Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.83
      1  1.83  pooka /*	$NetBSD: vm.c,v 1.83 2010/06/10 21:40:42 pooka Exp $	*/
      2   1.1  pooka 
      3   1.1  pooka /*
      4  1.76  pooka  * Copyright (c) 2007-2010 Antti Kantee.  All Rights Reserved.
      5   1.1  pooka  *
      6  1.76  pooka  * Development of this software was supported by
      7  1.76  pooka  * The Finnish Cultural Foundation and the Research Foundation of
      8  1.76  pooka  * The Helsinki University of Technology.
      9   1.1  pooka  *
     10   1.1  pooka  * Redistribution and use in source and binary forms, with or without
     11   1.1  pooka  * modification, are permitted provided that the following conditions
     12   1.1  pooka  * are met:
     13   1.1  pooka  * 1. Redistributions of source code must retain the above copyright
     14   1.1  pooka  *    notice, this list of conditions and the following disclaimer.
     15   1.1  pooka  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1  pooka  *    notice, this list of conditions and the following disclaimer in the
     17   1.1  pooka  *    documentation and/or other materials provided with the distribution.
     18   1.1  pooka  *
     19   1.1  pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20   1.1  pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21   1.1  pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22   1.1  pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23   1.1  pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24   1.1  pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25   1.1  pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26   1.1  pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27   1.1  pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28   1.1  pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29   1.1  pooka  * SUCH DAMAGE.
     30   1.1  pooka  */
     31   1.1  pooka 
     32   1.1  pooka /*
     33   1.1  pooka  * Virtual memory emulation routines.  Contents:
     34   1.1  pooka  *  + anon objects & pager
     35   1.1  pooka  *  + misc support routines
     36   1.1  pooka  */
     37   1.1  pooka 
     38   1.1  pooka /*
     39   1.5  pooka  * XXX: we abuse pg->uanon for the virtual address of the storage
     40   1.1  pooka  * for each page.  phys_addr would fit the job description better,
     41   1.1  pooka  * except that it will create unnecessary lossage on some platforms
     42   1.1  pooka  * due to not being a pointer type.
     43   1.1  pooka  */
     44   1.1  pooka 
     45  1.48  pooka #include <sys/cdefs.h>
     46  1.83  pooka __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.83 2010/06/10 21:40:42 pooka Exp $");
     47  1.48  pooka 
     48   1.1  pooka #include <sys/param.h>
     49  1.40  pooka #include <sys/atomic.h>
     50  1.80  pooka #include <sys/buf.h>
     51  1.80  pooka #include <sys/kernel.h>
     52  1.67  pooka #include <sys/kmem.h>
     53  1.69  pooka #include <sys/mman.h>
     54   1.1  pooka #include <sys/null.h>
     55   1.1  pooka #include <sys/vnode.h>
     56   1.1  pooka 
     57  1.34  pooka #include <machine/pmap.h>
     58  1.34  pooka 
     59  1.34  pooka #include <rump/rumpuser.h>
     60  1.34  pooka 
     61   1.1  pooka #include <uvm/uvm.h>
     62  1.56  pooka #include <uvm/uvm_ddb.h>
     63   1.1  pooka #include <uvm/uvm_prot.h>
     64  1.58     he #include <uvm/uvm_readahead.h>
     65   1.1  pooka 
     66  1.13  pooka #include "rump_private.h"
     67   1.1  pooka 
     68  1.24   yamt static int ao_get(struct uvm_object *, voff_t, struct vm_page **,
     69  1.24   yamt 	int *, int, vm_prot_t, int, int);
     70  1.24   yamt static int ao_put(struct uvm_object *, voff_t, voff_t, int);
     71  1.24   yamt 
     72  1.24   yamt const struct uvm_pagerops aobj_pager = {
     73  1.24   yamt 	.pgo_get = ao_get,
     74  1.24   yamt 	.pgo_put = ao_put,
     75  1.24   yamt };
     76  1.24   yamt 
     77  1.25     ad kmutex_t uvm_pageqlock;
     78  1.25     ad 
     79   1.1  pooka struct uvmexp uvmexp;
     80   1.7  pooka struct uvm uvm;
     81   1.1  pooka 
     82   1.1  pooka struct vm_map rump_vmmap;
     83  1.50  pooka static struct vm_map_kernel kmem_map_store;
     84  1.50  pooka struct vm_map *kmem_map = &kmem_map_store.vmk_map;
     85  1.32     ad const struct rb_tree_ops uvm_page_tree_ops;
     86   1.1  pooka 
     87  1.35  pooka static struct vm_map_kernel kernel_map_store;
     88  1.35  pooka struct vm_map *kernel_map = &kernel_map_store.vmk_map;
     89  1.35  pooka 
     90  1.80  pooka static unsigned int pdaemon_waiters;
     91  1.80  pooka static kmutex_t pdaemonmtx;
     92  1.80  pooka static kcondvar_t pdaemoncv, oomwait;
     93  1.80  pooka 
     94   1.1  pooka /*
     95   1.1  pooka  * vm pages
     96   1.1  pooka  */
     97   1.1  pooka 
     98  1.22  pooka /* called with the object locked */
     99   1.1  pooka struct vm_page *
    100  1.76  pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    101  1.76  pooka 	int flags, int strat, int free_list)
    102   1.1  pooka {
    103   1.1  pooka 	struct vm_page *pg;
    104   1.1  pooka 
    105  1.27  pooka 	pg = kmem_zalloc(sizeof(struct vm_page), KM_SLEEP);
    106   1.1  pooka 	pg->offset = off;
    107   1.5  pooka 	pg->uobject = uobj;
    108   1.1  pooka 
    109  1.76  pooka 	pg->uanon = (void *)kmem_alloc(PAGE_SIZE, KM_SLEEP);
    110  1.76  pooka 	if (flags & UVM_PGA_ZERO)
    111  1.76  pooka 		memset(pg->uanon, 0, PAGE_SIZE);
    112  1.22  pooka 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    113   1.1  pooka 
    114  1.31     ad 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    115  1.59  pooka 	uobj->uo_npages++;
    116  1.21  pooka 
    117   1.1  pooka 	return pg;
    118   1.1  pooka }
    119   1.1  pooka 
    120  1.21  pooka /*
    121  1.21  pooka  * Release a page.
    122  1.21  pooka  *
    123  1.22  pooka  * Called with the vm object locked.
    124  1.21  pooka  */
    125   1.1  pooka void
    126  1.22  pooka uvm_pagefree(struct vm_page *pg)
    127   1.1  pooka {
    128   1.5  pooka 	struct uvm_object *uobj = pg->uobject;
    129   1.1  pooka 
    130  1.22  pooka 	if (pg->flags & PG_WANTED)
    131  1.22  pooka 		wakeup(pg);
    132  1.22  pooka 
    133  1.59  pooka 	uobj->uo_npages--;
    134  1.31     ad 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    135  1.27  pooka 	kmem_free((void *)pg->uanon, PAGE_SIZE);
    136  1.27  pooka 	kmem_free(pg, sizeof(*pg));
    137   1.1  pooka }
    138   1.1  pooka 
    139  1.15  pooka void
    140  1.61  pooka uvm_pagezero(struct vm_page *pg)
    141  1.15  pooka {
    142  1.15  pooka 
    143  1.61  pooka 	pg->flags &= ~PG_CLEAN;
    144  1.61  pooka 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    145  1.15  pooka }
    146  1.15  pooka 
    147   1.1  pooka /*
    148   1.1  pooka  * Anon object stuff
    149   1.1  pooka  */
    150   1.1  pooka 
    151   1.1  pooka static int
    152   1.1  pooka ao_get(struct uvm_object *uobj, voff_t off, struct vm_page **pgs,
    153   1.1  pooka 	int *npages, int centeridx, vm_prot_t access_type,
    154   1.1  pooka 	int advice, int flags)
    155   1.1  pooka {
    156   1.1  pooka 	struct vm_page *pg;
    157   1.1  pooka 	int i;
    158   1.1  pooka 
    159   1.1  pooka 	if (centeridx)
    160   1.1  pooka 		panic("%s: centeridx != 0 not supported", __func__);
    161   1.1  pooka 
    162   1.1  pooka 	/* loop over pages */
    163   1.1  pooka 	off = trunc_page(off);
    164   1.1  pooka 	for (i = 0; i < *npages; i++) {
    165  1.23  pooka  retrylookup:
    166  1.10  pooka 		pg = uvm_pagelookup(uobj, off + (i << PAGE_SHIFT));
    167   1.1  pooka 		if (pg) {
    168  1.23  pooka 			if (pg->flags & PG_BUSY) {
    169  1.23  pooka 				pg->flags |= PG_WANTED;
    170  1.23  pooka 				UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    171  1.23  pooka 				    "aogetpg", 0);
    172  1.23  pooka 				goto retrylookup;
    173  1.23  pooka 			}
    174  1.23  pooka 			pg->flags |= PG_BUSY;
    175   1.1  pooka 			pgs[i] = pg;
    176   1.1  pooka 		} else {
    177  1.76  pooka 			pg = uvm_pagealloc(uobj,
    178  1.76  pooka 			    off + (i << PAGE_SHIFT), NULL, UVM_PGA_ZERO);
    179   1.1  pooka 			pgs[i] = pg;
    180   1.1  pooka 		}
    181   1.1  pooka 	}
    182  1.26  pooka 	mutex_exit(&uobj->vmobjlock);
    183   1.1  pooka 
    184   1.1  pooka 	return 0;
    185   1.1  pooka 
    186   1.1  pooka }
    187   1.1  pooka 
    188   1.1  pooka static int
    189   1.1  pooka ao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
    190   1.1  pooka {
    191   1.1  pooka 	struct vm_page *pg;
    192   1.1  pooka 
    193   1.1  pooka 	/* we only free all pages for now */
    194  1.23  pooka 	if ((flags & PGO_FREE) == 0 || (flags & PGO_ALLPAGES) == 0) {
    195  1.26  pooka 		mutex_exit(&uobj->vmobjlock);
    196   1.1  pooka 		return 0;
    197  1.23  pooka 	}
    198   1.1  pooka 
    199   1.1  pooka 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL)
    200  1.22  pooka 		uvm_pagefree(pg);
    201  1.26  pooka 	mutex_exit(&uobj->vmobjlock);
    202   1.1  pooka 
    203   1.1  pooka 	return 0;
    204   1.1  pooka }
    205   1.1  pooka 
    206   1.1  pooka struct uvm_object *
    207   1.1  pooka uao_create(vsize_t size, int flags)
    208   1.1  pooka {
    209   1.1  pooka 	struct uvm_object *uobj;
    210   1.1  pooka 
    211  1.27  pooka 	uobj = kmem_zalloc(sizeof(struct uvm_object), KM_SLEEP);
    212   1.1  pooka 	uobj->pgops = &aobj_pager;
    213   1.1  pooka 	TAILQ_INIT(&uobj->memq);
    214  1.26  pooka 	mutex_init(&uobj->vmobjlock, MUTEX_DEFAULT, IPL_NONE);
    215   1.1  pooka 
    216   1.1  pooka 	return uobj;
    217   1.1  pooka }
    218   1.1  pooka 
    219   1.1  pooka void
    220   1.1  pooka uao_detach(struct uvm_object *uobj)
    221   1.1  pooka {
    222   1.1  pooka 
    223  1.29  pooka 	mutex_enter(&uobj->vmobjlock);
    224   1.1  pooka 	ao_put(uobj, 0, 0, PGO_ALLPAGES | PGO_FREE);
    225  1.55  pooka 	mutex_destroy(&uobj->vmobjlock);
    226  1.27  pooka 	kmem_free(uobj, sizeof(*uobj));
    227   1.1  pooka }
    228   1.1  pooka 
    229   1.1  pooka /*
    230   1.1  pooka  * Misc routines
    231   1.1  pooka  */
    232   1.1  pooka 
    233  1.61  pooka static kmutex_t pagermtx;
    234  1.61  pooka 
    235   1.1  pooka void
    236  1.79  pooka uvm_init(void)
    237   1.1  pooka {
    238   1.1  pooka 
    239   1.1  pooka 	uvmexp.free = 1024*1024; /* XXX */
    240  1.21  pooka 
    241  1.61  pooka 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    242  1.25     ad 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    243  1.35  pooka 
    244  1.80  pooka 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    245  1.80  pooka 	cv_init(&pdaemoncv, "pdaemon");
    246  1.80  pooka 	cv_init(&oomwait, "oomwait");
    247  1.80  pooka 
    248  1.50  pooka 	kernel_map->pmap = pmap_kernel();
    249  1.35  pooka 	callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
    250  1.50  pooka 	kmem_map->pmap = pmap_kernel();
    251  1.50  pooka 	callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
    252   1.1  pooka }
    253   1.1  pooka 
    254  1.83  pooka void
    255  1.83  pooka uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    256  1.83  pooka {
    257  1.83  pooka 
    258  1.83  pooka 	vm->vm_map.pmap = pmap_kernel();
    259  1.83  pooka 	vm->vm_refcnt = 1;
    260  1.83  pooka }
    261   1.1  pooka 
    262   1.1  pooka void
    263   1.7  pooka uvm_pagewire(struct vm_page *pg)
    264   1.7  pooka {
    265   1.7  pooka 
    266   1.7  pooka 	/* nada */
    267   1.7  pooka }
    268   1.7  pooka 
    269   1.7  pooka void
    270   1.7  pooka uvm_pageunwire(struct vm_page *pg)
    271   1.7  pooka {
    272   1.7  pooka 
    273   1.7  pooka 	/* nada */
    274   1.7  pooka }
    275   1.7  pooka 
    276  1.83  pooka /* where's your schmonz now? */
    277  1.83  pooka #define PUNLIMIT(a)	\
    278  1.83  pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    279  1.83  pooka void
    280  1.83  pooka uvm_init_limits(struct proc *p)
    281  1.83  pooka {
    282  1.83  pooka 
    283  1.83  pooka 	PUNLIMIT(RLIMIT_STACK);
    284  1.83  pooka 	PUNLIMIT(RLIMIT_DATA);
    285  1.83  pooka 	PUNLIMIT(RLIMIT_RSS);
    286  1.83  pooka 	PUNLIMIT(RLIMIT_AS);
    287  1.83  pooka 	/* nice, cascade */
    288  1.83  pooka }
    289  1.83  pooka #undef PUNLIMIT
    290  1.83  pooka 
    291  1.69  pooka /*
    292  1.69  pooka  * This satisfies the "disgusting mmap hack" used by proplib.
    293  1.69  pooka  * We probably should grow some more assertables to make sure we're
    294  1.69  pooka  * not satisfying anything we shouldn't be satisfying.  At least we
    295  1.69  pooka  * should make sure it's the local machine we're mmapping ...
    296  1.69  pooka  */
    297  1.49  pooka int
    298  1.49  pooka uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    299  1.49  pooka 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    300  1.49  pooka {
    301  1.69  pooka 	void *uaddr;
    302  1.69  pooka 	int error;
    303  1.49  pooka 
    304  1.69  pooka 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    305  1.69  pooka 		panic("uvm_mmap() variant unsupported");
    306  1.69  pooka 	if (flags != (MAP_PRIVATE | MAP_ANON))
    307  1.69  pooka 		panic("uvm_mmap() variant unsupported");
    308  1.69  pooka 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    309  1.69  pooka 	if (*addr != 0)
    310  1.69  pooka 		panic("uvm_mmap() variant unsupported");
    311  1.69  pooka 
    312  1.81  pooka 	uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    313  1.69  pooka 	if (uaddr == NULL)
    314  1.69  pooka 		return error;
    315  1.69  pooka 
    316  1.69  pooka 	*addr = (vaddr_t)uaddr;
    317  1.69  pooka 	return 0;
    318  1.49  pooka }
    319  1.49  pooka 
    320  1.61  pooka struct pagerinfo {
    321  1.61  pooka 	vaddr_t pgr_kva;
    322  1.61  pooka 	int pgr_npages;
    323  1.61  pooka 	struct vm_page **pgr_pgs;
    324  1.61  pooka 	bool pgr_read;
    325  1.61  pooka 
    326  1.61  pooka 	LIST_ENTRY(pagerinfo) pgr_entries;
    327  1.61  pooka };
    328  1.61  pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    329  1.61  pooka 
    330  1.61  pooka /*
    331  1.61  pooka  * Pager "map" in routine.  Instead of mapping, we allocate memory
    332  1.61  pooka  * and copy page contents there.  Not optimal or even strictly
    333  1.61  pooka  * correct (the caller might modify the page contents after mapping
    334  1.61  pooka  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    335  1.61  pooka  */
    336   1.7  pooka vaddr_t
    337  1.61  pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    338   1.7  pooka {
    339  1.61  pooka 	struct pagerinfo *pgri;
    340  1.61  pooka 	vaddr_t curkva;
    341  1.61  pooka 	int i;
    342  1.61  pooka 
    343  1.61  pooka 	/* allocate structures */
    344  1.61  pooka 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    345  1.61  pooka 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    346  1.61  pooka 	pgri->pgr_npages = npages;
    347  1.61  pooka 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    348  1.61  pooka 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    349  1.61  pooka 
    350  1.61  pooka 	/* copy contents to "mapped" memory */
    351  1.61  pooka 	for (i = 0, curkva = pgri->pgr_kva;
    352  1.61  pooka 	    i < npages;
    353  1.61  pooka 	    i++, curkva += PAGE_SIZE) {
    354  1.61  pooka 		/*
    355  1.61  pooka 		 * We need to copy the previous contents of the pages to
    356  1.61  pooka 		 * the window even if we are reading from the
    357  1.61  pooka 		 * device, since the device might not fill the contents of
    358  1.61  pooka 		 * the full mapped range and we will end up corrupting
    359  1.61  pooka 		 * data when we unmap the window.
    360  1.61  pooka 		 */
    361  1.61  pooka 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    362  1.61  pooka 		pgri->pgr_pgs[i] = pgs[i];
    363  1.61  pooka 	}
    364  1.61  pooka 
    365  1.61  pooka 	mutex_enter(&pagermtx);
    366  1.61  pooka 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    367  1.61  pooka 	mutex_exit(&pagermtx);
    368   1.7  pooka 
    369  1.61  pooka 	return pgri->pgr_kva;
    370   1.7  pooka }
    371   1.7  pooka 
    372  1.61  pooka /*
    373  1.61  pooka  * map out the pager window.  return contents from VA to page storage
    374  1.61  pooka  * and free structures.
    375  1.61  pooka  *
    376  1.61  pooka  * Note: does not currently support partial frees
    377  1.61  pooka  */
    378  1.61  pooka void
    379  1.61  pooka uvm_pagermapout(vaddr_t kva, int npages)
    380   1.7  pooka {
    381  1.61  pooka 	struct pagerinfo *pgri;
    382  1.61  pooka 	vaddr_t curkva;
    383  1.61  pooka 	int i;
    384   1.7  pooka 
    385  1.61  pooka 	mutex_enter(&pagermtx);
    386  1.61  pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    387  1.61  pooka 		if (pgri->pgr_kva == kva)
    388  1.61  pooka 			break;
    389  1.61  pooka 	}
    390  1.61  pooka 	KASSERT(pgri);
    391  1.61  pooka 	if (pgri->pgr_npages != npages)
    392  1.61  pooka 		panic("uvm_pagermapout: partial unmapping not supported");
    393  1.61  pooka 	LIST_REMOVE(pgri, pgr_entries);
    394  1.61  pooka 	mutex_exit(&pagermtx);
    395  1.61  pooka 
    396  1.61  pooka 	if (pgri->pgr_read) {
    397  1.61  pooka 		for (i = 0, curkva = pgri->pgr_kva;
    398  1.61  pooka 		    i < pgri->pgr_npages;
    399  1.61  pooka 		    i++, curkva += PAGE_SIZE) {
    400  1.61  pooka 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    401  1.21  pooka 		}
    402  1.21  pooka 	}
    403  1.10  pooka 
    404  1.61  pooka 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    405  1.61  pooka 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    406  1.61  pooka 	kmem_free(pgri, sizeof(*pgri));
    407   1.7  pooka }
    408   1.7  pooka 
    409  1.61  pooka /*
    410  1.61  pooka  * convert va in pager window to page structure.
    411  1.61  pooka  * XXX: how expensive is this (global lock, list traversal)?
    412  1.61  pooka  */
    413  1.14  pooka struct vm_page *
    414  1.14  pooka uvm_pageratop(vaddr_t va)
    415  1.14  pooka {
    416  1.61  pooka 	struct pagerinfo *pgri;
    417  1.61  pooka 	struct vm_page *pg = NULL;
    418  1.61  pooka 	int i;
    419  1.14  pooka 
    420  1.61  pooka 	mutex_enter(&pagermtx);
    421  1.61  pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    422  1.61  pooka 		if (pgri->pgr_kva <= va
    423  1.61  pooka 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    424  1.21  pooka 			break;
    425  1.61  pooka 	}
    426  1.61  pooka 	if (pgri) {
    427  1.61  pooka 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    428  1.61  pooka 		pg = pgri->pgr_pgs[i];
    429  1.61  pooka 	}
    430  1.61  pooka 	mutex_exit(&pagermtx);
    431  1.21  pooka 
    432  1.61  pooka 	return pg;
    433  1.61  pooka }
    434  1.15  pooka 
    435  1.61  pooka /* Called with the vm object locked */
    436  1.61  pooka struct vm_page *
    437  1.61  pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    438  1.61  pooka {
    439  1.61  pooka 	struct vm_page *pg;
    440  1.61  pooka 
    441  1.61  pooka 	TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
    442  1.61  pooka 		if (pg->offset == off) {
    443  1.61  pooka 			return pg;
    444  1.61  pooka 		}
    445  1.61  pooka 	}
    446  1.61  pooka 
    447  1.61  pooka 	return NULL;
    448  1.14  pooka }
    449  1.14  pooka 
    450   1.7  pooka void
    451  1.22  pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
    452  1.22  pooka {
    453  1.22  pooka 	struct vm_page *pg;
    454  1.22  pooka 	int i;
    455  1.22  pooka 
    456  1.22  pooka 	for (i = 0; i < npgs; i++) {
    457  1.22  pooka 		pg = pgs[i];
    458  1.22  pooka 		if (pg == NULL)
    459  1.22  pooka 			continue;
    460  1.22  pooka 
    461  1.22  pooka 		KASSERT(pg->flags & PG_BUSY);
    462  1.22  pooka 		if (pg->flags & PG_WANTED)
    463  1.22  pooka 			wakeup(pg);
    464  1.36  pooka 		if (pg->flags & PG_RELEASED)
    465  1.36  pooka 			uvm_pagefree(pg);
    466  1.36  pooka 		else
    467  1.36  pooka 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    468  1.22  pooka 	}
    469  1.22  pooka }
    470  1.22  pooka 
    471  1.22  pooka void
    472   1.7  pooka uvm_estimatepageable(int *active, int *inactive)
    473   1.7  pooka {
    474   1.7  pooka 
    475  1.19  pooka 	/* XXX: guessing game */
    476  1.19  pooka 	*active = 1024;
    477  1.19  pooka 	*inactive = 1024;
    478   1.7  pooka }
    479   1.7  pooka 
    480  1.39  pooka struct vm_map_kernel *
    481  1.39  pooka vm_map_to_kernel(struct vm_map *map)
    482  1.39  pooka {
    483  1.39  pooka 
    484  1.39  pooka 	return (struct vm_map_kernel *)map;
    485  1.39  pooka }
    486  1.39  pooka 
    487  1.41  pooka bool
    488  1.41  pooka vm_map_starved_p(struct vm_map *map)
    489  1.41  pooka {
    490  1.41  pooka 
    491  1.80  pooka 	if (map->flags & VM_MAP_WANTVA)
    492  1.80  pooka 		return true;
    493  1.80  pooka 
    494  1.41  pooka 	return false;
    495  1.41  pooka }
    496  1.41  pooka 
    497  1.41  pooka int
    498  1.41  pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    499  1.41  pooka {
    500  1.41  pooka 
    501  1.41  pooka 	panic("%s: unimplemented", __func__);
    502  1.41  pooka }
    503  1.41  pooka 
    504  1.41  pooka void
    505  1.41  pooka uvm_unloan(void *v, int npages, int flags)
    506  1.41  pooka {
    507  1.41  pooka 
    508  1.41  pooka 	panic("%s: unimplemented", __func__);
    509  1.41  pooka }
    510  1.41  pooka 
    511  1.43  pooka int
    512  1.43  pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    513  1.43  pooka 	struct vm_page **opp)
    514  1.43  pooka {
    515  1.43  pooka 
    516  1.72  pooka 	return EBUSY;
    517  1.43  pooka }
    518  1.43  pooka 
    519  1.73  pooka #ifdef DEBUGPRINT
    520  1.56  pooka void
    521  1.56  pooka uvm_object_printit(struct uvm_object *uobj, bool full,
    522  1.56  pooka 	void (*pr)(const char *, ...))
    523  1.56  pooka {
    524  1.56  pooka 
    525  1.75  pooka 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    526  1.56  pooka }
    527  1.73  pooka #endif
    528  1.56  pooka 
    529  1.68  pooka vaddr_t
    530  1.68  pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    531  1.68  pooka {
    532  1.68  pooka 
    533  1.68  pooka 	return 0;
    534  1.68  pooka }
    535  1.68  pooka 
    536  1.71  pooka int
    537  1.71  pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    538  1.71  pooka 	vm_prot_t prot, bool set_max)
    539  1.71  pooka {
    540  1.71  pooka 
    541  1.71  pooka 	return EOPNOTSUPP;
    542  1.71  pooka }
    543  1.71  pooka 
    544   1.9  pooka /*
    545  1.12  pooka  * UVM km
    546  1.12  pooka  */
    547  1.12  pooka 
    548  1.12  pooka vaddr_t
    549  1.12  pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    550  1.12  pooka {
    551  1.82  pooka 	void *rv, *desired = NULL;
    552  1.50  pooka 	int alignbit, error;
    553  1.50  pooka 
    554  1.82  pooka #ifdef __x86_64__
    555  1.82  pooka 	/*
    556  1.82  pooka 	 * On amd64, allocate all module memory from the lowest 2GB.
    557  1.82  pooka 	 * This is because NetBSD kernel modules are compiled
    558  1.82  pooka 	 * with -mcmodel=kernel and reserve only 4 bytes for
    559  1.82  pooka 	 * offsets.  If we load code compiled with -mcmodel=kernel
    560  1.82  pooka 	 * anywhere except the lowest or highest 2GB, it will not
    561  1.82  pooka 	 * work.  Since userspace does not have access to the highest
    562  1.82  pooka 	 * 2GB, use the lowest 2GB.
    563  1.82  pooka 	 *
    564  1.82  pooka 	 * Note: this assumes the rump kernel resides in
    565  1.82  pooka 	 * the lowest 2GB as well.
    566  1.82  pooka 	 *
    567  1.82  pooka 	 * Note2: yes, it's a quick hack, but since this the only
    568  1.82  pooka 	 * place where we care about the map we're allocating from,
    569  1.82  pooka 	 * just use a simple "if" instead of coming up with a fancy
    570  1.82  pooka 	 * generic solution.
    571  1.82  pooka 	 */
    572  1.82  pooka 	extern struct vm_map *module_map;
    573  1.82  pooka 	if (map == module_map) {
    574  1.82  pooka 		desired = (void *)(0x80000000 - size);
    575  1.82  pooka 	}
    576  1.82  pooka #endif
    577  1.82  pooka 
    578  1.50  pooka 	alignbit = 0;
    579  1.50  pooka 	if (align) {
    580  1.50  pooka 		alignbit = ffs(align)-1;
    581  1.50  pooka 	}
    582  1.50  pooka 
    583  1.82  pooka 	rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
    584  1.81  pooka 	    &error);
    585  1.50  pooka 	if (rv == NULL) {
    586  1.50  pooka 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    587  1.50  pooka 			return 0;
    588  1.50  pooka 		else
    589  1.50  pooka 			panic("uvm_km_alloc failed");
    590  1.50  pooka 	}
    591  1.12  pooka 
    592  1.50  pooka 	if (flags & UVM_KMF_ZERO)
    593  1.12  pooka 		memset(rv, 0, size);
    594  1.12  pooka 
    595  1.12  pooka 	return (vaddr_t)rv;
    596  1.12  pooka }
    597  1.12  pooka 
    598  1.12  pooka void
    599  1.12  pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    600  1.12  pooka {
    601  1.12  pooka 
    602  1.50  pooka 	rumpuser_unmap((void *)vaddr, size);
    603  1.12  pooka }
    604  1.12  pooka 
    605  1.12  pooka struct vm_map *
    606  1.12  pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    607  1.12  pooka 	vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
    608  1.12  pooka {
    609  1.12  pooka 
    610  1.12  pooka 	return (struct vm_map *)417416;
    611  1.12  pooka }
    612  1.40  pooka 
    613  1.40  pooka vaddr_t
    614  1.40  pooka uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    615  1.40  pooka {
    616  1.40  pooka 
    617  1.80  pooka 	return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    618  1.80  pooka 	    waitok, "kmalloc");
    619  1.40  pooka }
    620  1.40  pooka 
    621  1.40  pooka void
    622  1.40  pooka uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    623  1.40  pooka {
    624  1.40  pooka 
    625  1.80  pooka 	rumpuser_free((void *)addr);
    626  1.50  pooka }
    627  1.50  pooka 
    628  1.50  pooka vaddr_t
    629  1.50  pooka uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    630  1.50  pooka {
    631  1.50  pooka 
    632  1.77  pooka 	return uvm_km_alloc_poolpage(map, waitok);
    633  1.50  pooka }
    634  1.50  pooka 
    635  1.50  pooka void
    636  1.50  pooka uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
    637  1.50  pooka {
    638  1.50  pooka 
    639  1.77  pooka 	uvm_km_free_poolpage(map, vaddr);
    640  1.40  pooka }
    641  1.57  pooka 
    642  1.74  pooka void
    643  1.74  pooka uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    644  1.74  pooka {
    645  1.74  pooka 
    646  1.74  pooka 	/* we eventually maybe want some model for available memory */
    647  1.74  pooka }
    648  1.74  pooka 
    649  1.57  pooka /*
    650  1.57  pooka  * Mapping and vm space locking routines.
    651  1.57  pooka  * XXX: these don't work for non-local vmspaces
    652  1.57  pooka  */
    653  1.57  pooka int
    654  1.57  pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    655  1.57  pooka {
    656  1.57  pooka 
    657  1.83  pooka 	KASSERT(vs == &vmspace0);
    658  1.57  pooka 	return 0;
    659  1.57  pooka }
    660  1.57  pooka 
    661  1.57  pooka void
    662  1.57  pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    663  1.57  pooka {
    664  1.57  pooka 
    665  1.83  pooka 	KASSERT(vs == &vmspace0);
    666  1.57  pooka }
    667  1.57  pooka 
    668  1.57  pooka void
    669  1.57  pooka vmapbuf(struct buf *bp, vsize_t len)
    670  1.57  pooka {
    671  1.57  pooka 
    672  1.57  pooka 	bp->b_saveaddr = bp->b_data;
    673  1.57  pooka }
    674  1.57  pooka 
    675  1.57  pooka void
    676  1.57  pooka vunmapbuf(struct buf *bp, vsize_t len)
    677  1.57  pooka {
    678  1.57  pooka 
    679  1.57  pooka 	bp->b_data = bp->b_saveaddr;
    680  1.57  pooka 	bp->b_saveaddr = 0;
    681  1.57  pooka }
    682  1.61  pooka 
    683  1.61  pooka void
    684  1.83  pooka uvmspace_addref(struct vmspace *vm)
    685  1.83  pooka {
    686  1.83  pooka 
    687  1.83  pooka 	/*
    688  1.83  pooka 	 * there is only vmspace0.  we're not planning on
    689  1.83  pooka 	 * feeding it to the fishes.
    690  1.83  pooka 	 */
    691  1.83  pooka }
    692  1.83  pooka 
    693  1.83  pooka void
    694  1.66  pooka uvmspace_free(struct vmspace *vm)
    695  1.66  pooka {
    696  1.66  pooka 
    697  1.66  pooka 	/* nothing for now */
    698  1.66  pooka }
    699  1.66  pooka 
    700  1.66  pooka int
    701  1.66  pooka uvm_io(struct vm_map *map, struct uio *uio)
    702  1.66  pooka {
    703  1.66  pooka 
    704  1.66  pooka 	/*
    705  1.66  pooka 	 * just do direct uio for now.  but this needs some vmspace
    706  1.66  pooka 	 * olympics for rump_sysproxy.
    707  1.66  pooka 	 */
    708  1.66  pooka 	return uiomove((void *)(vaddr_t)uio->uio_offset, uio->uio_resid, uio);
    709  1.66  pooka }
    710  1.66  pooka 
    711  1.61  pooka /*
    712  1.61  pooka  * page life cycle stuff.  it really doesn't exist, so just stubs.
    713  1.61  pooka  */
    714  1.61  pooka 
    715  1.61  pooka void
    716  1.61  pooka uvm_pageactivate(struct vm_page *pg)
    717  1.61  pooka {
    718  1.61  pooka 
    719  1.61  pooka 	/* nada */
    720  1.61  pooka }
    721  1.61  pooka 
    722  1.61  pooka void
    723  1.61  pooka uvm_pagedeactivate(struct vm_page *pg)
    724  1.61  pooka {
    725  1.61  pooka 
    726  1.61  pooka 	/* nada */
    727  1.61  pooka }
    728  1.61  pooka 
    729  1.61  pooka void
    730  1.61  pooka uvm_pagedequeue(struct vm_page *pg)
    731  1.61  pooka {
    732  1.61  pooka 
    733  1.61  pooka 	/* nada*/
    734  1.61  pooka }
    735  1.61  pooka 
    736  1.61  pooka void
    737  1.61  pooka uvm_pageenqueue(struct vm_page *pg)
    738  1.61  pooka {
    739  1.61  pooka 
    740  1.61  pooka 	/* nada */
    741  1.61  pooka }
    742  1.80  pooka 
    743  1.80  pooka /*
    744  1.80  pooka  * Routines related to the Page Baroness.
    745  1.80  pooka  */
    746  1.80  pooka 
    747  1.80  pooka void
    748  1.80  pooka uvm_wait(const char *msg)
    749  1.80  pooka {
    750  1.80  pooka 
    751  1.80  pooka 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    752  1.80  pooka 		panic("pagedaemon out of memory");
    753  1.80  pooka 	if (__predict_false(rump_threads == 0))
    754  1.80  pooka 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    755  1.80  pooka 
    756  1.80  pooka 	mutex_enter(&pdaemonmtx);
    757  1.80  pooka 	pdaemon_waiters++;
    758  1.80  pooka 	cv_signal(&pdaemoncv);
    759  1.80  pooka 	cv_wait(&oomwait, &pdaemonmtx);
    760  1.80  pooka 	mutex_exit(&pdaemonmtx);
    761  1.80  pooka }
    762  1.80  pooka 
    763  1.80  pooka void
    764  1.80  pooka uvm_pageout_start(int npages)
    765  1.80  pooka {
    766  1.80  pooka 
    767  1.80  pooka 	/* we don't have the heuristics */
    768  1.80  pooka }
    769  1.80  pooka 
    770  1.80  pooka void
    771  1.80  pooka uvm_pageout_done(int npages)
    772  1.80  pooka {
    773  1.80  pooka 
    774  1.80  pooka 	/* could wakeup waiters, but just let the pagedaemon do it */
    775  1.80  pooka }
    776  1.80  pooka 
    777  1.80  pooka /*
    778  1.80  pooka  * Under-construction page mistress.  This is lacking vfs support, namely:
    779  1.80  pooka  *
    780  1.80  pooka  *  1) draining vfs buffers
    781  1.80  pooka  *  2) paging out pages in vm vnode objects
    782  1.80  pooka  *     (we will not page out anon memory on the basis that
    783  1.80  pooka  *     that's the task of the host)
    784  1.80  pooka  */
    785  1.80  pooka 
    786  1.80  pooka void
    787  1.80  pooka uvm_pageout(void *arg)
    788  1.80  pooka {
    789  1.80  pooka 	struct pool *pp, *pp_first;
    790  1.80  pooka 	uint64_t where;
    791  1.80  pooka 	int timo = 0;
    792  1.80  pooka 	bool succ;
    793  1.80  pooka 
    794  1.80  pooka 	mutex_enter(&pdaemonmtx);
    795  1.80  pooka 	for (;;) {
    796  1.80  pooka 		cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
    797  1.80  pooka 		uvmexp.pdwoke++;
    798  1.80  pooka 		kernel_map->flags |= VM_MAP_WANTVA;
    799  1.80  pooka 		mutex_exit(&pdaemonmtx);
    800  1.80  pooka 
    801  1.80  pooka 		succ = false;
    802  1.80  pooka 		pool_drain_start(&pp_first, &where);
    803  1.80  pooka 		pp = pp_first;
    804  1.80  pooka 		for (;;) {
    805  1.80  pooka 			succ = pool_drain_end(pp, where);
    806  1.80  pooka 			if (succ)
    807  1.80  pooka 				break;
    808  1.80  pooka 			pool_drain_start(&pp, &where);
    809  1.80  pooka 			if (pp == pp_first) {
    810  1.80  pooka 				succ = pool_drain_end(pp, where);
    811  1.80  pooka 				break;
    812  1.80  pooka 			}
    813  1.80  pooka 		}
    814  1.80  pooka 		mutex_enter(&pdaemonmtx);
    815  1.80  pooka 
    816  1.80  pooka 		if (!succ) {
    817  1.80  pooka 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
    818  1.80  pooka 			    "memory ... sleeping (deadlock?)\n");
    819  1.80  pooka 			timo = hz;
    820  1.80  pooka 			continue;
    821  1.80  pooka 		}
    822  1.80  pooka 		kernel_map->flags &= ~VM_MAP_WANTVA;
    823  1.80  pooka 		timo = 0;
    824  1.80  pooka 
    825  1.80  pooka 		if (pdaemon_waiters) {
    826  1.80  pooka 			pdaemon_waiters = 0;
    827  1.80  pooka 			cv_broadcast(&oomwait);
    828  1.80  pooka 		}
    829  1.80  pooka 	}
    830  1.80  pooka 
    831  1.80  pooka 	panic("you can swap out any time you like, but you can never leave");
    832  1.80  pooka }
    833  1.80  pooka 
    834  1.80  pooka /*
    835  1.80  pooka  * In a regular kernel the pagedaemon is activated when memory becomes
    836  1.80  pooka  * low.  In a virtual rump kernel we do not know exactly how much memory
    837  1.80  pooka  * we have available -- it depends on the conditions on the host.
    838  1.80  pooka  * Therefore, we cannot preemptively kick the pagedaemon.  Rather, we
    839  1.80  pooka  * wait until things we desperate and we're forced to uvm_wait().
    840  1.80  pooka  *
    841  1.80  pooka  * The alternative would be to allocate a huge chunk of memory at
    842  1.80  pooka  * startup, but that solution has a number of problems including
    843  1.80  pooka  * being a resource hog, failing anyway due to host memory overcommit
    844  1.80  pooka  * and core dump size.
    845  1.80  pooka  */
    846  1.80  pooka 
    847  1.80  pooka void
    848  1.80  pooka uvm_kick_pdaemon()
    849  1.80  pooka {
    850  1.80  pooka 
    851  1.80  pooka 	/* nada */
    852  1.80  pooka }
    853  1.80  pooka 
    854  1.80  pooka void *
    855  1.80  pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
    856  1.80  pooka {
    857  1.80  pooka 	void *rv;
    858  1.80  pooka 
    859  1.80  pooka  again:
    860  1.80  pooka 	rv = rumpuser_malloc(howmuch, alignment);
    861  1.80  pooka 	if (__predict_false(rv == NULL && waitok)) {
    862  1.80  pooka 		uvm_wait(wmsg);
    863  1.80  pooka 		goto again;
    864  1.80  pooka 	}
    865  1.80  pooka 
    866  1.80  pooka 	return rv;
    867  1.80  pooka }
    868