vm.c revision 1.83 1 1.83 pooka /* $NetBSD: vm.c,v 1.83 2010/06/10 21:40:42 pooka Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.76 pooka * Copyright (c) 2007-2010 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.76 pooka * Development of this software was supported by
7 1.76 pooka * The Finnish Cultural Foundation and the Research Foundation of
8 1.76 pooka * The Helsinki University of Technology.
9 1.1 pooka *
10 1.1 pooka * Redistribution and use in source and binary forms, with or without
11 1.1 pooka * modification, are permitted provided that the following conditions
12 1.1 pooka * are met:
13 1.1 pooka * 1. Redistributions of source code must retain the above copyright
14 1.1 pooka * notice, this list of conditions and the following disclaimer.
15 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pooka * notice, this list of conditions and the following disclaimer in the
17 1.1 pooka * documentation and/or other materials provided with the distribution.
18 1.1 pooka *
19 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 pooka * SUCH DAMAGE.
30 1.1 pooka */
31 1.1 pooka
32 1.1 pooka /*
33 1.1 pooka * Virtual memory emulation routines. Contents:
34 1.1 pooka * + anon objects & pager
35 1.1 pooka * + misc support routines
36 1.1 pooka */
37 1.1 pooka
38 1.1 pooka /*
39 1.5 pooka * XXX: we abuse pg->uanon for the virtual address of the storage
40 1.1 pooka * for each page. phys_addr would fit the job description better,
41 1.1 pooka * except that it will create unnecessary lossage on some platforms
42 1.1 pooka * due to not being a pointer type.
43 1.1 pooka */
44 1.1 pooka
45 1.48 pooka #include <sys/cdefs.h>
46 1.83 pooka __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.83 2010/06/10 21:40:42 pooka Exp $");
47 1.48 pooka
48 1.1 pooka #include <sys/param.h>
49 1.40 pooka #include <sys/atomic.h>
50 1.80 pooka #include <sys/buf.h>
51 1.80 pooka #include <sys/kernel.h>
52 1.67 pooka #include <sys/kmem.h>
53 1.69 pooka #include <sys/mman.h>
54 1.1 pooka #include <sys/null.h>
55 1.1 pooka #include <sys/vnode.h>
56 1.1 pooka
57 1.34 pooka #include <machine/pmap.h>
58 1.34 pooka
59 1.34 pooka #include <rump/rumpuser.h>
60 1.34 pooka
61 1.1 pooka #include <uvm/uvm.h>
62 1.56 pooka #include <uvm/uvm_ddb.h>
63 1.1 pooka #include <uvm/uvm_prot.h>
64 1.58 he #include <uvm/uvm_readahead.h>
65 1.1 pooka
66 1.13 pooka #include "rump_private.h"
67 1.1 pooka
68 1.24 yamt static int ao_get(struct uvm_object *, voff_t, struct vm_page **,
69 1.24 yamt int *, int, vm_prot_t, int, int);
70 1.24 yamt static int ao_put(struct uvm_object *, voff_t, voff_t, int);
71 1.24 yamt
72 1.24 yamt const struct uvm_pagerops aobj_pager = {
73 1.24 yamt .pgo_get = ao_get,
74 1.24 yamt .pgo_put = ao_put,
75 1.24 yamt };
76 1.24 yamt
77 1.25 ad kmutex_t uvm_pageqlock;
78 1.25 ad
79 1.1 pooka struct uvmexp uvmexp;
80 1.7 pooka struct uvm uvm;
81 1.1 pooka
82 1.1 pooka struct vm_map rump_vmmap;
83 1.50 pooka static struct vm_map_kernel kmem_map_store;
84 1.50 pooka struct vm_map *kmem_map = &kmem_map_store.vmk_map;
85 1.32 ad const struct rb_tree_ops uvm_page_tree_ops;
86 1.1 pooka
87 1.35 pooka static struct vm_map_kernel kernel_map_store;
88 1.35 pooka struct vm_map *kernel_map = &kernel_map_store.vmk_map;
89 1.35 pooka
90 1.80 pooka static unsigned int pdaemon_waiters;
91 1.80 pooka static kmutex_t pdaemonmtx;
92 1.80 pooka static kcondvar_t pdaemoncv, oomwait;
93 1.80 pooka
94 1.1 pooka /*
95 1.1 pooka * vm pages
96 1.1 pooka */
97 1.1 pooka
98 1.22 pooka /* called with the object locked */
99 1.1 pooka struct vm_page *
100 1.76 pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
101 1.76 pooka int flags, int strat, int free_list)
102 1.1 pooka {
103 1.1 pooka struct vm_page *pg;
104 1.1 pooka
105 1.27 pooka pg = kmem_zalloc(sizeof(struct vm_page), KM_SLEEP);
106 1.1 pooka pg->offset = off;
107 1.5 pooka pg->uobject = uobj;
108 1.1 pooka
109 1.76 pooka pg->uanon = (void *)kmem_alloc(PAGE_SIZE, KM_SLEEP);
110 1.76 pooka if (flags & UVM_PGA_ZERO)
111 1.76 pooka memset(pg->uanon, 0, PAGE_SIZE);
112 1.22 pooka pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
113 1.1 pooka
114 1.31 ad TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
115 1.59 pooka uobj->uo_npages++;
116 1.21 pooka
117 1.1 pooka return pg;
118 1.1 pooka }
119 1.1 pooka
120 1.21 pooka /*
121 1.21 pooka * Release a page.
122 1.21 pooka *
123 1.22 pooka * Called with the vm object locked.
124 1.21 pooka */
125 1.1 pooka void
126 1.22 pooka uvm_pagefree(struct vm_page *pg)
127 1.1 pooka {
128 1.5 pooka struct uvm_object *uobj = pg->uobject;
129 1.1 pooka
130 1.22 pooka if (pg->flags & PG_WANTED)
131 1.22 pooka wakeup(pg);
132 1.22 pooka
133 1.59 pooka uobj->uo_npages--;
134 1.31 ad TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
135 1.27 pooka kmem_free((void *)pg->uanon, PAGE_SIZE);
136 1.27 pooka kmem_free(pg, sizeof(*pg));
137 1.1 pooka }
138 1.1 pooka
139 1.15 pooka void
140 1.61 pooka uvm_pagezero(struct vm_page *pg)
141 1.15 pooka {
142 1.15 pooka
143 1.61 pooka pg->flags &= ~PG_CLEAN;
144 1.61 pooka memset((void *)pg->uanon, 0, PAGE_SIZE);
145 1.15 pooka }
146 1.15 pooka
147 1.1 pooka /*
148 1.1 pooka * Anon object stuff
149 1.1 pooka */
150 1.1 pooka
151 1.1 pooka static int
152 1.1 pooka ao_get(struct uvm_object *uobj, voff_t off, struct vm_page **pgs,
153 1.1 pooka int *npages, int centeridx, vm_prot_t access_type,
154 1.1 pooka int advice, int flags)
155 1.1 pooka {
156 1.1 pooka struct vm_page *pg;
157 1.1 pooka int i;
158 1.1 pooka
159 1.1 pooka if (centeridx)
160 1.1 pooka panic("%s: centeridx != 0 not supported", __func__);
161 1.1 pooka
162 1.1 pooka /* loop over pages */
163 1.1 pooka off = trunc_page(off);
164 1.1 pooka for (i = 0; i < *npages; i++) {
165 1.23 pooka retrylookup:
166 1.10 pooka pg = uvm_pagelookup(uobj, off + (i << PAGE_SHIFT));
167 1.1 pooka if (pg) {
168 1.23 pooka if (pg->flags & PG_BUSY) {
169 1.23 pooka pg->flags |= PG_WANTED;
170 1.23 pooka UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
171 1.23 pooka "aogetpg", 0);
172 1.23 pooka goto retrylookup;
173 1.23 pooka }
174 1.23 pooka pg->flags |= PG_BUSY;
175 1.1 pooka pgs[i] = pg;
176 1.1 pooka } else {
177 1.76 pooka pg = uvm_pagealloc(uobj,
178 1.76 pooka off + (i << PAGE_SHIFT), NULL, UVM_PGA_ZERO);
179 1.1 pooka pgs[i] = pg;
180 1.1 pooka }
181 1.1 pooka }
182 1.26 pooka mutex_exit(&uobj->vmobjlock);
183 1.1 pooka
184 1.1 pooka return 0;
185 1.1 pooka
186 1.1 pooka }
187 1.1 pooka
188 1.1 pooka static int
189 1.1 pooka ao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
190 1.1 pooka {
191 1.1 pooka struct vm_page *pg;
192 1.1 pooka
193 1.1 pooka /* we only free all pages for now */
194 1.23 pooka if ((flags & PGO_FREE) == 0 || (flags & PGO_ALLPAGES) == 0) {
195 1.26 pooka mutex_exit(&uobj->vmobjlock);
196 1.1 pooka return 0;
197 1.23 pooka }
198 1.1 pooka
199 1.1 pooka while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL)
200 1.22 pooka uvm_pagefree(pg);
201 1.26 pooka mutex_exit(&uobj->vmobjlock);
202 1.1 pooka
203 1.1 pooka return 0;
204 1.1 pooka }
205 1.1 pooka
206 1.1 pooka struct uvm_object *
207 1.1 pooka uao_create(vsize_t size, int flags)
208 1.1 pooka {
209 1.1 pooka struct uvm_object *uobj;
210 1.1 pooka
211 1.27 pooka uobj = kmem_zalloc(sizeof(struct uvm_object), KM_SLEEP);
212 1.1 pooka uobj->pgops = &aobj_pager;
213 1.1 pooka TAILQ_INIT(&uobj->memq);
214 1.26 pooka mutex_init(&uobj->vmobjlock, MUTEX_DEFAULT, IPL_NONE);
215 1.1 pooka
216 1.1 pooka return uobj;
217 1.1 pooka }
218 1.1 pooka
219 1.1 pooka void
220 1.1 pooka uao_detach(struct uvm_object *uobj)
221 1.1 pooka {
222 1.1 pooka
223 1.29 pooka mutex_enter(&uobj->vmobjlock);
224 1.1 pooka ao_put(uobj, 0, 0, PGO_ALLPAGES | PGO_FREE);
225 1.55 pooka mutex_destroy(&uobj->vmobjlock);
226 1.27 pooka kmem_free(uobj, sizeof(*uobj));
227 1.1 pooka }
228 1.1 pooka
229 1.1 pooka /*
230 1.1 pooka * Misc routines
231 1.1 pooka */
232 1.1 pooka
233 1.61 pooka static kmutex_t pagermtx;
234 1.61 pooka
235 1.1 pooka void
236 1.79 pooka uvm_init(void)
237 1.1 pooka {
238 1.1 pooka
239 1.1 pooka uvmexp.free = 1024*1024; /* XXX */
240 1.21 pooka
241 1.61 pooka mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
242 1.25 ad mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
243 1.35 pooka
244 1.80 pooka mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
245 1.80 pooka cv_init(&pdaemoncv, "pdaemon");
246 1.80 pooka cv_init(&oomwait, "oomwait");
247 1.80 pooka
248 1.50 pooka kernel_map->pmap = pmap_kernel();
249 1.35 pooka callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
250 1.50 pooka kmem_map->pmap = pmap_kernel();
251 1.50 pooka callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
252 1.1 pooka }
253 1.1 pooka
254 1.83 pooka void
255 1.83 pooka uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
256 1.83 pooka {
257 1.83 pooka
258 1.83 pooka vm->vm_map.pmap = pmap_kernel();
259 1.83 pooka vm->vm_refcnt = 1;
260 1.83 pooka }
261 1.1 pooka
262 1.1 pooka void
263 1.7 pooka uvm_pagewire(struct vm_page *pg)
264 1.7 pooka {
265 1.7 pooka
266 1.7 pooka /* nada */
267 1.7 pooka }
268 1.7 pooka
269 1.7 pooka void
270 1.7 pooka uvm_pageunwire(struct vm_page *pg)
271 1.7 pooka {
272 1.7 pooka
273 1.7 pooka /* nada */
274 1.7 pooka }
275 1.7 pooka
276 1.83 pooka /* where's your schmonz now? */
277 1.83 pooka #define PUNLIMIT(a) \
278 1.83 pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
279 1.83 pooka void
280 1.83 pooka uvm_init_limits(struct proc *p)
281 1.83 pooka {
282 1.83 pooka
283 1.83 pooka PUNLIMIT(RLIMIT_STACK);
284 1.83 pooka PUNLIMIT(RLIMIT_DATA);
285 1.83 pooka PUNLIMIT(RLIMIT_RSS);
286 1.83 pooka PUNLIMIT(RLIMIT_AS);
287 1.83 pooka /* nice, cascade */
288 1.83 pooka }
289 1.83 pooka #undef PUNLIMIT
290 1.83 pooka
291 1.69 pooka /*
292 1.69 pooka * This satisfies the "disgusting mmap hack" used by proplib.
293 1.69 pooka * We probably should grow some more assertables to make sure we're
294 1.69 pooka * not satisfying anything we shouldn't be satisfying. At least we
295 1.69 pooka * should make sure it's the local machine we're mmapping ...
296 1.69 pooka */
297 1.49 pooka int
298 1.49 pooka uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
299 1.49 pooka vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
300 1.49 pooka {
301 1.69 pooka void *uaddr;
302 1.69 pooka int error;
303 1.49 pooka
304 1.69 pooka if (prot != (VM_PROT_READ | VM_PROT_WRITE))
305 1.69 pooka panic("uvm_mmap() variant unsupported");
306 1.69 pooka if (flags != (MAP_PRIVATE | MAP_ANON))
307 1.69 pooka panic("uvm_mmap() variant unsupported");
308 1.69 pooka /* no reason in particular, but cf. uvm_default_mapaddr() */
309 1.69 pooka if (*addr != 0)
310 1.69 pooka panic("uvm_mmap() variant unsupported");
311 1.69 pooka
312 1.81 pooka uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
313 1.69 pooka if (uaddr == NULL)
314 1.69 pooka return error;
315 1.69 pooka
316 1.69 pooka *addr = (vaddr_t)uaddr;
317 1.69 pooka return 0;
318 1.49 pooka }
319 1.49 pooka
320 1.61 pooka struct pagerinfo {
321 1.61 pooka vaddr_t pgr_kva;
322 1.61 pooka int pgr_npages;
323 1.61 pooka struct vm_page **pgr_pgs;
324 1.61 pooka bool pgr_read;
325 1.61 pooka
326 1.61 pooka LIST_ENTRY(pagerinfo) pgr_entries;
327 1.61 pooka };
328 1.61 pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
329 1.61 pooka
330 1.61 pooka /*
331 1.61 pooka * Pager "map" in routine. Instead of mapping, we allocate memory
332 1.61 pooka * and copy page contents there. Not optimal or even strictly
333 1.61 pooka * correct (the caller might modify the page contents after mapping
334 1.61 pooka * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
335 1.61 pooka */
336 1.7 pooka vaddr_t
337 1.61 pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
338 1.7 pooka {
339 1.61 pooka struct pagerinfo *pgri;
340 1.61 pooka vaddr_t curkva;
341 1.61 pooka int i;
342 1.61 pooka
343 1.61 pooka /* allocate structures */
344 1.61 pooka pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
345 1.61 pooka pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
346 1.61 pooka pgri->pgr_npages = npages;
347 1.61 pooka pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
348 1.61 pooka pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
349 1.61 pooka
350 1.61 pooka /* copy contents to "mapped" memory */
351 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
352 1.61 pooka i < npages;
353 1.61 pooka i++, curkva += PAGE_SIZE) {
354 1.61 pooka /*
355 1.61 pooka * We need to copy the previous contents of the pages to
356 1.61 pooka * the window even if we are reading from the
357 1.61 pooka * device, since the device might not fill the contents of
358 1.61 pooka * the full mapped range and we will end up corrupting
359 1.61 pooka * data when we unmap the window.
360 1.61 pooka */
361 1.61 pooka memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
362 1.61 pooka pgri->pgr_pgs[i] = pgs[i];
363 1.61 pooka }
364 1.61 pooka
365 1.61 pooka mutex_enter(&pagermtx);
366 1.61 pooka LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
367 1.61 pooka mutex_exit(&pagermtx);
368 1.7 pooka
369 1.61 pooka return pgri->pgr_kva;
370 1.7 pooka }
371 1.7 pooka
372 1.61 pooka /*
373 1.61 pooka * map out the pager window. return contents from VA to page storage
374 1.61 pooka * and free structures.
375 1.61 pooka *
376 1.61 pooka * Note: does not currently support partial frees
377 1.61 pooka */
378 1.61 pooka void
379 1.61 pooka uvm_pagermapout(vaddr_t kva, int npages)
380 1.7 pooka {
381 1.61 pooka struct pagerinfo *pgri;
382 1.61 pooka vaddr_t curkva;
383 1.61 pooka int i;
384 1.7 pooka
385 1.61 pooka mutex_enter(&pagermtx);
386 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
387 1.61 pooka if (pgri->pgr_kva == kva)
388 1.61 pooka break;
389 1.61 pooka }
390 1.61 pooka KASSERT(pgri);
391 1.61 pooka if (pgri->pgr_npages != npages)
392 1.61 pooka panic("uvm_pagermapout: partial unmapping not supported");
393 1.61 pooka LIST_REMOVE(pgri, pgr_entries);
394 1.61 pooka mutex_exit(&pagermtx);
395 1.61 pooka
396 1.61 pooka if (pgri->pgr_read) {
397 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
398 1.61 pooka i < pgri->pgr_npages;
399 1.61 pooka i++, curkva += PAGE_SIZE) {
400 1.61 pooka memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
401 1.21 pooka }
402 1.21 pooka }
403 1.10 pooka
404 1.61 pooka kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
405 1.61 pooka kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
406 1.61 pooka kmem_free(pgri, sizeof(*pgri));
407 1.7 pooka }
408 1.7 pooka
409 1.61 pooka /*
410 1.61 pooka * convert va in pager window to page structure.
411 1.61 pooka * XXX: how expensive is this (global lock, list traversal)?
412 1.61 pooka */
413 1.14 pooka struct vm_page *
414 1.14 pooka uvm_pageratop(vaddr_t va)
415 1.14 pooka {
416 1.61 pooka struct pagerinfo *pgri;
417 1.61 pooka struct vm_page *pg = NULL;
418 1.61 pooka int i;
419 1.14 pooka
420 1.61 pooka mutex_enter(&pagermtx);
421 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
422 1.61 pooka if (pgri->pgr_kva <= va
423 1.61 pooka && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
424 1.21 pooka break;
425 1.61 pooka }
426 1.61 pooka if (pgri) {
427 1.61 pooka i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
428 1.61 pooka pg = pgri->pgr_pgs[i];
429 1.61 pooka }
430 1.61 pooka mutex_exit(&pagermtx);
431 1.21 pooka
432 1.61 pooka return pg;
433 1.61 pooka }
434 1.15 pooka
435 1.61 pooka /* Called with the vm object locked */
436 1.61 pooka struct vm_page *
437 1.61 pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
438 1.61 pooka {
439 1.61 pooka struct vm_page *pg;
440 1.61 pooka
441 1.61 pooka TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
442 1.61 pooka if (pg->offset == off) {
443 1.61 pooka return pg;
444 1.61 pooka }
445 1.61 pooka }
446 1.61 pooka
447 1.61 pooka return NULL;
448 1.14 pooka }
449 1.14 pooka
450 1.7 pooka void
451 1.22 pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
452 1.22 pooka {
453 1.22 pooka struct vm_page *pg;
454 1.22 pooka int i;
455 1.22 pooka
456 1.22 pooka for (i = 0; i < npgs; i++) {
457 1.22 pooka pg = pgs[i];
458 1.22 pooka if (pg == NULL)
459 1.22 pooka continue;
460 1.22 pooka
461 1.22 pooka KASSERT(pg->flags & PG_BUSY);
462 1.22 pooka if (pg->flags & PG_WANTED)
463 1.22 pooka wakeup(pg);
464 1.36 pooka if (pg->flags & PG_RELEASED)
465 1.36 pooka uvm_pagefree(pg);
466 1.36 pooka else
467 1.36 pooka pg->flags &= ~(PG_WANTED|PG_BUSY);
468 1.22 pooka }
469 1.22 pooka }
470 1.22 pooka
471 1.22 pooka void
472 1.7 pooka uvm_estimatepageable(int *active, int *inactive)
473 1.7 pooka {
474 1.7 pooka
475 1.19 pooka /* XXX: guessing game */
476 1.19 pooka *active = 1024;
477 1.19 pooka *inactive = 1024;
478 1.7 pooka }
479 1.7 pooka
480 1.39 pooka struct vm_map_kernel *
481 1.39 pooka vm_map_to_kernel(struct vm_map *map)
482 1.39 pooka {
483 1.39 pooka
484 1.39 pooka return (struct vm_map_kernel *)map;
485 1.39 pooka }
486 1.39 pooka
487 1.41 pooka bool
488 1.41 pooka vm_map_starved_p(struct vm_map *map)
489 1.41 pooka {
490 1.41 pooka
491 1.80 pooka if (map->flags & VM_MAP_WANTVA)
492 1.80 pooka return true;
493 1.80 pooka
494 1.41 pooka return false;
495 1.41 pooka }
496 1.41 pooka
497 1.41 pooka int
498 1.41 pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
499 1.41 pooka {
500 1.41 pooka
501 1.41 pooka panic("%s: unimplemented", __func__);
502 1.41 pooka }
503 1.41 pooka
504 1.41 pooka void
505 1.41 pooka uvm_unloan(void *v, int npages, int flags)
506 1.41 pooka {
507 1.41 pooka
508 1.41 pooka panic("%s: unimplemented", __func__);
509 1.41 pooka }
510 1.41 pooka
511 1.43 pooka int
512 1.43 pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
513 1.43 pooka struct vm_page **opp)
514 1.43 pooka {
515 1.43 pooka
516 1.72 pooka return EBUSY;
517 1.43 pooka }
518 1.43 pooka
519 1.73 pooka #ifdef DEBUGPRINT
520 1.56 pooka void
521 1.56 pooka uvm_object_printit(struct uvm_object *uobj, bool full,
522 1.56 pooka void (*pr)(const char *, ...))
523 1.56 pooka {
524 1.56 pooka
525 1.75 pooka pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
526 1.56 pooka }
527 1.73 pooka #endif
528 1.56 pooka
529 1.68 pooka vaddr_t
530 1.68 pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
531 1.68 pooka {
532 1.68 pooka
533 1.68 pooka return 0;
534 1.68 pooka }
535 1.68 pooka
536 1.71 pooka int
537 1.71 pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
538 1.71 pooka vm_prot_t prot, bool set_max)
539 1.71 pooka {
540 1.71 pooka
541 1.71 pooka return EOPNOTSUPP;
542 1.71 pooka }
543 1.71 pooka
544 1.9 pooka /*
545 1.12 pooka * UVM km
546 1.12 pooka */
547 1.12 pooka
548 1.12 pooka vaddr_t
549 1.12 pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
550 1.12 pooka {
551 1.82 pooka void *rv, *desired = NULL;
552 1.50 pooka int alignbit, error;
553 1.50 pooka
554 1.82 pooka #ifdef __x86_64__
555 1.82 pooka /*
556 1.82 pooka * On amd64, allocate all module memory from the lowest 2GB.
557 1.82 pooka * This is because NetBSD kernel modules are compiled
558 1.82 pooka * with -mcmodel=kernel and reserve only 4 bytes for
559 1.82 pooka * offsets. If we load code compiled with -mcmodel=kernel
560 1.82 pooka * anywhere except the lowest or highest 2GB, it will not
561 1.82 pooka * work. Since userspace does not have access to the highest
562 1.82 pooka * 2GB, use the lowest 2GB.
563 1.82 pooka *
564 1.82 pooka * Note: this assumes the rump kernel resides in
565 1.82 pooka * the lowest 2GB as well.
566 1.82 pooka *
567 1.82 pooka * Note2: yes, it's a quick hack, but since this the only
568 1.82 pooka * place where we care about the map we're allocating from,
569 1.82 pooka * just use a simple "if" instead of coming up with a fancy
570 1.82 pooka * generic solution.
571 1.82 pooka */
572 1.82 pooka extern struct vm_map *module_map;
573 1.82 pooka if (map == module_map) {
574 1.82 pooka desired = (void *)(0x80000000 - size);
575 1.82 pooka }
576 1.82 pooka #endif
577 1.82 pooka
578 1.50 pooka alignbit = 0;
579 1.50 pooka if (align) {
580 1.50 pooka alignbit = ffs(align)-1;
581 1.50 pooka }
582 1.50 pooka
583 1.82 pooka rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
584 1.81 pooka &error);
585 1.50 pooka if (rv == NULL) {
586 1.50 pooka if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
587 1.50 pooka return 0;
588 1.50 pooka else
589 1.50 pooka panic("uvm_km_alloc failed");
590 1.50 pooka }
591 1.12 pooka
592 1.50 pooka if (flags & UVM_KMF_ZERO)
593 1.12 pooka memset(rv, 0, size);
594 1.12 pooka
595 1.12 pooka return (vaddr_t)rv;
596 1.12 pooka }
597 1.12 pooka
598 1.12 pooka void
599 1.12 pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
600 1.12 pooka {
601 1.12 pooka
602 1.50 pooka rumpuser_unmap((void *)vaddr, size);
603 1.12 pooka }
604 1.12 pooka
605 1.12 pooka struct vm_map *
606 1.12 pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
607 1.12 pooka vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
608 1.12 pooka {
609 1.12 pooka
610 1.12 pooka return (struct vm_map *)417416;
611 1.12 pooka }
612 1.40 pooka
613 1.40 pooka vaddr_t
614 1.40 pooka uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
615 1.40 pooka {
616 1.40 pooka
617 1.80 pooka return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
618 1.80 pooka waitok, "kmalloc");
619 1.40 pooka }
620 1.40 pooka
621 1.40 pooka void
622 1.40 pooka uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
623 1.40 pooka {
624 1.40 pooka
625 1.80 pooka rumpuser_free((void *)addr);
626 1.50 pooka }
627 1.50 pooka
628 1.50 pooka vaddr_t
629 1.50 pooka uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
630 1.50 pooka {
631 1.50 pooka
632 1.77 pooka return uvm_km_alloc_poolpage(map, waitok);
633 1.50 pooka }
634 1.50 pooka
635 1.50 pooka void
636 1.50 pooka uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
637 1.50 pooka {
638 1.50 pooka
639 1.77 pooka uvm_km_free_poolpage(map, vaddr);
640 1.40 pooka }
641 1.57 pooka
642 1.74 pooka void
643 1.74 pooka uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
644 1.74 pooka {
645 1.74 pooka
646 1.74 pooka /* we eventually maybe want some model for available memory */
647 1.74 pooka }
648 1.74 pooka
649 1.57 pooka /*
650 1.57 pooka * Mapping and vm space locking routines.
651 1.57 pooka * XXX: these don't work for non-local vmspaces
652 1.57 pooka */
653 1.57 pooka int
654 1.57 pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
655 1.57 pooka {
656 1.57 pooka
657 1.83 pooka KASSERT(vs == &vmspace0);
658 1.57 pooka return 0;
659 1.57 pooka }
660 1.57 pooka
661 1.57 pooka void
662 1.57 pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
663 1.57 pooka {
664 1.57 pooka
665 1.83 pooka KASSERT(vs == &vmspace0);
666 1.57 pooka }
667 1.57 pooka
668 1.57 pooka void
669 1.57 pooka vmapbuf(struct buf *bp, vsize_t len)
670 1.57 pooka {
671 1.57 pooka
672 1.57 pooka bp->b_saveaddr = bp->b_data;
673 1.57 pooka }
674 1.57 pooka
675 1.57 pooka void
676 1.57 pooka vunmapbuf(struct buf *bp, vsize_t len)
677 1.57 pooka {
678 1.57 pooka
679 1.57 pooka bp->b_data = bp->b_saveaddr;
680 1.57 pooka bp->b_saveaddr = 0;
681 1.57 pooka }
682 1.61 pooka
683 1.61 pooka void
684 1.83 pooka uvmspace_addref(struct vmspace *vm)
685 1.83 pooka {
686 1.83 pooka
687 1.83 pooka /*
688 1.83 pooka * there is only vmspace0. we're not planning on
689 1.83 pooka * feeding it to the fishes.
690 1.83 pooka */
691 1.83 pooka }
692 1.83 pooka
693 1.83 pooka void
694 1.66 pooka uvmspace_free(struct vmspace *vm)
695 1.66 pooka {
696 1.66 pooka
697 1.66 pooka /* nothing for now */
698 1.66 pooka }
699 1.66 pooka
700 1.66 pooka int
701 1.66 pooka uvm_io(struct vm_map *map, struct uio *uio)
702 1.66 pooka {
703 1.66 pooka
704 1.66 pooka /*
705 1.66 pooka * just do direct uio for now. but this needs some vmspace
706 1.66 pooka * olympics for rump_sysproxy.
707 1.66 pooka */
708 1.66 pooka return uiomove((void *)(vaddr_t)uio->uio_offset, uio->uio_resid, uio);
709 1.66 pooka }
710 1.66 pooka
711 1.61 pooka /*
712 1.61 pooka * page life cycle stuff. it really doesn't exist, so just stubs.
713 1.61 pooka */
714 1.61 pooka
715 1.61 pooka void
716 1.61 pooka uvm_pageactivate(struct vm_page *pg)
717 1.61 pooka {
718 1.61 pooka
719 1.61 pooka /* nada */
720 1.61 pooka }
721 1.61 pooka
722 1.61 pooka void
723 1.61 pooka uvm_pagedeactivate(struct vm_page *pg)
724 1.61 pooka {
725 1.61 pooka
726 1.61 pooka /* nada */
727 1.61 pooka }
728 1.61 pooka
729 1.61 pooka void
730 1.61 pooka uvm_pagedequeue(struct vm_page *pg)
731 1.61 pooka {
732 1.61 pooka
733 1.61 pooka /* nada*/
734 1.61 pooka }
735 1.61 pooka
736 1.61 pooka void
737 1.61 pooka uvm_pageenqueue(struct vm_page *pg)
738 1.61 pooka {
739 1.61 pooka
740 1.61 pooka /* nada */
741 1.61 pooka }
742 1.80 pooka
743 1.80 pooka /*
744 1.80 pooka * Routines related to the Page Baroness.
745 1.80 pooka */
746 1.80 pooka
747 1.80 pooka void
748 1.80 pooka uvm_wait(const char *msg)
749 1.80 pooka {
750 1.80 pooka
751 1.80 pooka if (__predict_false(curlwp == uvm.pagedaemon_lwp))
752 1.80 pooka panic("pagedaemon out of memory");
753 1.80 pooka if (__predict_false(rump_threads == 0))
754 1.80 pooka panic("pagedaemon missing (RUMP_THREADS = 0)");
755 1.80 pooka
756 1.80 pooka mutex_enter(&pdaemonmtx);
757 1.80 pooka pdaemon_waiters++;
758 1.80 pooka cv_signal(&pdaemoncv);
759 1.80 pooka cv_wait(&oomwait, &pdaemonmtx);
760 1.80 pooka mutex_exit(&pdaemonmtx);
761 1.80 pooka }
762 1.80 pooka
763 1.80 pooka void
764 1.80 pooka uvm_pageout_start(int npages)
765 1.80 pooka {
766 1.80 pooka
767 1.80 pooka /* we don't have the heuristics */
768 1.80 pooka }
769 1.80 pooka
770 1.80 pooka void
771 1.80 pooka uvm_pageout_done(int npages)
772 1.80 pooka {
773 1.80 pooka
774 1.80 pooka /* could wakeup waiters, but just let the pagedaemon do it */
775 1.80 pooka }
776 1.80 pooka
777 1.80 pooka /*
778 1.80 pooka * Under-construction page mistress. This is lacking vfs support, namely:
779 1.80 pooka *
780 1.80 pooka * 1) draining vfs buffers
781 1.80 pooka * 2) paging out pages in vm vnode objects
782 1.80 pooka * (we will not page out anon memory on the basis that
783 1.80 pooka * that's the task of the host)
784 1.80 pooka */
785 1.80 pooka
786 1.80 pooka void
787 1.80 pooka uvm_pageout(void *arg)
788 1.80 pooka {
789 1.80 pooka struct pool *pp, *pp_first;
790 1.80 pooka uint64_t where;
791 1.80 pooka int timo = 0;
792 1.80 pooka bool succ;
793 1.80 pooka
794 1.80 pooka mutex_enter(&pdaemonmtx);
795 1.80 pooka for (;;) {
796 1.80 pooka cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
797 1.80 pooka uvmexp.pdwoke++;
798 1.80 pooka kernel_map->flags |= VM_MAP_WANTVA;
799 1.80 pooka mutex_exit(&pdaemonmtx);
800 1.80 pooka
801 1.80 pooka succ = false;
802 1.80 pooka pool_drain_start(&pp_first, &where);
803 1.80 pooka pp = pp_first;
804 1.80 pooka for (;;) {
805 1.80 pooka succ = pool_drain_end(pp, where);
806 1.80 pooka if (succ)
807 1.80 pooka break;
808 1.80 pooka pool_drain_start(&pp, &where);
809 1.80 pooka if (pp == pp_first) {
810 1.80 pooka succ = pool_drain_end(pp, where);
811 1.80 pooka break;
812 1.80 pooka }
813 1.80 pooka }
814 1.80 pooka mutex_enter(&pdaemonmtx);
815 1.80 pooka
816 1.80 pooka if (!succ) {
817 1.80 pooka rumpuser_dprintf("pagedaemoness: failed to reclaim "
818 1.80 pooka "memory ... sleeping (deadlock?)\n");
819 1.80 pooka timo = hz;
820 1.80 pooka continue;
821 1.80 pooka }
822 1.80 pooka kernel_map->flags &= ~VM_MAP_WANTVA;
823 1.80 pooka timo = 0;
824 1.80 pooka
825 1.80 pooka if (pdaemon_waiters) {
826 1.80 pooka pdaemon_waiters = 0;
827 1.80 pooka cv_broadcast(&oomwait);
828 1.80 pooka }
829 1.80 pooka }
830 1.80 pooka
831 1.80 pooka panic("you can swap out any time you like, but you can never leave");
832 1.80 pooka }
833 1.80 pooka
834 1.80 pooka /*
835 1.80 pooka * In a regular kernel the pagedaemon is activated when memory becomes
836 1.80 pooka * low. In a virtual rump kernel we do not know exactly how much memory
837 1.80 pooka * we have available -- it depends on the conditions on the host.
838 1.80 pooka * Therefore, we cannot preemptively kick the pagedaemon. Rather, we
839 1.80 pooka * wait until things we desperate and we're forced to uvm_wait().
840 1.80 pooka *
841 1.80 pooka * The alternative would be to allocate a huge chunk of memory at
842 1.80 pooka * startup, but that solution has a number of problems including
843 1.80 pooka * being a resource hog, failing anyway due to host memory overcommit
844 1.80 pooka * and core dump size.
845 1.80 pooka */
846 1.80 pooka
847 1.80 pooka void
848 1.80 pooka uvm_kick_pdaemon()
849 1.80 pooka {
850 1.80 pooka
851 1.80 pooka /* nada */
852 1.80 pooka }
853 1.80 pooka
854 1.80 pooka void *
855 1.80 pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
856 1.80 pooka {
857 1.80 pooka void *rv;
858 1.80 pooka
859 1.80 pooka again:
860 1.80 pooka rv = rumpuser_malloc(howmuch, alignment);
861 1.80 pooka if (__predict_false(rv == NULL && waitok)) {
862 1.80 pooka uvm_wait(wmsg);
863 1.80 pooka goto again;
864 1.80 pooka }
865 1.80 pooka
866 1.80 pooka return rv;
867 1.80 pooka }
868