
367 1.30.4.3 yamt pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
368 1.30.4.3 yamt pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
369 1.30.4.3 yamt
370 1.30.4.3 yamt /* copy contents to "mapped" memory */
371 1.30.4.3 yamt for (i = 0, curkva = pgri->pgr_kva;
372 1.30.4.3 yamt i < npages;
373 1.30.4.3 yamt i++, curkva += PAGE_SIZE) {
374 1.30.4.3 yamt /*
375 1.30.4.3 yamt * We need to copy the previous contents of the pages to
376 1.30.4.3 yamt * the window even if we are reading from the
377 1.30.4.3 yamt * device, since the device might not fill the contents of
378 1.30.4.3 yamt * the full mapped range and we will end up corrupting
379 1.30.4.3 yamt * data when we unmap the window.
380 1.30.4.3 yamt */
381 1.30.4.3 yamt memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
382 1.30.4.3 yamt pgri->pgr_pgs[i] = pgs[i];
383 1.30.4.3 yamt }
384 1.30.4.3 yamt
385 1.30.4.3 yamt mutex_enter(&pagermtx);
386 1.30.4.3 yamt LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
387 1.30.4.3 yamt mutex_exit(&pagermtx);
388 1.30.4.3 yamt
389 1.30.4.3 yamt return pgri->pgr_kva;
390 1.7 pooka }
391 1.7 pooka
392 1.30.4.3 yamt /*
393 1.30.4.3 yamt * map out the pager window. return contents from VA to page storage
394 1.30.4.3 yamt * and free structures.
395 1.30.4.3 yamt *
396 1.30.4.3 yamt * Note: does not currently support partial frees
397 1.30.4.3 yamt */
398 1.30.4.3 yamt void
399 1.30.4.3 yamt uvm_pagermapout(vaddr_t kva, int npages)
400 1.7 pooka {
401 1.30.4.3 yamt struct pagerinfo *pgri;
402 1.30.4.3 yamt vaddr_t curkva;
403 1.30.4.3 yamt int i;
404 1.7 pooka
405 1.30.4.3 yamt mutex_enter(&pagermtx);
406 1.30.4.3 yamt LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
407 1.30.4.3 yamt if (pgri->pgr_kva == kva)
408 1.30.4.3 yamt break;
409 1.30.4.3 yamt }
410 1.30.4.3 yamt KASSERT(pgri);
411 1.30.4.3 yamt if (pgri->pgr_npages != npages)
412 1.30.4.3 yamt panic("uvm_pagermapout: partial unmapping not supported");
413 1.30.4.3 yamt LIST_REMOVE(pgri, pgr_entries);
414 1.30.4.3 yamt mutex_exit(&pagermtx);
415 1.30.4.3 yamt
416 1.30.4.3 yamt if (pgri->pgr_read) {
417 1.30.4.3 yamt for (i = 0, curkva = pgri->pgr_kva;
418 1.30.4.3 yamt i < pgri->pgr_npages;
419 1.30.4.3 yamt i++, curkva += PAGE_SIZE) {
420 1.30.4.3 yamt memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
421 1.21 pooka }
422 1.21 pooka }
423 1.10 pooka
424 1.30.4.3 yamt kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
425 1.30.4.3 yamt kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
426 1.30.4.3 yamt kmem_free(pgri, sizeof(*pgri));
427 1.7 pooka }
428 1.7 pooka
429 1.30.4.3 yamt /*
430 1.30.4.3 yamt * convert va in pager window to page structure.
431 1.30.4.3 yamt * XXX: how expensive is this (global lock, list traversal)?
432 1.30.4.3 yamt */
433 1.14 pooka struct vm_page *
434 1.14 pooka uvm_pageratop(vaddr_t va)
435 1.14 pooka {
436 1.30.4.3 yamt struct pagerinfo *pgri;
437 1.30.4.3 yamt struct vm_page *pg = NULL;
438 1.30.4.3 yamt int i;
439 1.14 pooka
440 1.30.4.3 yamt mutex_enter(&pagermtx);
441 1.30.4.3 yamt LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
442 1.30.4.3 yamt if (pgri->pgr_kva <= va
443 1.30.4.3 yamt && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
444 1.21 pooka break;
445 1.30.4.3 yamt }
446 1.30.4.3 yamt if (pgri) {
447 1.30.4.3 yamt i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
448 1.30.4.3 yamt pg = pgri->pgr_pgs[i];
449 1.30.4.3 yamt }
450 1.30.4.3 yamt mutex_exit(&pagermtx);
451 1.21 pooka
452 1.30.4.3 yamt return pg;
453 1.30.4.3 yamt }
454 1.15 pooka
455 1.30.4.3 yamt /* Called with the vm object locked */
456 1.30.4.3 yamt struct vm_page *
457 1.30.4.3 yamt uvm_pagelookup(struct uvm_object *uobj, voff_t off)
458 1.30.4.3 yamt {
459 1.30.4.3 yamt struct vm_page *pg;
460 1.30.4.3 yamt
461 1.30.4.3 yamt TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
462 1.30.4.5 yamt if ((pg->flags & PG_MARKER) != 0)
463 1.30.4.5 yamt continue;
464 1.30.4.3 yamt if (pg->offset == off) {
465 1.30.4.3 yamt return pg;
466 1.30.4.3 yamt }
467 1.30.4.3 yamt }
468 1.30.4.3 yamt
469 1.30.4.3 yamt return NULL;
470 1.14 pooka }
471 1.14 pooka
472 1.7 pooka void
473 1.22 pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
474 1.22 pooka {
475 1.22 pooka struct vm_page *pg;
476 1.22 pooka int i;
477 1.22 pooka
478 1.22 pooka for (i = 0; i < npgs; i++) {
479 1.22 pooka pg = pgs[i];
480 1.22 pooka if (pg == NULL)
481 1.22 pooka continue;
482 1.22 pooka
483 1.22 pooka KASSERT(pg->flags & PG_BUSY);
484 1.22 pooka if (pg->flags & PG_WANTED)
485 1.22 pooka wakeup(pg);
486 1.30.4.1 yamt if (pg->flags & PG_RELEASED)
487 1.30.4.1 yamt uvm_pagefree(pg);
488 1.30.4.1 yamt else
489 1.30.4.1 yamt pg->flags &= ~(PG_WANTED|PG_BUSY);
490 1.22 pooka }
491 1.22 pooka }
492 1.22 pooka
493 1.22 pooka void
494 1.7 pooka uvm_estimatepageable(int *active, int *inactive)
495 1.7 pooka {
496 1.7 pooka
497 1.19 pooka /* XXX: guessing game */
498 1.19 pooka *active = 1024;
499 1.19 pooka *inactive = 1024;
500 1.7 pooka }
501 1.7 pooka
502 1.30.4.1 yamt struct vm_map_kernel *
503 1.30.4.1 yamt vm_map_to_kernel(struct vm_map *map)
504 1.7 pooka {
505 1.7 pooka
506 1.30.4.1 yamt return (struct vm_map_kernel *)map;
507 1.7 pooka }
508 1.7 pooka
509 1.30.4.1 yamt bool
510 1.30.4.1 yamt vm_map_starved_p(struct vm_map *map)
511 1.7 pooka {
512 1.7 pooka
513 1.30.4.5 yamt if (map->flags & VM_MAP_WANTVA)
514 1.30.4.5 yamt return true;
515 1.7 pooka
516 1.30.4.5 yamt return false;
517 1.1 pooka }
518 1.1 pooka
519 1.30.4.1 yamt int
520 1.30.4.1 yamt uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
521 1.30.4.1 yamt {
522 1.1 pooka
523 1.30.4.1 yamt panic("%s: unimplemented", __func__);
524 1.1 pooka }
525 1.1 pooka
526 1.30.4.1 yamt void
527 1.30.4.1 yamt uvm_unloan(void *v, int npages, int flags)
528 1.11 pooka {
529 1.11 pooka
530 1.30.4.1 yamt panic("%s: unimplemented", __func__);
531 1.11 pooka }
532 1.11 pooka
533 1.30.4.1 yamt int
534 1.30.4.1 yamt uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
535 1.30.4.1 yamt struct vm_page **opp)
536 1.11 pooka {
537 1.11 pooka
538 1.30.4.5 yamt return EBUSY;
539 1.11 pooka }
540 1.11 pooka
541 1.30.4.5 yamt #ifdef DEBUGPRINT
542 1.30.4.1 yamt void
543 1.30.4.1 yamt uvm_object_printit(struct uvm_object *uobj, bool full,
544 1.30.4.1 yamt void (*pr)(const char *, ...))
545 1.1 pooka {
546 1.1 pooka
547 1.30.4.5 yamt pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
548 1.1 pooka }
549 1.30.4.5 yamt #endif
550 1.9 pooka
551 1.30.4.4 yamt vaddr_t
552 1.30.4.4 yamt uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
553 1.30.4.2 yamt {
554 1.30.4.2 yamt
555 1.30.4.2 yamt return 0;
556 1.30.4.2 yamt }
557 1.30.4.2 yamt
558 1.30.4.5 yamt int
559 1.30.4.5 yamt uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
560 1.30.4.5 yamt vm_prot_t prot, bool set_max)
561 1.30.4.5 yamt {
562 1.30.4.5 yamt
563 1.30.4.5 yamt return EOPNOTSUPP;
564 1.30.4.5 yamt }
565 1.30.4.5 yamt
566 1.9 pooka /*
567 1.12 pooka * UVM km
568 1.12 pooka */
569 1.12 pooka
570 1.12 pooka vaddr_t
571 1.12 pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
572 1.12 pooka {
573 1.30.4.5 yamt void *rv, *desired = NULL;
574 1.30.4.1 yamt int alignbit, error;
575 1.30.4.1 yamt
576 1.30.4.5 yamt #ifdef __x86_64__
577 1.30.4.5 yamt /*
578 1.30.4.5 yamt * On amd64, allocate all module memory from the lowest 2GB.
579 1.30.4.5 yamt * This is because NetBSD kernel modules are compiled
580 1.30.4.5 yamt * with -mcmodel=kernel and reserve only 4 bytes for
581 1.30.4.5 yamt * offsets. If we load code compiled with -mcmodel=kernel
582 1.30.4.5 yamt * anywhere except the lowest or highest 2GB, it will not
583 1.30.4.5 yamt * work. Since userspace does not have access to the highest
584 1.30.4.5 yamt * 2GB, use the lowest 2GB.
585 1.30.4.5 yamt *
586 1.30.4.5 yamt * Note: this assumes the rump kernel resides in
587 1.30.4.5 yamt * the lowest 2GB as well.
588 1.30.4.5 yamt *
589 1.30.4.5 yamt * Note2: yes, it's a quick hack, but since this the only
590 1.30.4.5 yamt * place where we care about the map we're allocating from,
591 1.30.4.5 yamt * just use a simple "if" instead of coming up with a fancy
592 1.30.4.5 yamt * generic solution.
593 1.30.4.5 yamt */
594 1.30.4.5 yamt extern struct vm_map *module_map;
595 1.30.4.5 yamt if (map == module_map) {
596 1.30.4.5 yamt desired = (void *)(0x80000000 - size);
597 1.30.4.5 yamt }
598 1.30.4.5 yamt #endif
599 1.30.4.5 yamt
600 1.30.4.1 yamt alignbit = 0;
601 1.30.4.1 yamt if (align) {
602 1.30.4.1 yamt alignbit = ffs(align)-1;
603 1.30.4.1 yamt }
604 1.12 pooka
605 1.30.4.5 yamt rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
606 1.30.4.5 yamt &error);
607 1.30.4.1 yamt if (rv == NULL) {
608 1.30.4.1 yamt if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
609 1.30.4.1 yamt return 0;
610 1.30.4.1 yamt else
611 1.30.4.1 yamt panic("uvm_km_alloc failed");
612 1.30.4.1 yamt }
613 1.30.4.1 yamt
614 1.30.4.1 yamt if (flags & UVM_KMF_ZERO)
615 1.12 pooka memset(rv, 0, size);
616 1.12 pooka
617 1.12 pooka return (vaddr_t)rv;
618 1.12 pooka }
619 1.12 pooka
620 1.12 pooka void
621 1.12 pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
622 1.12 pooka {
623 1.12 pooka
624 1.30.4.1 yamt rumpuser_unmap((void *)vaddr, size);
625 1.12 pooka }
626 1.12 pooka
627 1.12 pooka struct vm_map *
628 1.12 pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
629 1.12 pooka vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
630 1.12 pooka {
631 1.12 pooka
632 1.12 pooka return (struct vm_map *)417416;
633 1.12 pooka }
634 1.25 ad
635 1.30.4.1 yamt vaddr_t
636 1.30.4.1 yamt uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
637 1.25 ad {
638 1.25 ad
639 1.30.4.5 yamt return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
640 1.30.4.5 yamt waitok, "kmalloc");
641 1.25 ad }
642 1.25 ad
643 1.25 ad void
644 1.30.4.1 yamt uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
645 1.25 ad {
646 1.25 ad
647 1.30.4.5 yamt rump_hyperfree((void *)addr, PAGE_SIZE);
648 1.30.4.1 yamt }
649 1.25 ad
650 1.30.4.1 yamt vaddr_t
651 1.30.4.1 yamt uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
652 1.30.4.1 yamt {
653 1.30.4.1 yamt
654 1.30.4.5 yamt return uvm_km_alloc_poolpage(map, waitok);
655 1.30.4.1 yamt }
656 1.30.4.1 yamt
657 1.30.4.1 yamt void
658 1.30.4.1 yamt uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
659 1.30.4.1 yamt {
660 1.30.4.1 yamt
661 1.30.4.5 yamt uvm_km_free_poolpage(map, vaddr);
662 1.30.4.5 yamt }
663 1.30.4.5 yamt
664 1.30.4.5 yamt void
665 1.30.4.5 yamt uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
666 1.30.4.5 yamt {
667 1.30.4.5 yamt
668 1.30.4.5 yamt /* we eventually maybe want some model for available memory */
669 1.25 ad }
670 1.30.4.2 yamt
671 1.30.4.2 yamt /*
672 1.30.4.2 yamt * Mapping and vm space locking routines.
673 1.30.4.2 yamt * XXX: these don't work for non-local vmspaces
674 1.30.4.2 yamt */
675 1.30.4.2 yamt int
676 1.30.4.2 yamt uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
677 1.30.4.2 yamt {
678 1.30.4.2 yamt
679 1.30.4.5 yamt KASSERT(vs == &vmspace0);
680 1.30.4.2 yamt return 0;
681 1.30.4.2 yamt }
682 1.30.4.2 yamt
683 1.30.4.2 yamt void
684 1.30.4.2 yamt uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
685 1.30.4.2 yamt {
686 1.30.4.2 yamt
687 1.30.4.5 yamt KASSERT(vs == &vmspace0);
688 1.30.4.2 yamt }
689 1.30.4.2 yamt
690 1.30.4.2 yamt void
691 1.30.4.2 yamt vmapbuf(struct buf *bp, vsize_t len)
692 1.30.4.2 yamt {
693 1.30.4.2 yamt
694 1.30.4.2 yamt bp->b_saveaddr = bp->b_data;
695 1.30.4.2 yamt }
696 1.30.4.2 yamt
697 1.30.4.2 yamt void
698 1.30.4.2 yamt vunmapbuf(struct buf *bp, vsize_t len)
699 1.30.4.2 yamt {
700 1.30.4.2 yamt
701 1.30.4.2 yamt bp->b_data = bp->b_saveaddr;
702 1.30.4.2 yamt bp->b_saveaddr = 0;
703 1.30.4.2 yamt }
704 1.30.4.3 yamt
705 1.30.4.3 yamt void
706 1.30.4.5 yamt uvmspace_addref(struct vmspace *vm)
707 1.30.4.3 yamt {
708 1.30.4.3 yamt
709 1.30.4.5 yamt /*
710 1.30.4.5 yamt * there is only vmspace0. we're not planning on
711 1.30.4.5 yamt * feeding it to the fishes.
712 1.30.4.5 yamt */
713 1.30.4.3 yamt }
714 1.30.4.3 yamt
715 1.30.4.4 yamt void
716 1.30.4.4 yamt uvmspace_free(struct vmspace *vm)
717 1.30.4.4 yamt {
718 1.30.4.4 yamt
719 1.30.4.4 yamt /* nothing for now */
720 1.30.4.4 yamt }
721 1.30.4.4 yamt
722 1.30.4.4 yamt int
723 1.30.4.4 yamt uvm_io(struct vm_map *map, struct uio *uio)
724 1.30.4.4 yamt {
725 1.30.4.4 yamt
726 1.30.4.4 yamt /*
727 1.30.4.4 yamt * just do direct uio for now. but this needs some vmspace
728 1.30.4.4 yamt * olympics for rump_sysproxy.
729 1.30.4.4 yamt */
730 1.30.4.4 yamt return uiomove((void *)(vaddr_t)uio->uio_offset, uio->uio_resid, uio);
731 1.30.4.4 yamt }
732 1.30.4.4 yamt
733 1.30.4.3 yamt /*
734 1.30.4.3 yamt * page life cycle stuff. it really doesn't exist, so just stubs.
735 1.30.4.3 yamt */
736 1.30.4.3 yamt
737 1.30.4.3 yamt void
738 1.30.4.3 yamt uvm_pageactivate(struct vm_page *pg)
739 1.30.4.3 yamt {
740 1.30.4.3 yamt
741 1.30.4.3 yamt /* nada */
742 1.30.4.3 yamt }
743 1.30.4.3 yamt
744 1.30.4.3 yamt void
745 1.30.4.3 yamt uvm_pagedeactivate(struct vm_page *pg)
746 1.30.4.3 yamt {
747 1.30.4.3 yamt
748 1.30.4.3 yamt /* nada */
749 1.30.4.3 yamt }
750 1.30.4.3 yamt
751 1.30.4.3 yamt void
752 1.30.4.3 yamt uvm_pagedequeue(struct vm_page *pg)
753 1.30.4.3 yamt {
754 1.30.4.3 yamt
755 1.30.4.3 yamt /* nada*/
756 1.30.4.3 yamt }
757 1.30.4.3 yamt
758 1.30.4.3 yamt void
759 1.30.4.3 yamt uvm_pageenqueue(struct vm_page *pg)
760 1.30.4.3 yamt {
761 1.30.4.3 yamt
762 1.30.4.3 yamt /* nada */
763 1.30.4.3 yamt }
764 1.30.4.5 yamt
765 1.30.4.5 yamt /*
766 1.30.4.5 yamt * Routines related to the Page Baroness.
767 1.30.4.5 yamt */
768 1.30.4.5 yamt
769 1.30.4.5 yamt void
770 1.30.4.5 yamt uvm_wait(const char *msg)
771 1.30.4.5 yamt {
772 1.30.4.5 yamt
773 1.30.4.5 yamt if (__predict_false(curlwp == uvm.pagedaemon_lwp))
774 1.30.4.5 yamt panic("pagedaemon out of memory");
775 1.30.4.5 yamt if (__predict_false(rump_threads == 0))
776 1.30.4.5 yamt panic("pagedaemon missing (RUMP_THREADS = 0)");
777 1.30.4.5 yamt
778 1.30.4.5 yamt mutex_enter(&pdaemonmtx);
779 1.30.4.5 yamt pdaemon_waiters++;
780 1.30.4.5 yamt cv_signal(&pdaemoncv);
781 1.30.4.5 yamt cv_wait(&oomwait, &pdaemonmtx);
782 1.30.4.5 yamt mutex_exit(&pdaemonmtx);
783 1.30.4.5 yamt }
784 1.30.4.5 yamt
785 1.30.4.5 yamt void
786 1.30.4.5 yamt uvm_pageout_start(int npages)
787 1.30.4.5 yamt {
788 1.30.4.5 yamt
789 1.30.4.5 yamt /* we don't have the heuristics */
790 1.30.4.5 yamt }
791 1.30.4.5 yamt
792 1.30.4.5 yamt void
793 1.30.4.5 yamt uvm_pageout_done(int npages)
794 1.30.4.5 yamt {
795 1.30.4.5 yamt
796 1.30.4.5 yamt /* could wakeup waiters, but just let the pagedaemon do it */
797 1.30.4.5 yamt }
798 1.30.4.5 yamt
799 1.30.4.5 yamt /*
800 1.30.4.5 yamt * Under-construction page mistress. This is lacking vfs support, namely:
801 1.30.4.5 yamt *
802 1.30.4.5 yamt * 1) draining vfs buffers
803 1.30.4.5 yamt * 2) paging out pages in vm vnode objects
804 1.30.4.5 yamt * (we will not page out anon memory on the basis that
805 1.30.4.5 yamt * that's the task of the host)
806 1.30.4.5 yamt */
807 1.30.4.5 yamt
808 1.30.4.5 yamt void
809 1.30.4.5 yamt uvm_pageout(void *arg)
810 1.30.4.5 yamt {
811 1.30.4.5 yamt struct pool *pp, *pp_first;
812 1.30.4.5 yamt uint64_t where;
813 1.30.4.5 yamt int timo = 0;
814 1.30.4.5 yamt bool succ;
815 1.30.4.5 yamt
816 1.30.4.5 yamt mutex_enter(&pdaemonmtx);
817 1.30.4.5 yamt for (;;) {
818 1.30.4.5 yamt cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
819 1.30.4.5 yamt uvmexp.pdwoke++;
820 1.30.4.5 yamt kernel_map->flags |= VM_MAP_WANTVA;
821 1.30.4.5 yamt mutex_exit(&pdaemonmtx);
822 1.30.4.5 yamt
823 1.30.4.5 yamt succ = false;
824 1.30.4.5 yamt pool_drain_start(&pp_first, &where);
825 1.30.4.5 yamt pp = pp_first;
826 1.30.4.5 yamt for (;;) {
827 1.30.4.5 yamt succ = pool_drain_end(pp, where);
828 1.30.4.5 yamt if (succ)
829 1.30.4.5 yamt break;
830 1.30.4.5 yamt pool_drain_start(&pp, &where);
831 1.30.4.5 yamt if (pp == pp_first) {
832 1.30.4.5 yamt succ = pool_drain_end(pp, where);
833 1.30.4.5 yamt break;
834 1.30.4.5 yamt }
835 1.30.4.5 yamt }
836 1.30.4.5 yamt mutex_enter(&pdaemonmtx);
837 1.30.4.5 yamt
838 1.30.4.5 yamt if (!succ) {
839 1.30.4.5 yamt rumpuser_dprintf("pagedaemoness: failed to reclaim "
840 1.30.4.5 yamt "memory ... sleeping (deadlock?)\n");
841 1.30.4.5 yamt timo = hz;
842 1.30.4.5 yamt continue;
843 1.30.4.5 yamt }
844 1.30.4.5 yamt kernel_map->flags &= ~VM_MAP_WANTVA;
845 1.30.4.5 yamt timo = 0;
846 1.30.4.5 yamt
847 1.30.4.5 yamt if (pdaemon_waiters) {
848 1.30.4.5 yamt pdaemon_waiters = 0;
849 1.30.4.5 yamt cv_broadcast(&oomwait);
850 1.30.4.5 yamt }
851 1.30.4.5 yamt }
852 1.30.4.5 yamt
853 1.30.4.5 yamt panic("you can swap out any time you like, but you can never leave");
854 1.30.4.5 yamt }
855 1.30.4.5 yamt
856 1.30.4.5 yamt /*
857 1.30.4.5 yamt * In a regular kernel the pagedaemon is activated when memory becomes
858 1.30.4.5 yamt * low. In a virtual rump kernel we do not know exactly how much memory
859 1.30.4.5 yamt * we have available -- it depends on the conditions on the host.
860 1.30.4.5 yamt * Therefore, we cannot preemptively kick the pagedaemon. Rather, we
861 1.30.4.5 yamt * wait until things we desperate and we're forced to uvm_wait().
862 1.30.4.5 yamt *
863 1.30.4.5 yamt * The alternative would be to allocate a huge chunk of memory at
864 1.30.4.5 yamt * startup, but that solution has a number of problems including
865 1.30.4.5 yamt * being a resource hog, failing anyway due to host memory overcommit
866 1.30.4.5 yamt * and core dump size.
867 1.30.4.5 yamt */
868 1.30.4.5 yamt
869 1.30.4.5 yamt void
870 1.30.4.5 yamt uvm_kick_pdaemon()
871 1.30.4.5 yamt {
872 1.30.4.5 yamt
873 1.30.4.5 yamt /* nada */
874 1.30.4.5 yamt }
875 1.30.4.5 yamt
876 1.30.4.5 yamt void *
877 1.30.4.5 yamt rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
878 1.30.4.5 yamt {
879 1.30.4.5 yamt unsigned long newmem;
880 1.30.4.5 yamt void *rv;
881 1.30.4.5 yamt
882 1.30.4.5 yamt /* first we must be within the limit */
883 1.30.4.5 yamt limitagain:
884 1.30.4.5 yamt if (physmemlimit != RUMPMEM_UNLIMITED) {
885 1.30.4.5 yamt newmem = atomic_add_long_nv(&curphysmem, howmuch);
886 1.30.4.5 yamt if (newmem > physmemlimit) {
887 1.30.4.5 yamt newmem = atomic_add_long_nv(&curphysmem, -howmuch);
888 1.30.4.5 yamt if (!waitok)
889 1.30.4.5 yamt return NULL;
890 1.30.4.5 yamt uvm_wait(wmsg);
891 1.30.4.5 yamt goto limitagain;
892 1.30.4.5 yamt }
893 1.30.4.5 yamt }
894 1.30.4.5 yamt
895 1.30.4.5 yamt /* second, we must get something from the backend */
896 1.30.4.5 yamt again:
897 1.30.4.5 yamt rv = rumpuser_malloc(howmuch, alignment);
898 1.30.4.5 yamt if (__predict_false(rv == NULL && waitok)) {
899 1.30.4.5 yamt uvm_wait(wmsg);
900 1.30.4.5 yamt goto again;
901 1.30.4.5 yamt }
902 1.30.4.5 yamt
903 1.30.4.5 yamt return rv;
904 1.30.4.5 yamt }
905 1.30.4.5 yamt
906 1.30.4.5 yamt void
907 1.30.4.5 yamt rump_hyperfree(void *what, size_t size)
908 1.30.4.5 yamt {
909 1.30.4.5 yamt
910 1.30.4.5 yamt if (physmemlimit != RUMPMEM_UNLIMITED) {
911 1.30.4.5 yamt atomic_add_long(&curphysmem, -size);
912 1.30.4.5 yamt }
913 1.30.4.5 yamt rumpuser_free(what);
914 1.30.4.5 yamt }
915