vm.c revision 1.30.4.6 1 1.30.4.6 yamt /* $NetBSD: vm.c,v 1.30.4.6 2010/10/09 03:32:44 yamt Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.30.4.5 yamt * Copyright (c) 2007-2010 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.30.4.5 yamt * Development of this software was supported by
7 1.30.4.5 yamt * The Finnish Cultural Foundation and the Research Foundation of
8 1.30.4.5 yamt * The Helsinki University of Technology.
9 1.1 pooka *
10 1.1 pooka * Redistribution and use in source and binary forms, with or without
11 1.1 pooka * modification, are permitted provided that the following conditions
12 1.1 pooka * are met:
13 1.1 pooka * 1. Redistributions of source code must retain the above copyright
14 1.1 pooka * notice, this list of conditions and the following disclaimer.
15 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pooka * notice, this list of conditions and the following disclaimer in the
17 1.1 pooka * documentation and/or other materials provided with the distribution.
18 1.1 pooka *
19 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 pooka * SUCH DAMAGE.
30 1.1 pooka */
31 1.1 pooka
32 1.1 pooka /*
33 1.30.4.6 yamt * Virtual memory emulation routines.
34 1.1 pooka */
35 1.1 pooka
36 1.1 pooka /*
37 1.5 pooka * XXX: we abuse pg->uanon for the virtual address of the storage
38 1.1 pooka * for each page. phys_addr would fit the job description better,
39 1.1 pooka * except that it will create unnecessary lossage on some platforms
40 1.1 pooka * due to not being a pointer type.
41 1.1 pooka */
42 1.1 pooka
43 1.30.4.1 yamt #include <sys/cdefs.h>
44 1.30.4.6 yamt __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.30.4.6 2010/10/09 03:32:44 yamt Exp $");
45 1.30.4.1 yamt
46 1.1 pooka #include <sys/param.h>
47 1.30.4.1 yamt #include <sys/atomic.h>
48 1.30.4.5 yamt #include <sys/buf.h>
49 1.30.4.5 yamt #include <sys/kernel.h>
50 1.30.4.4 yamt #include <sys/kmem.h>
51 1.30.4.4 yamt #include <sys/mman.h>
52 1.1 pooka #include <sys/null.h>
53 1.1 pooka #include <sys/vnode.h>
54 1.1 pooka
55 1.30.4.1 yamt #include <machine/pmap.h>
56 1.30.4.1 yamt
57 1.30.4.1 yamt #include <rump/rumpuser.h>
58 1.30.4.1 yamt
59 1.1 pooka #include <uvm/uvm.h>
60 1.30.4.1 yamt #include <uvm/uvm_ddb.h>
61 1.30.4.6 yamt #include <uvm/uvm_pdpolicy.h>
62 1.1 pooka #include <uvm/uvm_prot.h>
63 1.30.4.2 yamt #include <uvm/uvm_readahead.h>
64 1.1 pooka
65 1.13 pooka #include "rump_private.h"
66 1.30.4.6 yamt #include "rump_vfs_private.h"
67 1.24 yamt
68 1.25 ad kmutex_t uvm_pageqlock;
69 1.30.4.6 yamt kmutex_t uvm_swap_data_lock;
70 1.25 ad
71 1.1 pooka struct uvmexp uvmexp;
72 1.7 pooka struct uvm uvm;
73 1.1 pooka
74 1.1 pooka struct vm_map rump_vmmap;
75 1.30.4.1 yamt static struct vm_map_kernel kmem_map_store;
76 1.30.4.1 yamt struct vm_map *kmem_map = &kmem_map_store.vmk_map;
77 1.30.4.1 yamt
78 1.30.4.1 yamt static struct vm_map_kernel kernel_map_store;
79 1.30.4.1 yamt struct vm_map *kernel_map = &kernel_map_store.vmk_map;
80 1.1 pooka
81 1.30.4.5 yamt static unsigned int pdaemon_waiters;
82 1.30.4.5 yamt static kmutex_t pdaemonmtx;
83 1.30.4.5 yamt static kcondvar_t pdaemoncv, oomwait;
84 1.30.4.5 yamt
85 1.30.4.6 yamt unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
86 1.30.4.5 yamt static unsigned long curphysmem;
87 1.30.4.6 yamt static unsigned long dddlim; /* 90% of memory limit used */
88 1.30.4.6 yamt #define NEED_PAGEDAEMON() \
89 1.30.4.6 yamt (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
90 1.30.4.6 yamt
91 1.30.4.6 yamt /*
92 1.30.4.6 yamt * Try to free two pages worth of pages from objects.
93 1.30.4.6 yamt * If this succesfully frees a full page cache page, we'll
94 1.30.4.6 yamt * free the released page plus PAGE_SIZE/sizeof(vm_page).
95 1.30.4.6 yamt */
96 1.30.4.6 yamt #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
97 1.30.4.6 yamt
98 1.30.4.6 yamt /*
99 1.30.4.6 yamt * Keep a list of least recently used pages. Since the only way a
100 1.30.4.6 yamt * rump kernel can "access" a page is via lookup, we put the page
101 1.30.4.6 yamt * at the back of queue every time a lookup for it is done. If the
102 1.30.4.6 yamt * page is in front of this global queue and we're short of memory,
103 1.30.4.6 yamt * it's a candidate for pageout.
104 1.30.4.6 yamt */
105 1.30.4.6 yamt static struct pglist vmpage_lruqueue;
106 1.30.4.6 yamt static unsigned vmpage_onqueue;
107 1.30.4.6 yamt
108 1.30.4.6 yamt static int
109 1.30.4.6 yamt pg_compare_key(void *ctx, const void *n, const void *key)
110 1.30.4.6 yamt {
111 1.30.4.6 yamt voff_t a = ((const struct vm_page *)n)->offset;
112 1.30.4.6 yamt voff_t b = *(const voff_t *)key;
113 1.30.4.6 yamt
114 1.30.4.6 yamt if (a < b)
115 1.30.4.6 yamt return -1;
116 1.30.4.6 yamt else if (a > b)
117 1.30.4.6 yamt return 1;
118 1.30.4.6 yamt else
119 1.30.4.6 yamt return 0;
120 1.30.4.6 yamt }
121 1.30.4.6 yamt
122 1.30.4.6 yamt static int
123 1.30.4.6 yamt pg_compare_nodes(void *ctx, const void *n1, const void *n2)
124 1.30.4.6 yamt {
125 1.30.4.6 yamt
126 1.30.4.6 yamt return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
127 1.30.4.6 yamt }
128 1.30.4.6 yamt
129 1.30.4.6 yamt const rb_tree_ops_t uvm_page_tree_ops = {
130 1.30.4.6 yamt .rbto_compare_nodes = pg_compare_nodes,
131 1.30.4.6 yamt .rbto_compare_key = pg_compare_key,
132 1.30.4.6 yamt .rbto_node_offset = offsetof(struct vm_page, rb_node),
133 1.30.4.6 yamt .rbto_context = NULL
134 1.30.4.6 yamt };
135 1.30.4.5 yamt
136 1.1 pooka /*
137 1.1 pooka * vm pages
138 1.1 pooka */
139 1.1 pooka
140 1.30.4.6 yamt static int
141 1.30.4.6 yamt pgctor(void *arg, void *obj, int flags)
142 1.30.4.6 yamt {
143 1.30.4.6 yamt struct vm_page *pg = obj;
144 1.30.4.6 yamt
145 1.30.4.6 yamt memset(pg, 0, sizeof(*pg));
146 1.30.4.6 yamt pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE, true, "pgalloc");
147 1.30.4.6 yamt return 0;
148 1.30.4.6 yamt }
149 1.30.4.6 yamt
150 1.30.4.6 yamt static void
151 1.30.4.6 yamt pgdtor(void *arg, void *obj)
152 1.30.4.6 yamt {
153 1.30.4.6 yamt struct vm_page *pg = obj;
154 1.30.4.6 yamt
155 1.30.4.6 yamt rump_hyperfree(pg->uanon, PAGE_SIZE);
156 1.30.4.6 yamt }
157 1.30.4.6 yamt
158 1.30.4.6 yamt static struct pool_cache pagecache;
159 1.30.4.6 yamt
160 1.30.4.6 yamt /*
161 1.30.4.6 yamt * Called with the object locked. We don't support anons.
162 1.30.4.6 yamt */
163 1.1 pooka struct vm_page *
164 1.30.4.5 yamt uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
165 1.30.4.5 yamt int flags, int strat, int free_list)
166 1.1 pooka {
167 1.1 pooka struct vm_page *pg;
168 1.1 pooka
169 1.30.4.6 yamt KASSERT(uobj && mutex_owned(&uobj->vmobjlock));
170 1.30.4.6 yamt KASSERT(anon == NULL);
171 1.30.4.6 yamt
172 1.30.4.6 yamt pg = pool_cache_get(&pagecache, PR_WAITOK);
173 1.1 pooka pg->offset = off;
174 1.5 pooka pg->uobject = uobj;
175 1.1 pooka
176 1.22 pooka pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
177 1.30.4.6 yamt if (flags & UVM_PGA_ZERO) {
178 1.30.4.6 yamt uvm_pagezero(pg);
179 1.30.4.6 yamt }
180 1.1 pooka
181 1.30.4.1 yamt TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
182 1.30.4.6 yamt (void)rb_tree_insert_node(&uobj->rb_tree, pg);
183 1.30.4.6 yamt
184 1.30.4.6 yamt /*
185 1.30.4.6 yamt * Don't put anons on the LRU page queue. We can't flush them
186 1.30.4.6 yamt * (there's no concept of swap in a rump kernel), so no reason
187 1.30.4.6 yamt * to bother with them.
188 1.30.4.6 yamt */
189 1.30.4.6 yamt if (!UVM_OBJ_IS_AOBJ(uobj)) {
190 1.30.4.6 yamt atomic_inc_uint(&vmpage_onqueue);
191 1.30.4.6 yamt mutex_enter(&uvm_pageqlock);
192 1.30.4.6 yamt TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
193 1.30.4.6 yamt mutex_exit(&uvm_pageqlock);
194 1.30.4.6 yamt }
195 1.30.4.6 yamt
196 1.30.4.3 yamt uobj->uo_npages++;
197 1.21 pooka
198 1.1 pooka return pg;
199 1.1 pooka }
200 1.1 pooka
201 1.21 pooka /*
202 1.21 pooka * Release a page.
203 1.21 pooka *
204 1.22 pooka * Called with the vm object locked.
205 1.21 pooka */
206 1.1 pooka void
207 1.22 pooka uvm_pagefree(struct vm_page *pg)
208 1.1 pooka {
209 1.5 pooka struct uvm_object *uobj = pg->uobject;
210 1.1 pooka
211 1.30.4.6 yamt KASSERT(mutex_owned(&uvm_pageqlock));
212 1.30.4.6 yamt KASSERT(mutex_owned(&uobj->vmobjlock));
213 1.30.4.6 yamt
214 1.22 pooka if (pg->flags & PG_WANTED)
215 1.22 pooka wakeup(pg);
216 1.22 pooka
217 1.30.4.1 yamt TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
218 1.1 pooka
219 1.30.4.6 yamt uobj->uo_npages--;
220 1.30.4.6 yamt rb_tree_remove_node(&uobj->rb_tree, pg);
221 1.1 pooka
222 1.30.4.6 yamt if (!UVM_OBJ_IS_AOBJ(uobj)) {
223 1.30.4.6 yamt TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
224 1.30.4.6 yamt atomic_dec_uint(&vmpage_onqueue);
225 1.23 pooka }
226 1.1 pooka
227 1.30.4.6 yamt pool_cache_put(&pagecache, pg);
228 1.1 pooka }
229 1.1 pooka
230 1.1 pooka void
231 1.30.4.6 yamt uvm_pagezero(struct vm_page *pg)
232 1.1 pooka {
233 1.1 pooka
234 1.30.4.6 yamt pg->flags &= ~PG_CLEAN;
235 1.30.4.6 yamt memset((void *)pg->uanon, 0, PAGE_SIZE);
236 1.1 pooka }
237 1.1 pooka
238 1.1 pooka /*
239 1.1 pooka * Misc routines
240 1.1 pooka */
241 1.1 pooka
242 1.30.4.3 yamt static kmutex_t pagermtx;
243 1.30.4.1 yamt
244 1.1 pooka void
245 1.30.4.5 yamt uvm_init(void)
246 1.1 pooka {
247 1.30.4.5 yamt char buf[64];
248 1.30.4.5 yamt int error;
249 1.1 pooka
250 1.30.4.5 yamt if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
251 1.30.4.6 yamt rump_physmemlimit = strtoll(buf, NULL, 10);
252 1.30.4.5 yamt /* it's not like we'd get far with, say, 1 byte, but ... */
253 1.30.4.6 yamt if (rump_physmemlimit == 0)
254 1.30.4.5 yamt panic("uvm_init: no memory available");
255 1.30.4.5 yamt #define HUMANIZE_BYTES 9
256 1.30.4.5 yamt CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
257 1.30.4.6 yamt format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
258 1.30.4.5 yamt #undef HUMANIZE_BYTES
259 1.30.4.6 yamt dddlim = 9 * (rump_physmemlimit / 10);
260 1.30.4.5 yamt } else {
261 1.30.4.5 yamt strlcpy(buf, "unlimited (host limit)", sizeof(buf));
262 1.30.4.5 yamt }
263 1.30.4.5 yamt aprint_verbose("total memory = %s\n", buf);
264 1.30.4.5 yamt
265 1.30.4.6 yamt TAILQ_INIT(&vmpage_lruqueue);
266 1.30.4.6 yamt
267 1.30.4.5 yamt uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
268 1.21 pooka
269 1.30.4.3 yamt mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
270 1.25 ad mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
271 1.30.4.6 yamt mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
272 1.30.4.1 yamt
273 1.30.4.5 yamt mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
274 1.30.4.5 yamt cv_init(&pdaemoncv, "pdaemon");
275 1.30.4.5 yamt cv_init(&oomwait, "oomwait");
276 1.30.4.5 yamt
277 1.30.4.1 yamt kernel_map->pmap = pmap_kernel();
278 1.30.4.1 yamt callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
279 1.30.4.1 yamt kmem_map->pmap = pmap_kernel();
280 1.30.4.1 yamt callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
281 1.30.4.6 yamt
282 1.30.4.6 yamt pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
283 1.30.4.6 yamt "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
284 1.1 pooka }
285 1.1 pooka
286 1.30.4.5 yamt void
287 1.30.4.5 yamt uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
288 1.30.4.5 yamt {
289 1.30.4.5 yamt
290 1.30.4.5 yamt vm->vm_map.pmap = pmap_kernel();
291 1.30.4.5 yamt vm->vm_refcnt = 1;
292 1.30.4.5 yamt }
293 1.1 pooka
294 1.1 pooka void
295 1.7 pooka uvm_pagewire(struct vm_page *pg)
296 1.7 pooka {
297 1.7 pooka
298 1.7 pooka /* nada */
299 1.7 pooka }
300 1.7 pooka
301 1.7 pooka void
302 1.7 pooka uvm_pageunwire(struct vm_page *pg)
303 1.7 pooka {
304 1.7 pooka
305 1.7 pooka /* nada */
306 1.7 pooka }
307 1.7 pooka
308 1.30.4.5 yamt /* where's your schmonz now? */
309 1.30.4.5 yamt #define PUNLIMIT(a) \
310 1.30.4.5 yamt p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
311 1.30.4.5 yamt void
312 1.30.4.5 yamt uvm_init_limits(struct proc *p)
313 1.30.4.5 yamt {
314 1.30.4.5 yamt
315 1.30.4.5 yamt PUNLIMIT(RLIMIT_STACK);
316 1.30.4.5 yamt PUNLIMIT(RLIMIT_DATA);
317 1.30.4.5 yamt PUNLIMIT(RLIMIT_RSS);
318 1.30.4.5 yamt PUNLIMIT(RLIMIT_AS);
319 1.30.4.5 yamt /* nice, cascade */
320 1.30.4.5 yamt }
321 1.30.4.5 yamt #undef PUNLIMIT
322 1.30.4.5 yamt
323 1.30.4.4 yamt /*
324 1.30.4.4 yamt * This satisfies the "disgusting mmap hack" used by proplib.
325 1.30.4.4 yamt * We probably should grow some more assertables to make sure we're
326 1.30.4.4 yamt * not satisfying anything we shouldn't be satisfying. At least we
327 1.30.4.4 yamt * should make sure it's the local machine we're mmapping ...
328 1.30.4.4 yamt */
329 1.30.4.1 yamt int
330 1.30.4.1 yamt uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
331 1.30.4.1 yamt vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
332 1.30.4.1 yamt {
333 1.30.4.4 yamt void *uaddr;
334 1.30.4.4 yamt int error;
335 1.30.4.1 yamt
336 1.30.4.4 yamt if (prot != (VM_PROT_READ | VM_PROT_WRITE))
337 1.30.4.4 yamt panic("uvm_mmap() variant unsupported");
338 1.30.4.4 yamt if (flags != (MAP_PRIVATE | MAP_ANON))
339 1.30.4.4 yamt panic("uvm_mmap() variant unsupported");
340 1.30.4.4 yamt /* no reason in particular, but cf. uvm_default_mapaddr() */
341 1.30.4.4 yamt if (*addr != 0)
342 1.30.4.4 yamt panic("uvm_mmap() variant unsupported");
343 1.30.4.4 yamt
344 1.30.4.5 yamt uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
345 1.30.4.4 yamt if (uaddr == NULL)
346 1.30.4.4 yamt return error;
347 1.30.4.4 yamt
348 1.30.4.4 yamt *addr = (vaddr_t)uaddr;
349 1.30.4.4 yamt return 0;
350 1.30.4.1 yamt }
351 1.30.4.1 yamt
352 1.30.4.3 yamt struct pagerinfo {
353 1.30.4.3 yamt vaddr_t pgr_kva;
354 1.30.4.3 yamt int pgr_npages;
355 1.30.4.3 yamt struct vm_page **pgr_pgs;
356 1.30.4.3 yamt bool pgr_read;
357 1.30.4.3 yamt
358 1.30.4.3 yamt LIST_ENTRY(pagerinfo) pgr_entries;
359 1.30.4.3 yamt };
360 1.30.4.3 yamt static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
361 1.30.4.3 yamt
362 1.30.4.3 yamt /*
363 1.30.4.3 yamt * Pager "map" in routine. Instead of mapping, we allocate memory
364 1.30.4.3 yamt * and copy page contents there. Not optimal or even strictly
365 1.30.4.3 yamt * correct (the caller might modify the page contents after mapping
366 1.30.4.3 yamt * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
367 1.30.4.3 yamt */
368 1.7 pooka vaddr_t
369 1.30.4.3 yamt uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
370 1.7 pooka {
371 1.30.4.3 yamt struct pagerinfo *pgri;
372 1.30.4.3 yamt vaddr_t curkva;
373 1.30.4.3 yamt int i;
374 1.7 pooka
375 1.30.4.3 yamt /* allocate structures */
376 1.30.4.3 yamt pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
377 1.30.4.3 yamt pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
378 1.30.4.3 yamt pgri->pgr_npages = npages;
379 1.30.4.3 yamt pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
380 1.30.4.3 yamt pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
381 1.30.4.3 yamt
382 1.30.4.3 yamt /* copy contents to "mapped" memory */
383 1.30.4.3 yamt for (i = 0, curkva = pgri->pgr_kva;
384 1.30.4.3 yamt i < npages;
385 1.30.4.3 yamt i++, curkva += PAGE_SIZE) {
386 1.30.4.3 yamt /*
387 1.30.4.3 yamt * We need to copy the previous contents of the pages to
388 1.30.4.3 yamt * the window even if we are reading from the
389 1.30.4.3 yamt * device, since the device might not fill the contents of
390 1.30.4.3 yamt * the full mapped range and we will end up corrupting
391 1.30.4.3 yamt * data when we unmap the window.
392 1.30.4.3 yamt */
393 1.30.4.3 yamt memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
394 1.30.4.3 yamt pgri->pgr_pgs[i] = pgs[i];
395 1.30.4.3 yamt }
396 1.30.4.3 yamt
397 1.30.4.3 yamt mutex_enter(&pagermtx);
398 1.30.4.3 yamt LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
399 1.30.4.3 yamt mutex_exit(&pagermtx);
400 1.30.4.3 yamt
401 1.30.4.3 yamt return pgri->pgr_kva;
402 1.7 pooka }
403 1.7 pooka
404 1.30.4.3 yamt /*
405 1.30.4.3 yamt * map out the pager window. return contents from VA to page storage
406 1.30.4.3 yamt * and free structures.
407 1.30.4.3 yamt *
408 1.30.4.3 yamt * Note: does not currently support partial frees
409 1.30.4.3 yamt */
410 1.30.4.3 yamt void
411 1.30.4.3 yamt uvm_pagermapout(vaddr_t kva, int npages)
412 1.7 pooka {
413 1.30.4.3 yamt struct pagerinfo *pgri;
414 1.30.4.3 yamt vaddr_t curkva;
415 1.30.4.3 yamt int i;
416 1.7 pooka
417 1.30.4.3 yamt mutex_enter(&pagermtx);
418 1.30.4.3 yamt LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
419 1.30.4.3 yamt if (pgri->pgr_kva == kva)
420 1.30.4.3 yamt break;
421 1.30.4.3 yamt }
422 1.30.4.3 yamt KASSERT(pgri);
423 1.30.4.3 yamt if (pgri->pgr_npages != npages)
424 1.30.4.3 yamt panic("uvm_pagermapout: partial unmapping not supported");
425 1.30.4.3 yamt LIST_REMOVE(pgri, pgr_entries);
426 1.30.4.3 yamt mutex_exit(&pagermtx);
427 1.30.4.3 yamt
428 1.30.4.3 yamt if (pgri->pgr_read) {
429 1.30.4.3 yamt for (i = 0, curkva = pgri->pgr_kva;
430 1.30.4.3 yamt i < pgri->pgr_npages;
431 1.30.4.3 yamt i++, curkva += PAGE_SIZE) {
432 1.30.4.3 yamt memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
433 1.21 pooka }
434 1.21 pooka }
435 1.10 pooka
436 1.30.4.3 yamt kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
437 1.30.4.3 yamt kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
438 1.30.4.3 yamt kmem_free(pgri, sizeof(*pgri));
439 1.7 pooka }
440 1.7 pooka
441 1.30.4.3 yamt /*
442 1.30.4.3 yamt * convert va in pager window to page structure.
443 1.30.4.3 yamt * XXX: how expensive is this (global lock, list traversal)?
444 1.30.4.3 yamt */
445 1.14 pooka struct vm_page *
446 1.14 pooka uvm_pageratop(vaddr_t va)
447 1.14 pooka {
448 1.30.4.3 yamt struct pagerinfo *pgri;
449 1.30.4.3 yamt struct vm_page *pg = NULL;
450 1.30.4.3 yamt int i;
451 1.14 pooka
452 1.30.4.3 yamt mutex_enter(&pagermtx);
453 1.30.4.3 yamt LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
454 1.30.4.3 yamt if (pgri->pgr_kva <= va
455 1.30.4.3 yamt && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
456 1.21 pooka break;
457 1.30.4.3 yamt }
458 1.30.4.3 yamt if (pgri) {
459 1.30.4.3 yamt i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
460 1.30.4.3 yamt pg = pgri->pgr_pgs[i];
461 1.30.4.3 yamt }
462 1.30.4.3 yamt mutex_exit(&pagermtx);
463 1.21 pooka
464 1.30.4.3 yamt return pg;
465 1.30.4.3 yamt }
466 1.15 pooka
467 1.30.4.3 yamt /* Called with the vm object locked */
468 1.30.4.3 yamt struct vm_page *
469 1.30.4.3 yamt uvm_pagelookup(struct uvm_object *uobj, voff_t off)
470 1.30.4.3 yamt {
471 1.30.4.3 yamt struct vm_page *pg;
472 1.30.4.3 yamt
473 1.30.4.6 yamt pg = rb_tree_find_node(&uobj->rb_tree, &off);
474 1.30.4.6 yamt if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject)) {
475 1.30.4.6 yamt mutex_enter(&uvm_pageqlock);
476 1.30.4.6 yamt TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
477 1.30.4.6 yamt TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
478 1.30.4.6 yamt mutex_exit(&uvm_pageqlock);
479 1.30.4.3 yamt }
480 1.30.4.3 yamt
481 1.30.4.6 yamt return pg;
482 1.14 pooka }
483 1.14 pooka
484 1.7 pooka void
485 1.22 pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
486 1.22 pooka {
487 1.22 pooka struct vm_page *pg;
488 1.22 pooka int i;
489 1.22 pooka
490 1.30.4.6 yamt KASSERT(npgs > 0);
491 1.30.4.6 yamt KASSERT(mutex_owned(&pgs[0]->uobject->vmobjlock));
492 1.30.4.6 yamt
493 1.22 pooka for (i = 0; i < npgs; i++) {
494 1.22 pooka pg = pgs[i];
495 1.22 pooka if (pg == NULL)
496 1.22 pooka continue;
497 1.22 pooka
498 1.22 pooka KASSERT(pg->flags & PG_BUSY);
499 1.22 pooka if (pg->flags & PG_WANTED)
500 1.22 pooka wakeup(pg);
501 1.30.4.1 yamt if (pg->flags & PG_RELEASED)
502 1.30.4.1 yamt uvm_pagefree(pg);
503 1.30.4.1 yamt else
504 1.30.4.1 yamt pg->flags &= ~(PG_WANTED|PG_BUSY);
505 1.22 pooka }
506 1.22 pooka }
507 1.22 pooka
508 1.22 pooka void
509 1.7 pooka uvm_estimatepageable(int *active, int *inactive)
510 1.7 pooka {
511 1.7 pooka
512 1.19 pooka /* XXX: guessing game */
513 1.19 pooka *active = 1024;
514 1.19 pooka *inactive = 1024;
515 1.7 pooka }
516 1.7 pooka
517 1.30.4.1 yamt struct vm_map_kernel *
518 1.30.4.1 yamt vm_map_to_kernel(struct vm_map *map)
519 1.7 pooka {
520 1.7 pooka
521 1.30.4.1 yamt return (struct vm_map_kernel *)map;
522 1.7 pooka }
523 1.7 pooka
524 1.30.4.1 yamt bool
525 1.30.4.1 yamt vm_map_starved_p(struct vm_map *map)
526 1.7 pooka {
527 1.7 pooka
528 1.30.4.5 yamt if (map->flags & VM_MAP_WANTVA)
529 1.30.4.5 yamt return true;
530 1.7 pooka
531 1.30.4.5 yamt return false;
532 1.1 pooka }
533 1.1 pooka
534 1.30.4.1 yamt int
535 1.30.4.1 yamt uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
536 1.30.4.1 yamt {
537 1.1 pooka
538 1.30.4.1 yamt panic("%s: unimplemented", __func__);
539 1.1 pooka }
540 1.1 pooka
541 1.30.4.1 yamt void
542 1.30.4.1 yamt uvm_unloan(void *v, int npages, int flags)
543 1.11 pooka {
544 1.11 pooka
545 1.30.4.1 yamt panic("%s: unimplemented", __func__);
546 1.11 pooka }
547 1.11 pooka
548 1.30.4.1 yamt int
549 1.30.4.1 yamt uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
550 1.30.4.1 yamt struct vm_page **opp)
551 1.11 pooka {
552 1.11 pooka
553 1.30.4.5 yamt return EBUSY;
554 1.11 pooka }
555 1.11 pooka
556 1.30.4.5 yamt #ifdef DEBUGPRINT
557 1.30.4.1 yamt void
558 1.30.4.1 yamt uvm_object_printit(struct uvm_object *uobj, bool full,
559 1.30.4.1 yamt void (*pr)(const char *, ...))
560 1.1 pooka {
561 1.1 pooka
562 1.30.4.5 yamt pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
563 1.1 pooka }
564 1.30.4.5 yamt #endif
565 1.9 pooka
566 1.30.4.4 yamt vaddr_t
567 1.30.4.4 yamt uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
568 1.30.4.2 yamt {
569 1.30.4.2 yamt
570 1.30.4.2 yamt return 0;
571 1.30.4.2 yamt }
572 1.30.4.2 yamt
573 1.30.4.5 yamt int
574 1.30.4.5 yamt uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
575 1.30.4.5 yamt vm_prot_t prot, bool set_max)
576 1.30.4.5 yamt {
577 1.30.4.5 yamt
578 1.30.4.5 yamt return EOPNOTSUPP;
579 1.30.4.5 yamt }
580 1.30.4.5 yamt
581 1.9 pooka /*
582 1.12 pooka * UVM km
583 1.12 pooka */
584 1.12 pooka
585 1.12 pooka vaddr_t
586 1.12 pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
587 1.12 pooka {
588 1.30.4.5 yamt void *rv, *desired = NULL;
589 1.30.4.1 yamt int alignbit, error;
590 1.30.4.1 yamt
591 1.30.4.5 yamt #ifdef __x86_64__
592 1.30.4.5 yamt /*
593 1.30.4.5 yamt * On amd64, allocate all module memory from the lowest 2GB.
594 1.30.4.5 yamt * This is because NetBSD kernel modules are compiled
595 1.30.4.5 yamt * with -mcmodel=kernel and reserve only 4 bytes for
596 1.30.4.5 yamt * offsets. If we load code compiled with -mcmodel=kernel
597 1.30.4.5 yamt * anywhere except the lowest or highest 2GB, it will not
598 1.30.4.5 yamt * work. Since userspace does not have access to the highest
599 1.30.4.5 yamt * 2GB, use the lowest 2GB.
600 1.30.4.5 yamt *
601 1.30.4.5 yamt * Note: this assumes the rump kernel resides in
602 1.30.4.5 yamt * the lowest 2GB as well.
603 1.30.4.5 yamt *
604 1.30.4.5 yamt * Note2: yes, it's a quick hack, but since this the only
605 1.30.4.5 yamt * place where we care about the map we're allocating from,
606 1.30.4.5 yamt * just use a simple "if" instead of coming up with a fancy
607 1.30.4.5 yamt * generic solution.
608 1.30.4.5 yamt */
609 1.30.4.5 yamt extern struct vm_map *module_map;
610 1.30.4.5 yamt if (map == module_map) {
611 1.30.4.5 yamt desired = (void *)(0x80000000 - size);
612 1.30.4.5 yamt }
613 1.30.4.5 yamt #endif
614 1.30.4.5 yamt
615 1.30.4.1 yamt alignbit = 0;
616 1.30.4.1 yamt if (align) {
617 1.30.4.1 yamt alignbit = ffs(align)-1;
618 1.30.4.1 yamt }
619 1.12 pooka
620 1.30.4.5 yamt rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
621 1.30.4.5 yamt &error);
622 1.30.4.1 yamt if (rv == NULL) {
623 1.30.4.1 yamt if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
624 1.30.4.1 yamt return 0;
625 1.30.4.1 yamt else
626 1.30.4.1 yamt panic("uvm_km_alloc failed");
627 1.30.4.1 yamt }
628 1.30.4.1 yamt
629 1.30.4.1 yamt if (flags & UVM_KMF_ZERO)
630 1.12 pooka memset(rv, 0, size);
631 1.12 pooka
632 1.12 pooka return (vaddr_t)rv;
633 1.12 pooka }
634 1.12 pooka
635 1.12 pooka void
636 1.12 pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
637 1.12 pooka {
638 1.12 pooka
639 1.30.4.1 yamt rumpuser_unmap((void *)vaddr, size);
640 1.12 pooka }
641 1.12 pooka
642 1.12 pooka struct vm_map *
643 1.12 pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
644 1.12 pooka vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
645 1.12 pooka {
646 1.12 pooka
647 1.12 pooka return (struct vm_map *)417416;
648 1.12 pooka }
649 1.25 ad
650 1.30.4.1 yamt vaddr_t
651 1.30.4.1 yamt uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
652 1.25 ad {
653 1.25 ad
654 1.30.4.5 yamt return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
655 1.30.4.5 yamt waitok, "kmalloc");
656 1.25 ad }
657 1.25 ad
658 1.25 ad void
659 1.30.4.1 yamt uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
660 1.25 ad {
661 1.25 ad
662 1.30.4.5 yamt rump_hyperfree((void *)addr, PAGE_SIZE);
663 1.30.4.1 yamt }
664 1.25 ad
665 1.30.4.1 yamt vaddr_t
666 1.30.4.1 yamt uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
667 1.30.4.1 yamt {
668 1.30.4.1 yamt
669 1.30.4.5 yamt return uvm_km_alloc_poolpage(map, waitok);
670 1.30.4.1 yamt }
671 1.30.4.1 yamt
672 1.30.4.1 yamt void
673 1.30.4.1 yamt uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
674 1.30.4.1 yamt {
675 1.30.4.1 yamt
676 1.30.4.5 yamt uvm_km_free_poolpage(map, vaddr);
677 1.30.4.5 yamt }
678 1.30.4.5 yamt
679 1.30.4.5 yamt void
680 1.30.4.5 yamt uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
681 1.30.4.5 yamt {
682 1.30.4.5 yamt
683 1.30.4.5 yamt /* we eventually maybe want some model for available memory */
684 1.25 ad }
685 1.30.4.2 yamt
686 1.30.4.2 yamt /*
687 1.30.4.2 yamt * Mapping and vm space locking routines.
688 1.30.4.2 yamt * XXX: these don't work for non-local vmspaces
689 1.30.4.2 yamt */
690 1.30.4.2 yamt int
691 1.30.4.2 yamt uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
692 1.30.4.2 yamt {
693 1.30.4.2 yamt
694 1.30.4.5 yamt KASSERT(vs == &vmspace0);
695 1.30.4.2 yamt return 0;
696 1.30.4.2 yamt }
697 1.30.4.2 yamt
698 1.30.4.2 yamt void
699 1.30.4.2 yamt uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
700 1.30.4.2 yamt {
701 1.30.4.2 yamt
702 1.30.4.5 yamt KASSERT(vs == &vmspace0);
703 1.30.4.2 yamt }
704 1.30.4.2 yamt
705 1.30.4.2 yamt void
706 1.30.4.2 yamt vmapbuf(struct buf *bp, vsize_t len)
707 1.30.4.2 yamt {
708 1.30.4.2 yamt
709 1.30.4.2 yamt bp->b_saveaddr = bp->b_data;
710 1.30.4.2 yamt }
711 1.30.4.2 yamt
712 1.30.4.2 yamt void
713 1.30.4.2 yamt vunmapbuf(struct buf *bp, vsize_t len)
714 1.30.4.2 yamt {
715 1.30.4.2 yamt
716 1.30.4.2 yamt bp->b_data = bp->b_saveaddr;
717 1.30.4.2 yamt bp->b_saveaddr = 0;
718 1.30.4.2 yamt }
719 1.30.4.3 yamt
720 1.30.4.3 yamt void
721 1.30.4.5 yamt uvmspace_addref(struct vmspace *vm)
722 1.30.4.3 yamt {
723 1.30.4.3 yamt
724 1.30.4.5 yamt /*
725 1.30.4.5 yamt * there is only vmspace0. we're not planning on
726 1.30.4.5 yamt * feeding it to the fishes.
727 1.30.4.5 yamt */
728 1.30.4.3 yamt }
729 1.30.4.3 yamt
730 1.30.4.4 yamt void
731 1.30.4.4 yamt uvmspace_free(struct vmspace *vm)
732 1.30.4.4 yamt {
733 1.30.4.4 yamt
734 1.30.4.4 yamt /* nothing for now */
735 1.30.4.4 yamt }
736 1.30.4.4 yamt
737 1.30.4.4 yamt int
738 1.30.4.4 yamt uvm_io(struct vm_map *map, struct uio *uio)
739 1.30.4.4 yamt {
740 1.30.4.4 yamt
741 1.30.4.4 yamt /*
742 1.30.4.4 yamt * just do direct uio for now. but this needs some vmspace
743 1.30.4.4 yamt * olympics for rump_sysproxy.
744 1.30.4.4 yamt */
745 1.30.4.4 yamt return uiomove((void *)(vaddr_t)uio->uio_offset, uio->uio_resid, uio);
746 1.30.4.4 yamt }
747 1.30.4.4 yamt
748 1.30.4.3 yamt /*
749 1.30.4.3 yamt * page life cycle stuff. it really doesn't exist, so just stubs.
750 1.30.4.3 yamt */
751 1.30.4.3 yamt
752 1.30.4.3 yamt void
753 1.30.4.3 yamt uvm_pageactivate(struct vm_page *pg)
754 1.30.4.3 yamt {
755 1.30.4.3 yamt
756 1.30.4.3 yamt /* nada */
757 1.30.4.3 yamt }
758 1.30.4.3 yamt
759 1.30.4.3 yamt void
760 1.30.4.3 yamt uvm_pagedeactivate(struct vm_page *pg)
761 1.30.4.3 yamt {
762 1.30.4.3 yamt
763 1.30.4.3 yamt /* nada */
764 1.30.4.3 yamt }
765 1.30.4.3 yamt
766 1.30.4.3 yamt void
767 1.30.4.3 yamt uvm_pagedequeue(struct vm_page *pg)
768 1.30.4.3 yamt {
769 1.30.4.3 yamt
770 1.30.4.3 yamt /* nada*/
771 1.30.4.3 yamt }
772 1.30.4.3 yamt
773 1.30.4.3 yamt void
774 1.30.4.3 yamt uvm_pageenqueue(struct vm_page *pg)
775 1.30.4.3 yamt {
776 1.30.4.3 yamt
777 1.30.4.3 yamt /* nada */
778 1.30.4.3 yamt }
779 1.30.4.5 yamt
780 1.30.4.6 yamt void
781 1.30.4.6 yamt uvmpdpol_anfree(struct vm_anon *an)
782 1.30.4.6 yamt {
783 1.30.4.6 yamt
784 1.30.4.6 yamt /* nada */
785 1.30.4.6 yamt }
786 1.30.4.6 yamt
787 1.30.4.5 yamt /*
788 1.30.4.5 yamt * Routines related to the Page Baroness.
789 1.30.4.5 yamt */
790 1.30.4.5 yamt
791 1.30.4.5 yamt void
792 1.30.4.5 yamt uvm_wait(const char *msg)
793 1.30.4.5 yamt {
794 1.30.4.5 yamt
795 1.30.4.5 yamt if (__predict_false(curlwp == uvm.pagedaemon_lwp))
796 1.30.4.5 yamt panic("pagedaemon out of memory");
797 1.30.4.5 yamt if (__predict_false(rump_threads == 0))
798 1.30.4.5 yamt panic("pagedaemon missing (RUMP_THREADS = 0)");
799 1.30.4.5 yamt
800 1.30.4.5 yamt mutex_enter(&pdaemonmtx);
801 1.30.4.5 yamt pdaemon_waiters++;
802 1.30.4.5 yamt cv_signal(&pdaemoncv);
803 1.30.4.5 yamt cv_wait(&oomwait, &pdaemonmtx);
804 1.30.4.5 yamt mutex_exit(&pdaemonmtx);
805 1.30.4.5 yamt }
806 1.30.4.5 yamt
807 1.30.4.5 yamt void
808 1.30.4.5 yamt uvm_pageout_start(int npages)
809 1.30.4.5 yamt {
810 1.30.4.5 yamt
811 1.30.4.5 yamt /* we don't have the heuristics */
812 1.30.4.5 yamt }
813 1.30.4.5 yamt
814 1.30.4.5 yamt void
815 1.30.4.5 yamt uvm_pageout_done(int npages)
816 1.30.4.5 yamt {
817 1.30.4.5 yamt
818 1.30.4.5 yamt /* could wakeup waiters, but just let the pagedaemon do it */
819 1.30.4.5 yamt }
820 1.30.4.5 yamt
821 1.30.4.6 yamt static bool
822 1.30.4.6 yamt processpage(struct vm_page *pg)
823 1.30.4.6 yamt {
824 1.30.4.6 yamt struct uvm_object *uobj;
825 1.30.4.6 yamt
826 1.30.4.6 yamt uobj = pg->uobject;
827 1.30.4.6 yamt if (mutex_tryenter(&uobj->vmobjlock)) {
828 1.30.4.6 yamt if ((pg->flags & PG_BUSY) == 0) {
829 1.30.4.6 yamt mutex_exit(&uvm_pageqlock);
830 1.30.4.6 yamt uobj->pgops->pgo_put(uobj, pg->offset,
831 1.30.4.6 yamt pg->offset + PAGE_SIZE,
832 1.30.4.6 yamt PGO_CLEANIT|PGO_FREE);
833 1.30.4.6 yamt KASSERT(!mutex_owned(&uobj->vmobjlock));
834 1.30.4.6 yamt return true;
835 1.30.4.6 yamt } else {
836 1.30.4.6 yamt mutex_exit(&uobj->vmobjlock);
837 1.30.4.6 yamt }
838 1.30.4.6 yamt }
839 1.30.4.6 yamt
840 1.30.4.6 yamt return false;
841 1.30.4.6 yamt }
842 1.30.4.6 yamt
843 1.30.4.5 yamt /*
844 1.30.4.6 yamt * The Diabolical pageDaemon Director (DDD).
845 1.30.4.5 yamt */
846 1.30.4.5 yamt void
847 1.30.4.5 yamt uvm_pageout(void *arg)
848 1.30.4.5 yamt {
849 1.30.4.6 yamt struct vm_page *pg;
850 1.30.4.5 yamt struct pool *pp, *pp_first;
851 1.30.4.5 yamt uint64_t where;
852 1.30.4.5 yamt int timo = 0;
853 1.30.4.6 yamt int cleaned, skip, skipped;
854 1.30.4.6 yamt bool succ = false;
855 1.30.4.5 yamt
856 1.30.4.5 yamt mutex_enter(&pdaemonmtx);
857 1.30.4.5 yamt for (;;) {
858 1.30.4.6 yamt if (succ) {
859 1.30.4.6 yamt kernel_map->flags &= ~VM_MAP_WANTVA;
860 1.30.4.6 yamt kmem_map->flags &= ~VM_MAP_WANTVA;
861 1.30.4.6 yamt timo = 0;
862 1.30.4.6 yamt if (pdaemon_waiters) {
863 1.30.4.6 yamt pdaemon_waiters = 0;
864 1.30.4.6 yamt cv_broadcast(&oomwait);
865 1.30.4.6 yamt }
866 1.30.4.6 yamt }
867 1.30.4.6 yamt succ = false;
868 1.30.4.6 yamt
869 1.30.4.5 yamt cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
870 1.30.4.5 yamt uvmexp.pdwoke++;
871 1.30.4.6 yamt
872 1.30.4.6 yamt /* tell the world that we are hungry */
873 1.30.4.5 yamt kernel_map->flags |= VM_MAP_WANTVA;
874 1.30.4.6 yamt kmem_map->flags |= VM_MAP_WANTVA;
875 1.30.4.6 yamt
876 1.30.4.6 yamt if (pdaemon_waiters == 0 && !NEED_PAGEDAEMON())
877 1.30.4.6 yamt continue;
878 1.30.4.5 yamt mutex_exit(&pdaemonmtx);
879 1.30.4.5 yamt
880 1.30.4.6 yamt /*
881 1.30.4.6 yamt * step one: reclaim the page cache. this should give
882 1.30.4.6 yamt * us the biggest earnings since whole pages are released
883 1.30.4.6 yamt * into backing memory.
884 1.30.4.6 yamt */
885 1.30.4.6 yamt pool_cache_reclaim(&pagecache);
886 1.30.4.6 yamt if (!NEED_PAGEDAEMON()) {
887 1.30.4.6 yamt succ = true;
888 1.30.4.6 yamt mutex_enter(&pdaemonmtx);
889 1.30.4.6 yamt continue;
890 1.30.4.6 yamt }
891 1.30.4.6 yamt
892 1.30.4.6 yamt /*
893 1.30.4.6 yamt * Ok, so that didn't help. Next, try to hunt memory
894 1.30.4.6 yamt * by pushing out vnode pages. The pages might contain
895 1.30.4.6 yamt * useful cached data, but we need the memory.
896 1.30.4.6 yamt */
897 1.30.4.6 yamt cleaned = 0;
898 1.30.4.6 yamt skip = 0;
899 1.30.4.6 yamt again:
900 1.30.4.6 yamt mutex_enter(&uvm_pageqlock);
901 1.30.4.6 yamt while (cleaned < PAGEDAEMON_OBJCHUNK) {
902 1.30.4.6 yamt skipped = 0;
903 1.30.4.6 yamt TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
904 1.30.4.6 yamt
905 1.30.4.6 yamt /*
906 1.30.4.6 yamt * skip over pages we _might_ have tried
907 1.30.4.6 yamt * to handle earlier. they might not be
908 1.30.4.6 yamt * exactly the same ones, but I'm not too
909 1.30.4.6 yamt * concerned.
910 1.30.4.6 yamt */
911 1.30.4.6 yamt while (skipped++ < skip)
912 1.30.4.6 yamt continue;
913 1.30.4.6 yamt
914 1.30.4.6 yamt if (processpage(pg)) {
915 1.30.4.6 yamt cleaned++;
916 1.30.4.6 yamt goto again;
917 1.30.4.6 yamt }
918 1.30.4.6 yamt
919 1.30.4.6 yamt skip++;
920 1.30.4.6 yamt }
921 1.30.4.6 yamt break;
922 1.30.4.6 yamt }
923 1.30.4.6 yamt mutex_exit(&uvm_pageqlock);
924 1.30.4.6 yamt
925 1.30.4.6 yamt /*
926 1.30.4.6 yamt * And of course we need to reclaim the page cache
927 1.30.4.6 yamt * again to actually release memory.
928 1.30.4.6 yamt */
929 1.30.4.6 yamt pool_cache_reclaim(&pagecache);
930 1.30.4.6 yamt if (!NEED_PAGEDAEMON()) {
931 1.30.4.6 yamt succ = true;
932 1.30.4.6 yamt mutex_enter(&pdaemonmtx);
933 1.30.4.6 yamt continue;
934 1.30.4.6 yamt }
935 1.30.4.6 yamt
936 1.30.4.6 yamt /*
937 1.30.4.6 yamt * Still not there? sleeves come off right about now.
938 1.30.4.6 yamt * First: do reclaim on kernel/kmem map.
939 1.30.4.6 yamt */
940 1.30.4.6 yamt callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
941 1.30.4.6 yamt NULL);
942 1.30.4.6 yamt callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
943 1.30.4.6 yamt NULL);
944 1.30.4.6 yamt
945 1.30.4.6 yamt /*
946 1.30.4.6 yamt * And then drain the pools. Wipe them out ... all of them.
947 1.30.4.6 yamt */
948 1.30.4.6 yamt
949 1.30.4.5 yamt pool_drain_start(&pp_first, &where);
950 1.30.4.5 yamt pp = pp_first;
951 1.30.4.5 yamt for (;;) {
952 1.30.4.6 yamt rump_vfs_drainbufs(10 /* XXX: estimate better */);
953 1.30.4.5 yamt succ = pool_drain_end(pp, where);
954 1.30.4.5 yamt if (succ)
955 1.30.4.5 yamt break;
956 1.30.4.5 yamt pool_drain_start(&pp, &where);
957 1.30.4.5 yamt if (pp == pp_first) {
958 1.30.4.5 yamt succ = pool_drain_end(pp, where);
959 1.30.4.5 yamt break;
960 1.30.4.5 yamt }
961 1.30.4.5 yamt }
962 1.30.4.6 yamt
963 1.30.4.6 yamt /*
964 1.30.4.6 yamt * Need to use PYEC on our bag of tricks.
965 1.30.4.6 yamt * Unfortunately, the wife just borrowed it.
966 1.30.4.6 yamt */
967 1.30.4.5 yamt
968 1.30.4.5 yamt if (!succ) {
969 1.30.4.5 yamt rumpuser_dprintf("pagedaemoness: failed to reclaim "
970 1.30.4.5 yamt "memory ... sleeping (deadlock?)\n");
971 1.30.4.5 yamt timo = hz;
972 1.30.4.5 yamt }
973 1.30.4.5 yamt
974 1.30.4.6 yamt mutex_enter(&pdaemonmtx);
975 1.30.4.5 yamt }
976 1.30.4.5 yamt
977 1.30.4.5 yamt panic("you can swap out any time you like, but you can never leave");
978 1.30.4.5 yamt }
979 1.30.4.5 yamt
980 1.30.4.5 yamt void
981 1.30.4.5 yamt uvm_kick_pdaemon()
982 1.30.4.5 yamt {
983 1.30.4.5 yamt
984 1.30.4.6 yamt /*
985 1.30.4.6 yamt * Wake up the diabolical pagedaemon director if we are over
986 1.30.4.6 yamt * 90% of the memory limit. This is a complete and utter
987 1.30.4.6 yamt * stetson-harrison decision which you are allowed to finetune.
988 1.30.4.6 yamt * Don't bother locking. If we have some unflushed caches,
989 1.30.4.6 yamt * other waker-uppers will deal with the issue.
990 1.30.4.6 yamt */
991 1.30.4.6 yamt if (NEED_PAGEDAEMON()) {
992 1.30.4.6 yamt cv_signal(&pdaemoncv);
993 1.30.4.6 yamt }
994 1.30.4.5 yamt }
995 1.30.4.5 yamt
996 1.30.4.5 yamt void *
997 1.30.4.5 yamt rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
998 1.30.4.5 yamt {
999 1.30.4.5 yamt unsigned long newmem;
1000 1.30.4.5 yamt void *rv;
1001 1.30.4.5 yamt
1002 1.30.4.6 yamt uvm_kick_pdaemon(); /* ouch */
1003 1.30.4.6 yamt
1004 1.30.4.5 yamt /* first we must be within the limit */
1005 1.30.4.5 yamt limitagain:
1006 1.30.4.6 yamt if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1007 1.30.4.5 yamt newmem = atomic_add_long_nv(&curphysmem, howmuch);
1008 1.30.4.6 yamt if (newmem > rump_physmemlimit) {
1009 1.30.4.5 yamt newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1010 1.30.4.5 yamt if (!waitok)
1011 1.30.4.5 yamt return NULL;
1012 1.30.4.5 yamt uvm_wait(wmsg);
1013 1.30.4.5 yamt goto limitagain;
1014 1.30.4.5 yamt }
1015 1.30.4.5 yamt }
1016 1.30.4.5 yamt
1017 1.30.4.5 yamt /* second, we must get something from the backend */
1018 1.30.4.5 yamt again:
1019 1.30.4.5 yamt rv = rumpuser_malloc(howmuch, alignment);
1020 1.30.4.5 yamt if (__predict_false(rv == NULL && waitok)) {
1021 1.30.4.5 yamt uvm_wait(wmsg);
1022 1.30.4.5 yamt goto again;
1023 1.30.4.5 yamt }
1024 1.30.4.5 yamt
1025 1.30.4.5 yamt return rv;
1026 1.30.4.5 yamt }
1027 1.30.4.5 yamt
1028 1.30.4.5 yamt void
1029 1.30.4.5 yamt rump_hyperfree(void *what, size_t size)
1030 1.30.4.5 yamt {
1031 1.30.4.5 yamt
1032 1.30.4.6 yamt if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1033 1.30.4.5 yamt atomic_add_long(&curphysmem, -size);
1034 1.30.4.5 yamt }
1035 1.30.4.5 yamt rumpuser_free(what);
1036 1.30.4.5 yamt }
1037