Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.70.4.4
      1  1.70.4.4  rmind /*	$NetBSD: vm.c,v 1.70.4.4 2011/03/05 20:56:15 rmind Exp $	*/
      2       1.1  pooka 
      3       1.1  pooka /*
      4  1.70.4.3  rmind  * Copyright (c) 2007-2010 Antti Kantee.  All Rights Reserved.
      5       1.1  pooka  *
      6  1.70.4.3  rmind  * Development of this software was supported by
      7  1.70.4.3  rmind  * The Finnish Cultural Foundation and the Research Foundation of
      8  1.70.4.3  rmind  * The Helsinki University of Technology.
      9       1.1  pooka  *
     10       1.1  pooka  * Redistribution and use in source and binary forms, with or without
     11       1.1  pooka  * modification, are permitted provided that the following conditions
     12       1.1  pooka  * are met:
     13       1.1  pooka  * 1. Redistributions of source code must retain the above copyright
     14       1.1  pooka  *    notice, this list of conditions and the following disclaimer.
     15       1.1  pooka  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1  pooka  *    notice, this list of conditions and the following disclaimer in the
     17       1.1  pooka  *    documentation and/or other materials provided with the distribution.
     18       1.1  pooka  *
     19       1.1  pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20       1.1  pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21       1.1  pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22       1.1  pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23       1.1  pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24       1.1  pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25       1.1  pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26       1.1  pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27       1.1  pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28       1.1  pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29       1.1  pooka  * SUCH DAMAGE.
     30       1.1  pooka  */
     31       1.1  pooka 
     32       1.1  pooka /*
     33  1.70.4.4  rmind  * Virtual memory emulation routines.
     34       1.1  pooka  */
     35       1.1  pooka 
     36       1.1  pooka /*
     37       1.5  pooka  * XXX: we abuse pg->uanon for the virtual address of the storage
     38       1.1  pooka  * for each page.  phys_addr would fit the job description better,
     39       1.1  pooka  * except that it will create unnecessary lossage on some platforms
     40       1.1  pooka  * due to not being a pointer type.
     41       1.1  pooka  */
     42       1.1  pooka 
     43      1.48  pooka #include <sys/cdefs.h>
     44  1.70.4.4  rmind __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.70.4.4 2011/03/05 20:56:15 rmind Exp $");
     45      1.48  pooka 
     46       1.1  pooka #include <sys/param.h>
     47      1.40  pooka #include <sys/atomic.h>
     48  1.70.4.3  rmind #include <sys/buf.h>
     49  1.70.4.3  rmind #include <sys/kernel.h>
     50      1.67  pooka #include <sys/kmem.h>
     51      1.69  pooka #include <sys/mman.h>
     52       1.1  pooka #include <sys/null.h>
     53       1.1  pooka #include <sys/vnode.h>
     54       1.1  pooka 
     55      1.34  pooka #include <machine/pmap.h>
     56      1.34  pooka 
     57      1.34  pooka #include <rump/rumpuser.h>
     58      1.34  pooka 
     59       1.1  pooka #include <uvm/uvm.h>
     60      1.56  pooka #include <uvm/uvm_ddb.h>
     61  1.70.4.4  rmind #include <uvm/uvm_pdpolicy.h>
     62       1.1  pooka #include <uvm/uvm_prot.h>
     63      1.58     he #include <uvm/uvm_readahead.h>
     64       1.1  pooka 
     65      1.13  pooka #include "rump_private.h"
     66  1.70.4.4  rmind #include "rump_vfs_private.h"
     67      1.24   yamt 
     68      1.25     ad kmutex_t uvm_pageqlock;
     69  1.70.4.4  rmind kmutex_t uvm_swap_data_lock;
     70      1.25     ad 
     71       1.1  pooka struct uvmexp uvmexp;
     72       1.7  pooka struct uvm uvm;
     73       1.1  pooka 
     74  1.70.4.4  rmind #ifdef __uvmexp_pagesize
     75  1.70.4.4  rmind int *uvmexp_pagesize = &uvmexp.pagesize;
     76  1.70.4.4  rmind int *uvmexp_pagemask = &uvmexp.pagemask;
     77  1.70.4.4  rmind int *uvmexp_pageshift = &uvmexp.pageshift;
     78  1.70.4.4  rmind #endif
     79  1.70.4.4  rmind 
     80       1.1  pooka struct vm_map rump_vmmap;
     81      1.50  pooka static struct vm_map_kernel kmem_map_store;
     82      1.50  pooka struct vm_map *kmem_map = &kmem_map_store.vmk_map;
     83       1.1  pooka 
     84      1.35  pooka static struct vm_map_kernel kernel_map_store;
     85      1.35  pooka struct vm_map *kernel_map = &kernel_map_store.vmk_map;
     86      1.35  pooka 
     87  1.70.4.3  rmind static unsigned int pdaemon_waiters;
     88  1.70.4.3  rmind static kmutex_t pdaemonmtx;
     89  1.70.4.3  rmind static kcondvar_t pdaemoncv, oomwait;
     90  1.70.4.3  rmind 
     91  1.70.4.4  rmind unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     92  1.70.4.3  rmind static unsigned long curphysmem;
     93  1.70.4.4  rmind static unsigned long dddlim;		/* 90% of memory limit used */
     94  1.70.4.4  rmind #define NEED_PAGEDAEMON() \
     95  1.70.4.4  rmind     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
     96  1.70.4.4  rmind 
     97  1.70.4.4  rmind /*
     98  1.70.4.4  rmind  * Try to free two pages worth of pages from objects.
     99  1.70.4.4  rmind  * If this succesfully frees a full page cache page, we'll
    100  1.70.4.4  rmind  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    101  1.70.4.4  rmind  */
    102  1.70.4.4  rmind #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    103  1.70.4.4  rmind 
    104  1.70.4.4  rmind /*
    105  1.70.4.4  rmind  * Keep a list of least recently used pages.  Since the only way a
    106  1.70.4.4  rmind  * rump kernel can "access" a page is via lookup, we put the page
    107  1.70.4.4  rmind  * at the back of queue every time a lookup for it is done.  If the
    108  1.70.4.4  rmind  * page is in front of this global queue and we're short of memory,
    109  1.70.4.4  rmind  * it's a candidate for pageout.
    110  1.70.4.4  rmind  */
    111  1.70.4.4  rmind static struct pglist vmpage_lruqueue;
    112  1.70.4.4  rmind static unsigned vmpage_onqueue;
    113  1.70.4.4  rmind 
    114  1.70.4.4  rmind static int
    115  1.70.4.4  rmind pg_compare_key(void *ctx, const void *n, const void *key)
    116  1.70.4.4  rmind {
    117  1.70.4.4  rmind 	voff_t a = ((const struct vm_page *)n)->offset;
    118  1.70.4.4  rmind 	voff_t b = *(const voff_t *)key;
    119  1.70.4.4  rmind 
    120  1.70.4.4  rmind 	if (a < b)
    121  1.70.4.4  rmind 		return -1;
    122  1.70.4.4  rmind 	else if (a > b)
    123  1.70.4.4  rmind 		return 1;
    124  1.70.4.4  rmind 	else
    125  1.70.4.4  rmind 		return 0;
    126  1.70.4.4  rmind }
    127  1.70.4.4  rmind 
    128  1.70.4.4  rmind static int
    129  1.70.4.4  rmind pg_compare_nodes(void *ctx, const void *n1, const void *n2)
    130  1.70.4.4  rmind {
    131  1.70.4.4  rmind 
    132  1.70.4.4  rmind 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
    133  1.70.4.4  rmind }
    134  1.70.4.4  rmind 
    135  1.70.4.4  rmind const rb_tree_ops_t uvm_page_tree_ops = {
    136  1.70.4.4  rmind 	.rbto_compare_nodes = pg_compare_nodes,
    137  1.70.4.4  rmind 	.rbto_compare_key = pg_compare_key,
    138  1.70.4.4  rmind 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    139  1.70.4.4  rmind 	.rbto_context = NULL
    140  1.70.4.4  rmind };
    141  1.70.4.3  rmind 
    142       1.1  pooka /*
    143       1.1  pooka  * vm pages
    144       1.1  pooka  */
    145       1.1  pooka 
    146  1.70.4.4  rmind static int
    147  1.70.4.4  rmind pgctor(void *arg, void *obj, int flags)
    148  1.70.4.4  rmind {
    149  1.70.4.4  rmind 	struct vm_page *pg = obj;
    150  1.70.4.4  rmind 
    151  1.70.4.4  rmind 	memset(pg, 0, sizeof(*pg));
    152  1.70.4.4  rmind 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    153  1.70.4.4  rmind 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    154  1.70.4.4  rmind 	return pg->uanon == NULL;
    155  1.70.4.4  rmind }
    156  1.70.4.4  rmind 
    157  1.70.4.4  rmind static void
    158  1.70.4.4  rmind pgdtor(void *arg, void *obj)
    159  1.70.4.4  rmind {
    160  1.70.4.4  rmind 	struct vm_page *pg = obj;
    161  1.70.4.4  rmind 
    162  1.70.4.4  rmind 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    163  1.70.4.4  rmind }
    164  1.70.4.4  rmind 
    165  1.70.4.4  rmind static struct pool_cache pagecache;
    166  1.70.4.4  rmind 
    167  1.70.4.4  rmind /*
    168  1.70.4.4  rmind  * Called with the object locked.  We don't support anons.
    169  1.70.4.4  rmind  */
    170       1.1  pooka struct vm_page *
    171  1.70.4.3  rmind uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    172  1.70.4.3  rmind 	int flags, int strat, int free_list)
    173       1.1  pooka {
    174       1.1  pooka 	struct vm_page *pg;
    175       1.1  pooka 
    176  1.70.4.4  rmind 	KASSERT(uobj && mutex_owned(&uobj->vmobjlock));
    177  1.70.4.4  rmind 	KASSERT(anon == NULL);
    178  1.70.4.4  rmind 
    179  1.70.4.4  rmind 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    180  1.70.4.4  rmind 	if (__predict_false(pg == NULL)) {
    181  1.70.4.4  rmind 		return NULL;
    182  1.70.4.4  rmind 	}
    183  1.70.4.4  rmind 
    184       1.1  pooka 	pg->offset = off;
    185       1.5  pooka 	pg->uobject = uobj;
    186       1.1  pooka 
    187      1.22  pooka 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    188  1.70.4.4  rmind 	if (flags & UVM_PGA_ZERO) {
    189  1.70.4.4  rmind 		uvm_pagezero(pg);
    190  1.70.4.4  rmind 	}
    191       1.1  pooka 
    192      1.31     ad 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    193  1.70.4.4  rmind 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
    194  1.70.4.4  rmind 
    195  1.70.4.4  rmind 	/*
    196  1.70.4.4  rmind 	 * Don't put anons on the LRU page queue.  We can't flush them
    197  1.70.4.4  rmind 	 * (there's no concept of swap in a rump kernel), so no reason
    198  1.70.4.4  rmind 	 * to bother with them.
    199  1.70.4.4  rmind 	 */
    200  1.70.4.4  rmind 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    201  1.70.4.4  rmind 		atomic_inc_uint(&vmpage_onqueue);
    202  1.70.4.4  rmind 		mutex_enter(&uvm_pageqlock);
    203  1.70.4.4  rmind 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    204  1.70.4.4  rmind 		mutex_exit(&uvm_pageqlock);
    205  1.70.4.4  rmind 	}
    206  1.70.4.4  rmind 
    207      1.59  pooka 	uobj->uo_npages++;
    208      1.21  pooka 
    209       1.1  pooka 	return pg;
    210       1.1  pooka }
    211       1.1  pooka 
    212      1.21  pooka /*
    213      1.21  pooka  * Release a page.
    214      1.21  pooka  *
    215      1.22  pooka  * Called with the vm object locked.
    216      1.21  pooka  */
    217       1.1  pooka void
    218      1.22  pooka uvm_pagefree(struct vm_page *pg)
    219       1.1  pooka {
    220       1.5  pooka 	struct uvm_object *uobj = pg->uobject;
    221       1.1  pooka 
    222  1.70.4.4  rmind 	KASSERT(mutex_owned(&uvm_pageqlock));
    223  1.70.4.4  rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
    224  1.70.4.4  rmind 
    225      1.22  pooka 	if (pg->flags & PG_WANTED)
    226      1.22  pooka 		wakeup(pg);
    227      1.22  pooka 
    228      1.31     ad 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    229       1.1  pooka 
    230  1.70.4.4  rmind 	uobj->uo_npages--;
    231  1.70.4.4  rmind 	rb_tree_remove_node(&uobj->rb_tree, pg);
    232       1.1  pooka 
    233  1.70.4.4  rmind 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    234  1.70.4.4  rmind 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    235  1.70.4.4  rmind 		atomic_dec_uint(&vmpage_onqueue);
    236      1.23  pooka 	}
    237       1.1  pooka 
    238  1.70.4.4  rmind 	pool_cache_put(&pagecache, pg);
    239       1.1  pooka }
    240       1.1  pooka 
    241       1.1  pooka void
    242  1.70.4.4  rmind uvm_pagezero(struct vm_page *pg)
    243       1.1  pooka {
    244       1.1  pooka 
    245  1.70.4.4  rmind 	pg->flags &= ~PG_CLEAN;
    246  1.70.4.4  rmind 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    247       1.1  pooka }
    248       1.1  pooka 
    249       1.1  pooka /*
    250       1.1  pooka  * Misc routines
    251       1.1  pooka  */
    252       1.1  pooka 
    253      1.61  pooka static kmutex_t pagermtx;
    254      1.61  pooka 
    255       1.1  pooka void
    256  1.70.4.3  rmind uvm_init(void)
    257       1.1  pooka {
    258  1.70.4.3  rmind 	char buf[64];
    259  1.70.4.3  rmind 	int error;
    260  1.70.4.3  rmind 
    261  1.70.4.3  rmind 	if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
    262  1.70.4.4  rmind 		unsigned long tmp;
    263  1.70.4.4  rmind 		char *ep;
    264  1.70.4.4  rmind 		int mult;
    265  1.70.4.4  rmind 
    266  1.70.4.4  rmind 		tmp = strtoul(buf, &ep, 10);
    267  1.70.4.4  rmind 		if (strlen(ep) > 1)
    268  1.70.4.4  rmind 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    269  1.70.4.4  rmind 
    270  1.70.4.4  rmind 		/* mini-dehumanize-number */
    271  1.70.4.4  rmind 		mult = 1;
    272  1.70.4.4  rmind 		switch (*ep) {
    273  1.70.4.4  rmind 		case 'k':
    274  1.70.4.4  rmind 			mult = 1024;
    275  1.70.4.4  rmind 			break;
    276  1.70.4.4  rmind 		case 'm':
    277  1.70.4.4  rmind 			mult = 1024*1024;
    278  1.70.4.4  rmind 			break;
    279  1.70.4.4  rmind 		case 'g':
    280  1.70.4.4  rmind 			mult = 1024*1024*1024;
    281  1.70.4.4  rmind 			break;
    282  1.70.4.4  rmind 		case 0:
    283  1.70.4.4  rmind 			break;
    284  1.70.4.4  rmind 		default:
    285  1.70.4.4  rmind 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    286  1.70.4.4  rmind 		}
    287  1.70.4.4  rmind 		rump_physmemlimit = tmp * mult;
    288  1.70.4.4  rmind 
    289  1.70.4.4  rmind 		if (rump_physmemlimit / mult != tmp)
    290  1.70.4.4  rmind 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    291  1.70.4.3  rmind 		/* it's not like we'd get far with, say, 1 byte, but ... */
    292  1.70.4.4  rmind 		if (rump_physmemlimit == 0)
    293  1.70.4.4  rmind 			panic("uvm_init: no memory");
    294  1.70.4.4  rmind 
    295  1.70.4.3  rmind #define HUMANIZE_BYTES 9
    296  1.70.4.3  rmind 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    297  1.70.4.4  rmind 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    298  1.70.4.3  rmind #undef HUMANIZE_BYTES
    299  1.70.4.4  rmind 		dddlim = 9 * (rump_physmemlimit / 10);
    300  1.70.4.3  rmind 	} else {
    301  1.70.4.3  rmind 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    302  1.70.4.3  rmind 	}
    303  1.70.4.3  rmind 	aprint_verbose("total memory = %s\n", buf);
    304       1.1  pooka 
    305  1.70.4.4  rmind 	TAILQ_INIT(&vmpage_lruqueue);
    306  1.70.4.4  rmind 
    307  1.70.4.3  rmind 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    308      1.21  pooka 
    309  1.70.4.4  rmind #ifndef __uvmexp_pagesize
    310  1.70.4.4  rmind 	uvmexp.pagesize = PAGE_SIZE;
    311  1.70.4.4  rmind 	uvmexp.pagemask = PAGE_MASK;
    312  1.70.4.4  rmind 	uvmexp.pageshift = PAGE_SHIFT;
    313  1.70.4.4  rmind #else
    314  1.70.4.4  rmind #define FAKE_PAGE_SHIFT 12
    315  1.70.4.4  rmind 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    316  1.70.4.4  rmind 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    317  1.70.4.4  rmind 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    318  1.70.4.4  rmind #undef FAKE_PAGE_SHIFT
    319  1.70.4.4  rmind #endif
    320  1.70.4.4  rmind 
    321      1.61  pooka 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    322      1.25     ad 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    323  1.70.4.4  rmind 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
    324      1.35  pooka 
    325  1.70.4.3  rmind 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    326  1.70.4.3  rmind 	cv_init(&pdaemoncv, "pdaemon");
    327  1.70.4.3  rmind 	cv_init(&oomwait, "oomwait");
    328  1.70.4.3  rmind 
    329      1.50  pooka 	kernel_map->pmap = pmap_kernel();
    330      1.35  pooka 	callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
    331      1.50  pooka 	kmem_map->pmap = pmap_kernel();
    332      1.50  pooka 	callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
    333  1.70.4.4  rmind 
    334  1.70.4.4  rmind 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    335  1.70.4.4  rmind 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    336       1.1  pooka }
    337       1.1  pooka 
    338  1.70.4.3  rmind void
    339  1.70.4.3  rmind uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    340  1.70.4.3  rmind {
    341  1.70.4.3  rmind 
    342  1.70.4.3  rmind 	vm->vm_map.pmap = pmap_kernel();
    343  1.70.4.3  rmind 	vm->vm_refcnt = 1;
    344  1.70.4.3  rmind }
    345       1.1  pooka 
    346       1.1  pooka void
    347       1.7  pooka uvm_pagewire(struct vm_page *pg)
    348       1.7  pooka {
    349       1.7  pooka 
    350       1.7  pooka 	/* nada */
    351       1.7  pooka }
    352       1.7  pooka 
    353       1.7  pooka void
    354       1.7  pooka uvm_pageunwire(struct vm_page *pg)
    355       1.7  pooka {
    356       1.7  pooka 
    357       1.7  pooka 	/* nada */
    358       1.7  pooka }
    359       1.7  pooka 
    360  1.70.4.4  rmind /*
    361  1.70.4.4  rmind  * The uvm reclaim hook is not currently necessary because it is
    362  1.70.4.4  rmind  * used only by ZFS and implements exactly the same functionality
    363  1.70.4.4  rmind  * as the kva reclaim hook which we already run in the pagedaemon
    364  1.70.4.4  rmind  * (rump vm does not have a concept of uvm_map(), so we cannot
    365  1.70.4.4  rmind  * reclaim kva it when a mapping operation fails due to insufficient
    366  1.70.4.4  rmind  * available kva).
    367  1.70.4.4  rmind  */
    368  1.70.4.4  rmind void
    369  1.70.4.4  rmind uvm_reclaim_hook_add(struct uvm_reclaim_hook *hook_entry)
    370  1.70.4.4  rmind {
    371  1.70.4.4  rmind 
    372  1.70.4.4  rmind }
    373  1.70.4.4  rmind __strong_alias(uvm_reclaim_hook_del,uvm_reclaim_hook_add);
    374  1.70.4.4  rmind 
    375  1.70.4.3  rmind /* where's your schmonz now? */
    376  1.70.4.3  rmind #define PUNLIMIT(a)	\
    377  1.70.4.3  rmind p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    378  1.70.4.3  rmind void
    379  1.70.4.3  rmind uvm_init_limits(struct proc *p)
    380  1.70.4.3  rmind {
    381  1.70.4.3  rmind 
    382  1.70.4.3  rmind 	PUNLIMIT(RLIMIT_STACK);
    383  1.70.4.3  rmind 	PUNLIMIT(RLIMIT_DATA);
    384  1.70.4.3  rmind 	PUNLIMIT(RLIMIT_RSS);
    385  1.70.4.3  rmind 	PUNLIMIT(RLIMIT_AS);
    386  1.70.4.3  rmind 	/* nice, cascade */
    387  1.70.4.3  rmind }
    388  1.70.4.3  rmind #undef PUNLIMIT
    389  1.70.4.3  rmind 
    390      1.69  pooka /*
    391      1.69  pooka  * This satisfies the "disgusting mmap hack" used by proplib.
    392      1.69  pooka  * We probably should grow some more assertables to make sure we're
    393  1.70.4.4  rmind  * not satisfying anything we shouldn't be satisfying.
    394      1.69  pooka  */
    395      1.49  pooka int
    396      1.49  pooka uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    397      1.49  pooka 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    398      1.49  pooka {
    399      1.69  pooka 	void *uaddr;
    400      1.69  pooka 	int error;
    401      1.49  pooka 
    402      1.69  pooka 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    403      1.69  pooka 		panic("uvm_mmap() variant unsupported");
    404      1.69  pooka 	if (flags != (MAP_PRIVATE | MAP_ANON))
    405      1.69  pooka 		panic("uvm_mmap() variant unsupported");
    406  1.70.4.4  rmind 
    407      1.69  pooka 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    408      1.69  pooka 	if (*addr != 0)
    409      1.69  pooka 		panic("uvm_mmap() variant unsupported");
    410      1.69  pooka 
    411  1.70.4.4  rmind 	if (RUMP_LOCALPROC_P(curproc)) {
    412  1.70.4.4  rmind 		uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    413  1.70.4.4  rmind 	} else {
    414  1.70.4.4  rmind 		error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
    415  1.70.4.4  rmind 		    size, &uaddr);
    416  1.70.4.4  rmind 	}
    417      1.69  pooka 	if (uaddr == NULL)
    418      1.69  pooka 		return error;
    419      1.69  pooka 
    420      1.69  pooka 	*addr = (vaddr_t)uaddr;
    421      1.69  pooka 	return 0;
    422      1.49  pooka }
    423      1.49  pooka 
    424      1.61  pooka struct pagerinfo {
    425      1.61  pooka 	vaddr_t pgr_kva;
    426      1.61  pooka 	int pgr_npages;
    427      1.61  pooka 	struct vm_page **pgr_pgs;
    428      1.61  pooka 	bool pgr_read;
    429      1.61  pooka 
    430      1.61  pooka 	LIST_ENTRY(pagerinfo) pgr_entries;
    431      1.61  pooka };
    432      1.61  pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    433      1.61  pooka 
    434      1.61  pooka /*
    435      1.61  pooka  * Pager "map" in routine.  Instead of mapping, we allocate memory
    436      1.61  pooka  * and copy page contents there.  Not optimal or even strictly
    437      1.61  pooka  * correct (the caller might modify the page contents after mapping
    438      1.61  pooka  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    439      1.61  pooka  */
    440       1.7  pooka vaddr_t
    441      1.61  pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    442       1.7  pooka {
    443      1.61  pooka 	struct pagerinfo *pgri;
    444      1.61  pooka 	vaddr_t curkva;
    445      1.61  pooka 	int i;
    446      1.61  pooka 
    447      1.61  pooka 	/* allocate structures */
    448      1.61  pooka 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    449      1.61  pooka 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    450      1.61  pooka 	pgri->pgr_npages = npages;
    451      1.61  pooka 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    452      1.61  pooka 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    453      1.61  pooka 
    454      1.61  pooka 	/* copy contents to "mapped" memory */
    455      1.61  pooka 	for (i = 0, curkva = pgri->pgr_kva;
    456      1.61  pooka 	    i < npages;
    457      1.61  pooka 	    i++, curkva += PAGE_SIZE) {
    458      1.61  pooka 		/*
    459      1.61  pooka 		 * We need to copy the previous contents of the pages to
    460      1.61  pooka 		 * the window even if we are reading from the
    461      1.61  pooka 		 * device, since the device might not fill the contents of
    462      1.61  pooka 		 * the full mapped range and we will end up corrupting
    463      1.61  pooka 		 * data when we unmap the window.
    464      1.61  pooka 		 */
    465      1.61  pooka 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    466      1.61  pooka 		pgri->pgr_pgs[i] = pgs[i];
    467      1.61  pooka 	}
    468      1.61  pooka 
    469      1.61  pooka 	mutex_enter(&pagermtx);
    470      1.61  pooka 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    471      1.61  pooka 	mutex_exit(&pagermtx);
    472       1.7  pooka 
    473      1.61  pooka 	return pgri->pgr_kva;
    474       1.7  pooka }
    475       1.7  pooka 
    476      1.61  pooka /*
    477      1.61  pooka  * map out the pager window.  return contents from VA to page storage
    478      1.61  pooka  * and free structures.
    479      1.61  pooka  *
    480      1.61  pooka  * Note: does not currently support partial frees
    481      1.61  pooka  */
    482      1.61  pooka void
    483      1.61  pooka uvm_pagermapout(vaddr_t kva, int npages)
    484       1.7  pooka {
    485      1.61  pooka 	struct pagerinfo *pgri;
    486      1.61  pooka 	vaddr_t curkva;
    487      1.61  pooka 	int i;
    488       1.7  pooka 
    489      1.61  pooka 	mutex_enter(&pagermtx);
    490      1.61  pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    491      1.61  pooka 		if (pgri->pgr_kva == kva)
    492      1.61  pooka 			break;
    493      1.61  pooka 	}
    494      1.61  pooka 	KASSERT(pgri);
    495      1.61  pooka 	if (pgri->pgr_npages != npages)
    496      1.61  pooka 		panic("uvm_pagermapout: partial unmapping not supported");
    497      1.61  pooka 	LIST_REMOVE(pgri, pgr_entries);
    498      1.61  pooka 	mutex_exit(&pagermtx);
    499      1.61  pooka 
    500      1.61  pooka 	if (pgri->pgr_read) {
    501      1.61  pooka 		for (i = 0, curkva = pgri->pgr_kva;
    502      1.61  pooka 		    i < pgri->pgr_npages;
    503      1.61  pooka 		    i++, curkva += PAGE_SIZE) {
    504      1.61  pooka 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    505      1.21  pooka 		}
    506      1.21  pooka 	}
    507      1.10  pooka 
    508      1.61  pooka 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    509      1.61  pooka 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    510      1.61  pooka 	kmem_free(pgri, sizeof(*pgri));
    511       1.7  pooka }
    512       1.7  pooka 
    513      1.61  pooka /*
    514      1.61  pooka  * convert va in pager window to page structure.
    515      1.61  pooka  * XXX: how expensive is this (global lock, list traversal)?
    516      1.61  pooka  */
    517      1.14  pooka struct vm_page *
    518      1.14  pooka uvm_pageratop(vaddr_t va)
    519      1.14  pooka {
    520      1.61  pooka 	struct pagerinfo *pgri;
    521      1.61  pooka 	struct vm_page *pg = NULL;
    522      1.61  pooka 	int i;
    523      1.14  pooka 
    524      1.61  pooka 	mutex_enter(&pagermtx);
    525      1.61  pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    526      1.61  pooka 		if (pgri->pgr_kva <= va
    527      1.61  pooka 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    528      1.21  pooka 			break;
    529      1.61  pooka 	}
    530      1.61  pooka 	if (pgri) {
    531      1.61  pooka 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    532      1.61  pooka 		pg = pgri->pgr_pgs[i];
    533      1.61  pooka 	}
    534      1.61  pooka 	mutex_exit(&pagermtx);
    535      1.21  pooka 
    536      1.61  pooka 	return pg;
    537      1.61  pooka }
    538      1.15  pooka 
    539  1.70.4.4  rmind /*
    540  1.70.4.4  rmind  * Called with the vm object locked.
    541  1.70.4.4  rmind  *
    542  1.70.4.4  rmind  * Put vnode object pages at the end of the access queue to indicate
    543  1.70.4.4  rmind  * they have been recently accessed and should not be immediate
    544  1.70.4.4  rmind  * candidates for pageout.  Do not do this for lookups done by
    545  1.70.4.4  rmind  * the pagedaemon to mimic pmap_kentered mappings which don't track
    546  1.70.4.4  rmind  * access information.
    547  1.70.4.4  rmind  */
    548      1.61  pooka struct vm_page *
    549      1.61  pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    550      1.61  pooka {
    551      1.61  pooka 	struct vm_page *pg;
    552  1.70.4.4  rmind 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    553      1.61  pooka 
    554  1.70.4.4  rmind 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
    555  1.70.4.4  rmind 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    556  1.70.4.4  rmind 		mutex_enter(&uvm_pageqlock);
    557  1.70.4.4  rmind 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    558  1.70.4.4  rmind 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    559  1.70.4.4  rmind 		mutex_exit(&uvm_pageqlock);
    560      1.61  pooka 	}
    561      1.61  pooka 
    562  1.70.4.4  rmind 	return pg;
    563      1.14  pooka }
    564      1.14  pooka 
    565       1.7  pooka void
    566      1.22  pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
    567      1.22  pooka {
    568      1.22  pooka 	struct vm_page *pg;
    569      1.22  pooka 	int i;
    570      1.22  pooka 
    571  1.70.4.4  rmind 	KASSERT(npgs > 0);
    572  1.70.4.4  rmind 	KASSERT(mutex_owned(&pgs[0]->uobject->vmobjlock));
    573  1.70.4.4  rmind 
    574      1.22  pooka 	for (i = 0; i < npgs; i++) {
    575      1.22  pooka 		pg = pgs[i];
    576      1.22  pooka 		if (pg == NULL)
    577      1.22  pooka 			continue;
    578      1.22  pooka 
    579      1.22  pooka 		KASSERT(pg->flags & PG_BUSY);
    580      1.22  pooka 		if (pg->flags & PG_WANTED)
    581      1.22  pooka 			wakeup(pg);
    582      1.36  pooka 		if (pg->flags & PG_RELEASED)
    583      1.36  pooka 			uvm_pagefree(pg);
    584      1.36  pooka 		else
    585      1.36  pooka 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    586      1.22  pooka 	}
    587      1.22  pooka }
    588      1.22  pooka 
    589      1.22  pooka void
    590       1.7  pooka uvm_estimatepageable(int *active, int *inactive)
    591       1.7  pooka {
    592       1.7  pooka 
    593      1.19  pooka 	/* XXX: guessing game */
    594      1.19  pooka 	*active = 1024;
    595      1.19  pooka 	*inactive = 1024;
    596       1.7  pooka }
    597       1.7  pooka 
    598      1.39  pooka struct vm_map_kernel *
    599      1.39  pooka vm_map_to_kernel(struct vm_map *map)
    600      1.39  pooka {
    601      1.39  pooka 
    602      1.39  pooka 	return (struct vm_map_kernel *)map;
    603      1.39  pooka }
    604      1.39  pooka 
    605      1.41  pooka bool
    606      1.41  pooka vm_map_starved_p(struct vm_map *map)
    607      1.41  pooka {
    608      1.41  pooka 
    609  1.70.4.3  rmind 	if (map->flags & VM_MAP_WANTVA)
    610  1.70.4.3  rmind 		return true;
    611      1.41  pooka 
    612  1.70.4.3  rmind 	return false;
    613      1.39  pooka }
    614      1.39  pooka 
    615      1.41  pooka int
    616      1.41  pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    617      1.41  pooka {
    618      1.41  pooka 
    619      1.41  pooka 	panic("%s: unimplemented", __func__);
    620      1.41  pooka }
    621      1.41  pooka 
    622      1.41  pooka void
    623      1.41  pooka uvm_unloan(void *v, int npages, int flags)
    624      1.41  pooka {
    625      1.41  pooka 
    626      1.41  pooka 	panic("%s: unimplemented", __func__);
    627      1.41  pooka }
    628      1.41  pooka 
    629      1.43  pooka int
    630      1.43  pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    631      1.43  pooka 	struct vm_page **opp)
    632      1.43  pooka {
    633      1.43  pooka 
    634  1.70.4.2  rmind 	return EBUSY;
    635      1.43  pooka }
    636      1.43  pooka 
    637  1.70.4.2  rmind #ifdef DEBUGPRINT
    638      1.56  pooka void
    639      1.56  pooka uvm_object_printit(struct uvm_object *uobj, bool full,
    640      1.56  pooka 	void (*pr)(const char *, ...))
    641      1.56  pooka {
    642      1.56  pooka 
    643  1.70.4.2  rmind 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    644      1.56  pooka }
    645  1.70.4.2  rmind #endif
    646      1.56  pooka 
    647      1.68  pooka vaddr_t
    648      1.68  pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    649      1.68  pooka {
    650      1.68  pooka 
    651      1.68  pooka 	return 0;
    652      1.68  pooka }
    653      1.68  pooka 
    654  1.70.4.2  rmind int
    655  1.70.4.2  rmind uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    656  1.70.4.2  rmind 	vm_prot_t prot, bool set_max)
    657  1.70.4.2  rmind {
    658  1.70.4.2  rmind 
    659  1.70.4.2  rmind 	return EOPNOTSUPP;
    660  1.70.4.2  rmind }
    661  1.70.4.2  rmind 
    662       1.9  pooka /*
    663      1.12  pooka  * UVM km
    664      1.12  pooka  */
    665      1.12  pooka 
    666      1.12  pooka vaddr_t
    667      1.12  pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    668      1.12  pooka {
    669  1.70.4.3  rmind 	void *rv, *desired = NULL;
    670      1.50  pooka 	int alignbit, error;
    671      1.50  pooka 
    672  1.70.4.3  rmind #ifdef __x86_64__
    673  1.70.4.3  rmind 	/*
    674  1.70.4.3  rmind 	 * On amd64, allocate all module memory from the lowest 2GB.
    675  1.70.4.3  rmind 	 * This is because NetBSD kernel modules are compiled
    676  1.70.4.3  rmind 	 * with -mcmodel=kernel and reserve only 4 bytes for
    677  1.70.4.3  rmind 	 * offsets.  If we load code compiled with -mcmodel=kernel
    678  1.70.4.3  rmind 	 * anywhere except the lowest or highest 2GB, it will not
    679  1.70.4.3  rmind 	 * work.  Since userspace does not have access to the highest
    680  1.70.4.3  rmind 	 * 2GB, use the lowest 2GB.
    681  1.70.4.3  rmind 	 *
    682  1.70.4.3  rmind 	 * Note: this assumes the rump kernel resides in
    683  1.70.4.3  rmind 	 * the lowest 2GB as well.
    684  1.70.4.3  rmind 	 *
    685  1.70.4.3  rmind 	 * Note2: yes, it's a quick hack, but since this the only
    686  1.70.4.3  rmind 	 * place where we care about the map we're allocating from,
    687  1.70.4.3  rmind 	 * just use a simple "if" instead of coming up with a fancy
    688  1.70.4.3  rmind 	 * generic solution.
    689  1.70.4.3  rmind 	 */
    690  1.70.4.3  rmind 	extern struct vm_map *module_map;
    691  1.70.4.3  rmind 	if (map == module_map) {
    692  1.70.4.3  rmind 		desired = (void *)(0x80000000 - size);
    693  1.70.4.3  rmind 	}
    694  1.70.4.3  rmind #endif
    695  1.70.4.3  rmind 
    696      1.50  pooka 	alignbit = 0;
    697      1.50  pooka 	if (align) {
    698      1.50  pooka 		alignbit = ffs(align)-1;
    699      1.50  pooka 	}
    700      1.50  pooka 
    701  1.70.4.3  rmind 	rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
    702  1.70.4.3  rmind 	    &error);
    703      1.50  pooka 	if (rv == NULL) {
    704      1.50  pooka 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    705      1.50  pooka 			return 0;
    706      1.50  pooka 		else
    707      1.50  pooka 			panic("uvm_km_alloc failed");
    708      1.50  pooka 	}
    709      1.12  pooka 
    710      1.50  pooka 	if (flags & UVM_KMF_ZERO)
    711      1.12  pooka 		memset(rv, 0, size);
    712      1.12  pooka 
    713      1.12  pooka 	return (vaddr_t)rv;
    714      1.12  pooka }
    715      1.12  pooka 
    716      1.12  pooka void
    717      1.12  pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    718      1.12  pooka {
    719      1.12  pooka 
    720      1.50  pooka 	rumpuser_unmap((void *)vaddr, size);
    721      1.12  pooka }
    722      1.12  pooka 
    723      1.12  pooka struct vm_map *
    724      1.12  pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    725      1.12  pooka 	vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
    726      1.12  pooka {
    727      1.12  pooka 
    728      1.12  pooka 	return (struct vm_map *)417416;
    729      1.12  pooka }
    730      1.40  pooka 
    731      1.40  pooka vaddr_t
    732      1.40  pooka uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    733      1.40  pooka {
    734      1.40  pooka 
    735  1.70.4.3  rmind 	return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    736  1.70.4.3  rmind 	    waitok, "kmalloc");
    737      1.40  pooka }
    738      1.40  pooka 
    739      1.40  pooka void
    740      1.40  pooka uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    741      1.40  pooka {
    742      1.40  pooka 
    743  1.70.4.3  rmind 	rump_hyperfree((void *)addr, PAGE_SIZE);
    744      1.50  pooka }
    745      1.50  pooka 
    746      1.50  pooka vaddr_t
    747      1.50  pooka uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    748      1.50  pooka {
    749      1.50  pooka 
    750  1.70.4.3  rmind 	return uvm_km_alloc_poolpage(map, waitok);
    751      1.50  pooka }
    752      1.50  pooka 
    753      1.50  pooka void
    754      1.50  pooka uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
    755      1.50  pooka {
    756      1.50  pooka 
    757  1.70.4.3  rmind 	uvm_km_free_poolpage(map, vaddr);
    758      1.40  pooka }
    759      1.57  pooka 
    760  1.70.4.2  rmind void
    761  1.70.4.2  rmind uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    762  1.70.4.2  rmind {
    763  1.70.4.2  rmind 
    764  1.70.4.2  rmind 	/* we eventually maybe want some model for available memory */
    765  1.70.4.2  rmind }
    766  1.70.4.2  rmind 
    767      1.57  pooka /*
    768  1.70.4.4  rmind  * VM space locking routines.  We don't really have to do anything,
    769  1.70.4.4  rmind  * since the pages are always "wired" (both local and remote processes).
    770      1.57  pooka  */
    771      1.57  pooka int
    772      1.57  pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    773      1.57  pooka {
    774      1.57  pooka 
    775      1.57  pooka 	return 0;
    776      1.57  pooka }
    777      1.57  pooka 
    778      1.57  pooka void
    779      1.57  pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    780      1.57  pooka {
    781      1.57  pooka 
    782      1.57  pooka }
    783      1.57  pooka 
    784  1.70.4.4  rmind /*
    785  1.70.4.4  rmind  * For the local case the buffer mappers don't need to do anything.
    786  1.70.4.4  rmind  * For the remote case we need to reserve space and copy data in or
    787  1.70.4.4  rmind  * out, depending on B_READ/B_WRITE.
    788  1.70.4.4  rmind  */
    789  1.70.4.4  rmind int
    790      1.57  pooka vmapbuf(struct buf *bp, vsize_t len)
    791      1.57  pooka {
    792  1.70.4.4  rmind 	int error = 0;
    793      1.57  pooka 
    794      1.57  pooka 	bp->b_saveaddr = bp->b_data;
    795  1.70.4.4  rmind 
    796  1.70.4.4  rmind 	/* remote case */
    797  1.70.4.4  rmind 	if (!RUMP_LOCALPROC_P(curproc)) {
    798  1.70.4.4  rmind 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    799  1.70.4.4  rmind 		if (BUF_ISWRITE(bp)) {
    800  1.70.4.4  rmind 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    801  1.70.4.4  rmind 			if (error) {
    802  1.70.4.4  rmind 				rump_hyperfree(bp->b_data, len);
    803  1.70.4.4  rmind 				bp->b_data = bp->b_saveaddr;
    804  1.70.4.4  rmind 				bp->b_saveaddr = 0;
    805  1.70.4.4  rmind 			}
    806  1.70.4.4  rmind 		}
    807  1.70.4.4  rmind 	}
    808  1.70.4.4  rmind 
    809  1.70.4.4  rmind 	return error;
    810      1.57  pooka }
    811      1.57  pooka 
    812      1.57  pooka void
    813      1.57  pooka vunmapbuf(struct buf *bp, vsize_t len)
    814      1.57  pooka {
    815      1.57  pooka 
    816  1.70.4.4  rmind 	/* remote case */
    817  1.70.4.4  rmind 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    818  1.70.4.4  rmind 		if (BUF_ISREAD(bp)) {
    819  1.70.4.4  rmind 			bp->b_error = copyout_proc(bp->b_proc,
    820  1.70.4.4  rmind 			    bp->b_data, bp->b_saveaddr, len);
    821  1.70.4.4  rmind 		}
    822  1.70.4.4  rmind 		rump_hyperfree(bp->b_data, len);
    823  1.70.4.4  rmind 	}
    824  1.70.4.4  rmind 
    825      1.57  pooka 	bp->b_data = bp->b_saveaddr;
    826      1.57  pooka 	bp->b_saveaddr = 0;
    827      1.57  pooka }
    828      1.61  pooka 
    829      1.61  pooka void
    830  1.70.4.3  rmind uvmspace_addref(struct vmspace *vm)
    831      1.61  pooka {
    832      1.61  pooka 
    833  1.70.4.3  rmind 	/*
    834  1.70.4.4  rmind 	 * No dynamically allocated vmspaces exist.
    835  1.70.4.3  rmind 	 */
    836      1.61  pooka }
    837      1.61  pooka 
    838      1.66  pooka void
    839      1.66  pooka uvmspace_free(struct vmspace *vm)
    840      1.66  pooka {
    841      1.66  pooka 
    842      1.66  pooka 	/* nothing for now */
    843      1.66  pooka }
    844      1.66  pooka 
    845      1.61  pooka /*
    846      1.61  pooka  * page life cycle stuff.  it really doesn't exist, so just stubs.
    847      1.61  pooka  */
    848      1.61  pooka 
    849      1.61  pooka void
    850      1.61  pooka uvm_pageactivate(struct vm_page *pg)
    851      1.61  pooka {
    852      1.61  pooka 
    853      1.61  pooka 	/* nada */
    854      1.61  pooka }
    855      1.61  pooka 
    856      1.61  pooka void
    857      1.61  pooka uvm_pagedeactivate(struct vm_page *pg)
    858      1.61  pooka {
    859      1.61  pooka 
    860      1.61  pooka 	/* nada */
    861      1.61  pooka }
    862      1.61  pooka 
    863      1.61  pooka void
    864      1.61  pooka uvm_pagedequeue(struct vm_page *pg)
    865      1.61  pooka {
    866      1.61  pooka 
    867      1.61  pooka 	/* nada*/
    868      1.61  pooka }
    869      1.61  pooka 
    870      1.61  pooka void
    871      1.61  pooka uvm_pageenqueue(struct vm_page *pg)
    872      1.61  pooka {
    873      1.61  pooka 
    874      1.61  pooka 	/* nada */
    875      1.61  pooka }
    876  1.70.4.3  rmind 
    877  1.70.4.4  rmind void
    878  1.70.4.4  rmind uvmpdpol_anfree(struct vm_anon *an)
    879  1.70.4.4  rmind {
    880  1.70.4.4  rmind 
    881  1.70.4.4  rmind 	/* nada */
    882  1.70.4.4  rmind }
    883  1.70.4.4  rmind 
    884  1.70.4.4  rmind /*
    885  1.70.4.4  rmind  * Physical address accessors.
    886  1.70.4.4  rmind  */
    887  1.70.4.4  rmind 
    888  1.70.4.4  rmind struct vm_page *
    889  1.70.4.4  rmind uvm_phys_to_vm_page(paddr_t pa)
    890  1.70.4.4  rmind {
    891  1.70.4.4  rmind 
    892  1.70.4.4  rmind 	return NULL;
    893  1.70.4.4  rmind }
    894  1.70.4.4  rmind 
    895  1.70.4.4  rmind paddr_t
    896  1.70.4.4  rmind uvm_vm_page_to_phys(const struct vm_page *pg)
    897  1.70.4.4  rmind {
    898  1.70.4.4  rmind 
    899  1.70.4.4  rmind 	return 0;
    900  1.70.4.4  rmind }
    901  1.70.4.4  rmind 
    902  1.70.4.3  rmind /*
    903  1.70.4.3  rmind  * Routines related to the Page Baroness.
    904  1.70.4.3  rmind  */
    905  1.70.4.3  rmind 
    906  1.70.4.3  rmind void
    907  1.70.4.3  rmind uvm_wait(const char *msg)
    908  1.70.4.3  rmind {
    909  1.70.4.3  rmind 
    910  1.70.4.3  rmind 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    911  1.70.4.3  rmind 		panic("pagedaemon out of memory");
    912  1.70.4.3  rmind 	if (__predict_false(rump_threads == 0))
    913  1.70.4.3  rmind 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    914  1.70.4.3  rmind 
    915  1.70.4.3  rmind 	mutex_enter(&pdaemonmtx);
    916  1.70.4.3  rmind 	pdaemon_waiters++;
    917  1.70.4.3  rmind 	cv_signal(&pdaemoncv);
    918  1.70.4.3  rmind 	cv_wait(&oomwait, &pdaemonmtx);
    919  1.70.4.3  rmind 	mutex_exit(&pdaemonmtx);
    920  1.70.4.3  rmind }
    921  1.70.4.3  rmind 
    922  1.70.4.3  rmind void
    923  1.70.4.3  rmind uvm_pageout_start(int npages)
    924  1.70.4.3  rmind {
    925  1.70.4.3  rmind 
    926  1.70.4.4  rmind 	mutex_enter(&pdaemonmtx);
    927  1.70.4.4  rmind 	uvmexp.paging += npages;
    928  1.70.4.4  rmind 	mutex_exit(&pdaemonmtx);
    929  1.70.4.3  rmind }
    930  1.70.4.3  rmind 
    931  1.70.4.3  rmind void
    932  1.70.4.3  rmind uvm_pageout_done(int npages)
    933  1.70.4.3  rmind {
    934  1.70.4.3  rmind 
    935  1.70.4.4  rmind 	if (!npages)
    936  1.70.4.4  rmind 		return;
    937  1.70.4.4  rmind 
    938  1.70.4.4  rmind 	mutex_enter(&pdaemonmtx);
    939  1.70.4.4  rmind 	KASSERT(uvmexp.paging >= npages);
    940  1.70.4.4  rmind 	uvmexp.paging -= npages;
    941  1.70.4.4  rmind 
    942  1.70.4.4  rmind 	if (pdaemon_waiters) {
    943  1.70.4.4  rmind 		pdaemon_waiters = 0;
    944  1.70.4.4  rmind 		cv_broadcast(&oomwait);
    945  1.70.4.4  rmind 	}
    946  1.70.4.4  rmind 	mutex_exit(&pdaemonmtx);
    947  1.70.4.4  rmind }
    948  1.70.4.4  rmind 
    949  1.70.4.4  rmind static bool
    950  1.70.4.4  rmind processpage(struct vm_page *pg, bool *lockrunning)
    951  1.70.4.4  rmind {
    952  1.70.4.4  rmind 	struct uvm_object *uobj;
    953  1.70.4.4  rmind 
    954  1.70.4.4  rmind 	uobj = pg->uobject;
    955  1.70.4.4  rmind 	if (mutex_tryenter(&uobj->vmobjlock)) {
    956  1.70.4.4  rmind 		if ((pg->flags & PG_BUSY) == 0) {
    957  1.70.4.4  rmind 			mutex_exit(&uvm_pageqlock);
    958  1.70.4.4  rmind 			uobj->pgops->pgo_put(uobj, pg->offset,
    959  1.70.4.4  rmind 			    pg->offset + PAGE_SIZE,
    960  1.70.4.4  rmind 			    PGO_CLEANIT|PGO_FREE);
    961  1.70.4.4  rmind 			KASSERT(!mutex_owned(&uobj->vmobjlock));
    962  1.70.4.4  rmind 			return true;
    963  1.70.4.4  rmind 		} else {
    964  1.70.4.4  rmind 			mutex_exit(&uobj->vmobjlock);
    965  1.70.4.4  rmind 		}
    966  1.70.4.4  rmind 	} else if (*lockrunning == false && ncpu > 1) {
    967  1.70.4.4  rmind 		CPU_INFO_ITERATOR cii;
    968  1.70.4.4  rmind 		struct cpu_info *ci;
    969  1.70.4.4  rmind 		struct lwp *l;
    970  1.70.4.4  rmind 
    971  1.70.4.4  rmind 		l = mutex_owner(&uobj->vmobjlock);
    972  1.70.4.4  rmind 		for (CPU_INFO_FOREACH(cii, ci)) {
    973  1.70.4.4  rmind 			if (ci->ci_curlwp == l) {
    974  1.70.4.4  rmind 				*lockrunning = true;
    975  1.70.4.4  rmind 				break;
    976  1.70.4.4  rmind 			}
    977  1.70.4.4  rmind 		}
    978  1.70.4.4  rmind 	}
    979  1.70.4.4  rmind 
    980  1.70.4.4  rmind 	return false;
    981  1.70.4.3  rmind }
    982  1.70.4.3  rmind 
    983  1.70.4.3  rmind /*
    984  1.70.4.4  rmind  * The Diabolical pageDaemon Director (DDD).
    985  1.70.4.3  rmind  *
    986  1.70.4.4  rmind  * This routine can always use better heuristics.
    987  1.70.4.3  rmind  */
    988  1.70.4.3  rmind void
    989  1.70.4.3  rmind uvm_pageout(void *arg)
    990  1.70.4.3  rmind {
    991  1.70.4.4  rmind 	struct vm_page *pg;
    992  1.70.4.3  rmind 	struct pool *pp, *pp_first;
    993  1.70.4.3  rmind 	uint64_t where;
    994  1.70.4.4  rmind 	int cleaned, skip, skipped;
    995  1.70.4.4  rmind 	int waspaging;
    996  1.70.4.3  rmind 	bool succ;
    997  1.70.4.4  rmind 	bool lockrunning;
    998  1.70.4.3  rmind 
    999  1.70.4.3  rmind 	mutex_enter(&pdaemonmtx);
   1000  1.70.4.3  rmind 	for (;;) {
   1001  1.70.4.4  rmind 		if (!NEED_PAGEDAEMON()) {
   1002  1.70.4.4  rmind 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1003  1.70.4.4  rmind 			kmem_map->flags &= ~VM_MAP_WANTVA;
   1004  1.70.4.4  rmind 		}
   1005  1.70.4.4  rmind 
   1006  1.70.4.4  rmind 		if (pdaemon_waiters) {
   1007  1.70.4.4  rmind 			pdaemon_waiters = 0;
   1008  1.70.4.4  rmind 			cv_broadcast(&oomwait);
   1009  1.70.4.4  rmind 		}
   1010  1.70.4.4  rmind 
   1011  1.70.4.4  rmind 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1012  1.70.4.3  rmind 		uvmexp.pdwoke++;
   1013  1.70.4.4  rmind 		waspaging = uvmexp.paging;
   1014  1.70.4.4  rmind 
   1015  1.70.4.4  rmind 		/* tell the world that we are hungry */
   1016  1.70.4.3  rmind 		kernel_map->flags |= VM_MAP_WANTVA;
   1017  1.70.4.4  rmind 		kmem_map->flags |= VM_MAP_WANTVA;
   1018  1.70.4.3  rmind 		mutex_exit(&pdaemonmtx);
   1019  1.70.4.3  rmind 
   1020  1.70.4.4  rmind 		/*
   1021  1.70.4.4  rmind 		 * step one: reclaim the page cache.  this should give
   1022  1.70.4.4  rmind 		 * us the biggest earnings since whole pages are released
   1023  1.70.4.4  rmind 		 * into backing memory.
   1024  1.70.4.4  rmind 		 */
   1025  1.70.4.4  rmind 		pool_cache_reclaim(&pagecache);
   1026  1.70.4.4  rmind 		if (!NEED_PAGEDAEMON()) {
   1027  1.70.4.4  rmind 			mutex_enter(&pdaemonmtx);
   1028  1.70.4.4  rmind 			continue;
   1029  1.70.4.4  rmind 		}
   1030  1.70.4.4  rmind 
   1031  1.70.4.4  rmind 		/*
   1032  1.70.4.4  rmind 		 * Ok, so that didn't help.  Next, try to hunt memory
   1033  1.70.4.4  rmind 		 * by pushing out vnode pages.  The pages might contain
   1034  1.70.4.4  rmind 		 * useful cached data, but we need the memory.
   1035  1.70.4.4  rmind 		 */
   1036  1.70.4.4  rmind 		cleaned = 0;
   1037  1.70.4.4  rmind 		skip = 0;
   1038  1.70.4.4  rmind 		lockrunning = false;
   1039  1.70.4.4  rmind  again:
   1040  1.70.4.4  rmind 		mutex_enter(&uvm_pageqlock);
   1041  1.70.4.4  rmind 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1042  1.70.4.4  rmind 			skipped = 0;
   1043  1.70.4.4  rmind 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1044  1.70.4.4  rmind 
   1045  1.70.4.4  rmind 				/*
   1046  1.70.4.4  rmind 				 * skip over pages we _might_ have tried
   1047  1.70.4.4  rmind 				 * to handle earlier.  they might not be
   1048  1.70.4.4  rmind 				 * exactly the same ones, but I'm not too
   1049  1.70.4.4  rmind 				 * concerned.
   1050  1.70.4.4  rmind 				 */
   1051  1.70.4.4  rmind 				while (skipped++ < skip)
   1052  1.70.4.4  rmind 					continue;
   1053  1.70.4.4  rmind 
   1054  1.70.4.4  rmind 				if (processpage(pg, &lockrunning)) {
   1055  1.70.4.4  rmind 					cleaned++;
   1056  1.70.4.4  rmind 					goto again;
   1057  1.70.4.4  rmind 				}
   1058  1.70.4.4  rmind 
   1059  1.70.4.4  rmind 				skip++;
   1060  1.70.4.4  rmind 			}
   1061  1.70.4.4  rmind 			break;
   1062  1.70.4.4  rmind 		}
   1063  1.70.4.4  rmind 		mutex_exit(&uvm_pageqlock);
   1064  1.70.4.4  rmind 
   1065  1.70.4.4  rmind 		/*
   1066  1.70.4.4  rmind 		 * Ok, someone is running with an object lock held.
   1067  1.70.4.4  rmind 		 * We want to yield the host CPU to make sure the
   1068  1.70.4.4  rmind 		 * thread is not parked on the host.  Since sched_yield()
   1069  1.70.4.4  rmind 		 * doesn't appear to do anything on NetBSD, nanosleep
   1070  1.70.4.4  rmind 		 * for the smallest possible time and hope we're back in
   1071  1.70.4.4  rmind 		 * the game soon.
   1072  1.70.4.4  rmind 		 */
   1073  1.70.4.4  rmind 		if (cleaned == 0 && lockrunning) {
   1074  1.70.4.4  rmind 			uint64_t sec, nsec;
   1075  1.70.4.4  rmind 
   1076  1.70.4.4  rmind 			sec = 0;
   1077  1.70.4.4  rmind 			nsec = 1;
   1078  1.70.4.4  rmind 			rumpuser_nanosleep(&sec, &nsec, NULL);
   1079  1.70.4.4  rmind 
   1080  1.70.4.4  rmind 			lockrunning = false;
   1081  1.70.4.4  rmind 			skip = 0;
   1082  1.70.4.4  rmind 
   1083  1.70.4.4  rmind 			/* and here we go again */
   1084  1.70.4.4  rmind 			goto again;
   1085  1.70.4.4  rmind 		}
   1086  1.70.4.4  rmind 
   1087  1.70.4.4  rmind 		/*
   1088  1.70.4.4  rmind 		 * And of course we need to reclaim the page cache
   1089  1.70.4.4  rmind 		 * again to actually release memory.
   1090  1.70.4.4  rmind 		 */
   1091  1.70.4.4  rmind 		pool_cache_reclaim(&pagecache);
   1092  1.70.4.4  rmind 		if (!NEED_PAGEDAEMON()) {
   1093  1.70.4.4  rmind 			mutex_enter(&pdaemonmtx);
   1094  1.70.4.4  rmind 			continue;
   1095  1.70.4.4  rmind 		}
   1096  1.70.4.4  rmind 
   1097  1.70.4.4  rmind 		/*
   1098  1.70.4.4  rmind 		 * Still not there?  sleeves come off right about now.
   1099  1.70.4.4  rmind 		 * First: do reclaim on kernel/kmem map.
   1100  1.70.4.4  rmind 		 */
   1101  1.70.4.4  rmind 		callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
   1102  1.70.4.4  rmind 		    NULL);
   1103  1.70.4.4  rmind 		callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
   1104  1.70.4.4  rmind 		    NULL);
   1105  1.70.4.4  rmind 
   1106  1.70.4.4  rmind 		/*
   1107  1.70.4.4  rmind 		 * And then drain the pools.  Wipe them out ... all of them.
   1108  1.70.4.4  rmind 		 */
   1109  1.70.4.4  rmind 
   1110  1.70.4.3  rmind 		pool_drain_start(&pp_first, &where);
   1111  1.70.4.3  rmind 		pp = pp_first;
   1112  1.70.4.3  rmind 		for (;;) {
   1113  1.70.4.4  rmind 			rump_vfs_drainbufs(10 /* XXX: estimate better */);
   1114  1.70.4.3  rmind 			succ = pool_drain_end(pp, where);
   1115  1.70.4.3  rmind 			if (succ)
   1116  1.70.4.3  rmind 				break;
   1117  1.70.4.3  rmind 			pool_drain_start(&pp, &where);
   1118  1.70.4.3  rmind 			if (pp == pp_first) {
   1119  1.70.4.3  rmind 				succ = pool_drain_end(pp, where);
   1120  1.70.4.3  rmind 				break;
   1121  1.70.4.3  rmind 			}
   1122  1.70.4.3  rmind 		}
   1123  1.70.4.3  rmind 
   1124  1.70.4.4  rmind 		/*
   1125  1.70.4.4  rmind 		 * Need to use PYEC on our bag of tricks.
   1126  1.70.4.4  rmind 		 * Unfortunately, the wife just borrowed it.
   1127  1.70.4.4  rmind 		 */
   1128  1.70.4.4  rmind 
   1129  1.70.4.4  rmind 		mutex_enter(&pdaemonmtx);
   1130  1.70.4.4  rmind 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1131  1.70.4.4  rmind 		    uvmexp.paging == 0) {
   1132  1.70.4.3  rmind 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1133  1.70.4.3  rmind 			    "memory ... sleeping (deadlock?)\n");
   1134  1.70.4.4  rmind 			cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
   1135  1.70.4.4  rmind 			mutex_enter(&pdaemonmtx);
   1136  1.70.4.3  rmind 		}
   1137  1.70.4.3  rmind 	}
   1138  1.70.4.3  rmind 
   1139  1.70.4.3  rmind 	panic("you can swap out any time you like, but you can never leave");
   1140  1.70.4.3  rmind }
   1141  1.70.4.3  rmind 
   1142  1.70.4.3  rmind void
   1143  1.70.4.3  rmind uvm_kick_pdaemon()
   1144  1.70.4.3  rmind {
   1145  1.70.4.3  rmind 
   1146  1.70.4.4  rmind 	/*
   1147  1.70.4.4  rmind 	 * Wake up the diabolical pagedaemon director if we are over
   1148  1.70.4.4  rmind 	 * 90% of the memory limit.  This is a complete and utter
   1149  1.70.4.4  rmind 	 * stetson-harrison decision which you are allowed to finetune.
   1150  1.70.4.4  rmind 	 * Don't bother locking.  If we have some unflushed caches,
   1151  1.70.4.4  rmind 	 * other waker-uppers will deal with the issue.
   1152  1.70.4.4  rmind 	 */
   1153  1.70.4.4  rmind 	if (NEED_PAGEDAEMON()) {
   1154  1.70.4.4  rmind 		cv_signal(&pdaemoncv);
   1155  1.70.4.4  rmind 	}
   1156  1.70.4.3  rmind }
   1157  1.70.4.3  rmind 
   1158  1.70.4.3  rmind void *
   1159  1.70.4.3  rmind rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1160  1.70.4.3  rmind {
   1161  1.70.4.3  rmind 	unsigned long newmem;
   1162  1.70.4.3  rmind 	void *rv;
   1163  1.70.4.3  rmind 
   1164  1.70.4.4  rmind 	uvm_kick_pdaemon(); /* ouch */
   1165  1.70.4.4  rmind 
   1166  1.70.4.3  rmind 	/* first we must be within the limit */
   1167  1.70.4.3  rmind  limitagain:
   1168  1.70.4.4  rmind 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1169  1.70.4.3  rmind 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1170  1.70.4.4  rmind 		if (newmem > rump_physmemlimit) {
   1171  1.70.4.3  rmind 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1172  1.70.4.4  rmind 			if (!waitok) {
   1173  1.70.4.3  rmind 				return NULL;
   1174  1.70.4.4  rmind 			}
   1175  1.70.4.3  rmind 			uvm_wait(wmsg);
   1176  1.70.4.3  rmind 			goto limitagain;
   1177  1.70.4.3  rmind 		}
   1178  1.70.4.3  rmind 	}
   1179  1.70.4.3  rmind 
   1180  1.70.4.3  rmind 	/* second, we must get something from the backend */
   1181  1.70.4.3  rmind  again:
   1182  1.70.4.3  rmind 	rv = rumpuser_malloc(howmuch, alignment);
   1183  1.70.4.3  rmind 	if (__predict_false(rv == NULL && waitok)) {
   1184  1.70.4.3  rmind 		uvm_wait(wmsg);
   1185  1.70.4.3  rmind 		goto again;
   1186  1.70.4.3  rmind 	}
   1187  1.70.4.3  rmind 
   1188  1.70.4.3  rmind 	return rv;
   1189  1.70.4.3  rmind }
   1190  1.70.4.3  rmind 
   1191  1.70.4.3  rmind void
   1192  1.70.4.3  rmind rump_hyperfree(void *what, size_t size)
   1193  1.70.4.3  rmind {
   1194  1.70.4.3  rmind 
   1195  1.70.4.4  rmind 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1196  1.70.4.3  rmind 		atomic_add_long(&curphysmem, -size);
   1197  1.70.4.3  rmind 	}
   1198  1.70.4.3  rmind 	rumpuser_free(what);
   1199  1.70.4.3  rmind }
   1200