Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.89
      1  1.89  pooka /*	$NetBSD: vm.c,v 1.89 2010/09/07 06:06:54 pooka Exp $	*/
      2   1.1  pooka 
      3   1.1  pooka /*
      4  1.76  pooka  * Copyright (c) 2007-2010 Antti Kantee.  All Rights Reserved.
      5   1.1  pooka  *
      6  1.76  pooka  * Development of this software was supported by
      7  1.76  pooka  * The Finnish Cultural Foundation and the Research Foundation of
      8  1.76  pooka  * The Helsinki University of Technology.
      9   1.1  pooka  *
     10   1.1  pooka  * Redistribution and use in source and binary forms, with or without
     11   1.1  pooka  * modification, are permitted provided that the following conditions
     12   1.1  pooka  * are met:
     13   1.1  pooka  * 1. Redistributions of source code must retain the above copyright
     14   1.1  pooka  *    notice, this list of conditions and the following disclaimer.
     15   1.1  pooka  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1  pooka  *    notice, this list of conditions and the following disclaimer in the
     17   1.1  pooka  *    documentation and/or other materials provided with the distribution.
     18   1.1  pooka  *
     19   1.1  pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20   1.1  pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21   1.1  pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22   1.1  pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23   1.1  pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24   1.1  pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25   1.1  pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26   1.1  pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27   1.1  pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28   1.1  pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29   1.1  pooka  * SUCH DAMAGE.
     30   1.1  pooka  */
     31   1.1  pooka 
     32   1.1  pooka /*
     33  1.88  pooka  * Virtual memory emulation routines.
     34   1.1  pooka  */
     35   1.1  pooka 
     36   1.1  pooka /*
     37   1.5  pooka  * XXX: we abuse pg->uanon for the virtual address of the storage
     38   1.1  pooka  * for each page.  phys_addr would fit the job description better,
     39   1.1  pooka  * except that it will create unnecessary lossage on some platforms
     40   1.1  pooka  * due to not being a pointer type.
     41   1.1  pooka  */
     42   1.1  pooka 
     43  1.48  pooka #include <sys/cdefs.h>
     44  1.89  pooka __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.89 2010/09/07 06:06:54 pooka Exp $");
     45  1.48  pooka 
     46   1.1  pooka #include <sys/param.h>
     47  1.40  pooka #include <sys/atomic.h>
     48  1.80  pooka #include <sys/buf.h>
     49  1.80  pooka #include <sys/kernel.h>
     50  1.67  pooka #include <sys/kmem.h>
     51  1.69  pooka #include <sys/mman.h>
     52   1.1  pooka #include <sys/null.h>
     53   1.1  pooka #include <sys/vnode.h>
     54   1.1  pooka 
     55  1.34  pooka #include <machine/pmap.h>
     56  1.34  pooka 
     57  1.34  pooka #include <rump/rumpuser.h>
     58  1.34  pooka 
     59   1.1  pooka #include <uvm/uvm.h>
     60  1.56  pooka #include <uvm/uvm_ddb.h>
     61  1.88  pooka #include <uvm/uvm_pdpolicy.h>
     62   1.1  pooka #include <uvm/uvm_prot.h>
     63  1.58     he #include <uvm/uvm_readahead.h>
     64   1.1  pooka 
     65  1.13  pooka #include "rump_private.h"
     66   1.1  pooka 
     67  1.25     ad kmutex_t uvm_pageqlock;
     68  1.88  pooka kmutex_t uvm_swap_data_lock;
     69  1.25     ad 
     70   1.1  pooka struct uvmexp uvmexp;
     71   1.7  pooka struct uvm uvm;
     72   1.1  pooka 
     73   1.1  pooka struct vm_map rump_vmmap;
     74  1.50  pooka static struct vm_map_kernel kmem_map_store;
     75  1.50  pooka struct vm_map *kmem_map = &kmem_map_store.vmk_map;
     76   1.1  pooka 
     77  1.35  pooka static struct vm_map_kernel kernel_map_store;
     78  1.35  pooka struct vm_map *kernel_map = &kernel_map_store.vmk_map;
     79  1.35  pooka 
     80  1.80  pooka static unsigned int pdaemon_waiters;
     81  1.80  pooka static kmutex_t pdaemonmtx;
     82  1.80  pooka static kcondvar_t pdaemoncv, oomwait;
     83  1.80  pooka 
     84  1.84  pooka #define RUMPMEM_UNLIMITED ((unsigned long)-1)
     85  1.84  pooka static unsigned long physmemlimit = RUMPMEM_UNLIMITED;
     86  1.84  pooka static unsigned long curphysmem;
     87  1.84  pooka 
     88  1.89  pooka static int
     89  1.89  pooka pg_compare_key(const struct rb_node *n, const void *key)
     90  1.89  pooka {
     91  1.89  pooka 	voff_t a = ((const struct vm_page *)n)->offset;
     92  1.89  pooka 	voff_t b = *(const voff_t *)key;
     93  1.89  pooka 
     94  1.89  pooka 	if (a < b)
     95  1.89  pooka 		return 1;
     96  1.89  pooka 	else if (a > b)
     97  1.89  pooka 		return -1;
     98  1.89  pooka 	else
     99  1.89  pooka 		return 0;
    100  1.89  pooka }
    101  1.89  pooka 
    102  1.89  pooka static int
    103  1.89  pooka pg_compare_nodes(const struct rb_node *n1, const struct rb_node *n2)
    104  1.89  pooka {
    105  1.89  pooka 
    106  1.89  pooka 	return pg_compare_key(n1, &((const struct vm_page *)n2)->offset);
    107  1.89  pooka }
    108  1.89  pooka 
    109  1.89  pooka const struct rb_tree_ops uvm_page_tree_ops = {
    110  1.89  pooka 	.rbto_compare_nodes = pg_compare_nodes,
    111  1.89  pooka 	.rbto_compare_key = pg_compare_key,
    112  1.89  pooka };
    113  1.89  pooka 
    114   1.1  pooka /*
    115   1.1  pooka  * vm pages
    116   1.1  pooka  */
    117   1.1  pooka 
    118  1.22  pooka /* called with the object locked */
    119   1.1  pooka struct vm_page *
    120  1.76  pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    121  1.76  pooka 	int flags, int strat, int free_list)
    122   1.1  pooka {
    123   1.1  pooka 	struct vm_page *pg;
    124   1.1  pooka 
    125  1.27  pooka 	pg = kmem_zalloc(sizeof(struct vm_page), KM_SLEEP);
    126   1.1  pooka 	pg->offset = off;
    127   1.5  pooka 	pg->uobject = uobj;
    128   1.1  pooka 
    129  1.76  pooka 	pg->uanon = (void *)kmem_alloc(PAGE_SIZE, KM_SLEEP);
    130  1.76  pooka 	if (flags & UVM_PGA_ZERO)
    131  1.76  pooka 		memset(pg->uanon, 0, PAGE_SIZE);
    132  1.22  pooka 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    133   1.1  pooka 
    134  1.31     ad 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    135  1.89  pooka 	rb_tree_insert_node(&uobj->rb_tree, &pg->rb_node);
    136  1.89  pooka 
    137  1.59  pooka 	uobj->uo_npages++;
    138  1.21  pooka 
    139   1.1  pooka 	return pg;
    140   1.1  pooka }
    141   1.1  pooka 
    142  1.21  pooka /*
    143  1.21  pooka  * Release a page.
    144  1.21  pooka  *
    145  1.22  pooka  * Called with the vm object locked.
    146  1.21  pooka  */
    147   1.1  pooka void
    148  1.22  pooka uvm_pagefree(struct vm_page *pg)
    149   1.1  pooka {
    150   1.5  pooka 	struct uvm_object *uobj = pg->uobject;
    151   1.1  pooka 
    152  1.22  pooka 	if (pg->flags & PG_WANTED)
    153  1.22  pooka 		wakeup(pg);
    154  1.22  pooka 
    155  1.59  pooka 	uobj->uo_npages--;
    156  1.89  pooka 	rb_tree_remove_node(&uobj->rb_tree, &pg->rb_node);
    157  1.31     ad 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    158  1.27  pooka 	kmem_free((void *)pg->uanon, PAGE_SIZE);
    159  1.27  pooka 	kmem_free(pg, sizeof(*pg));
    160   1.1  pooka }
    161   1.1  pooka 
    162  1.15  pooka void
    163  1.61  pooka uvm_pagezero(struct vm_page *pg)
    164  1.15  pooka {
    165  1.15  pooka 
    166  1.61  pooka 	pg->flags &= ~PG_CLEAN;
    167  1.61  pooka 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    168  1.15  pooka }
    169  1.15  pooka 
    170   1.1  pooka /*
    171   1.1  pooka  * Misc routines
    172   1.1  pooka  */
    173   1.1  pooka 
    174  1.61  pooka static kmutex_t pagermtx;
    175  1.61  pooka 
    176   1.1  pooka void
    177  1.79  pooka uvm_init(void)
    178   1.1  pooka {
    179  1.84  pooka 	char buf[64];
    180  1.84  pooka 	int error;
    181  1.84  pooka 
    182  1.84  pooka 	if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
    183  1.84  pooka 		physmemlimit = strtoll(buf, NULL, 10);
    184  1.84  pooka 		/* it's not like we'd get far with, say, 1 byte, but ... */
    185  1.84  pooka 		if (physmemlimit == 0)
    186  1.84  pooka 			panic("uvm_init: no memory available");
    187  1.84  pooka #define HUMANIZE_BYTES 9
    188  1.84  pooka 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    189  1.84  pooka 		format_bytes(buf, HUMANIZE_BYTES, physmemlimit);
    190  1.84  pooka #undef HUMANIZE_BYTES
    191  1.84  pooka 	} else {
    192  1.84  pooka 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    193  1.84  pooka 	}
    194  1.84  pooka 	aprint_verbose("total memory = %s\n", buf);
    195   1.1  pooka 
    196  1.84  pooka 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    197  1.21  pooka 
    198  1.61  pooka 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    199  1.25     ad 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    200  1.88  pooka 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
    201  1.35  pooka 
    202  1.80  pooka 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    203  1.80  pooka 	cv_init(&pdaemoncv, "pdaemon");
    204  1.80  pooka 	cv_init(&oomwait, "oomwait");
    205  1.80  pooka 
    206  1.50  pooka 	kernel_map->pmap = pmap_kernel();
    207  1.35  pooka 	callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
    208  1.50  pooka 	kmem_map->pmap = pmap_kernel();
    209  1.50  pooka 	callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
    210   1.1  pooka }
    211   1.1  pooka 
    212  1.83  pooka void
    213  1.83  pooka uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    214  1.83  pooka {
    215  1.83  pooka 
    216  1.83  pooka 	vm->vm_map.pmap = pmap_kernel();
    217  1.83  pooka 	vm->vm_refcnt = 1;
    218  1.83  pooka }
    219   1.1  pooka 
    220   1.1  pooka void
    221   1.7  pooka uvm_pagewire(struct vm_page *pg)
    222   1.7  pooka {
    223   1.7  pooka 
    224   1.7  pooka 	/* nada */
    225   1.7  pooka }
    226   1.7  pooka 
    227   1.7  pooka void
    228   1.7  pooka uvm_pageunwire(struct vm_page *pg)
    229   1.7  pooka {
    230   1.7  pooka 
    231   1.7  pooka 	/* nada */
    232   1.7  pooka }
    233   1.7  pooka 
    234  1.83  pooka /* where's your schmonz now? */
    235  1.83  pooka #define PUNLIMIT(a)	\
    236  1.83  pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    237  1.83  pooka void
    238  1.83  pooka uvm_init_limits(struct proc *p)
    239  1.83  pooka {
    240  1.83  pooka 
    241  1.83  pooka 	PUNLIMIT(RLIMIT_STACK);
    242  1.83  pooka 	PUNLIMIT(RLIMIT_DATA);
    243  1.83  pooka 	PUNLIMIT(RLIMIT_RSS);
    244  1.83  pooka 	PUNLIMIT(RLIMIT_AS);
    245  1.83  pooka 	/* nice, cascade */
    246  1.83  pooka }
    247  1.83  pooka #undef PUNLIMIT
    248  1.83  pooka 
    249  1.69  pooka /*
    250  1.69  pooka  * This satisfies the "disgusting mmap hack" used by proplib.
    251  1.69  pooka  * We probably should grow some more assertables to make sure we're
    252  1.69  pooka  * not satisfying anything we shouldn't be satisfying.  At least we
    253  1.69  pooka  * should make sure it's the local machine we're mmapping ...
    254  1.69  pooka  */
    255  1.49  pooka int
    256  1.49  pooka uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    257  1.49  pooka 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    258  1.49  pooka {
    259  1.69  pooka 	void *uaddr;
    260  1.69  pooka 	int error;
    261  1.49  pooka 
    262  1.69  pooka 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    263  1.69  pooka 		panic("uvm_mmap() variant unsupported");
    264  1.69  pooka 	if (flags != (MAP_PRIVATE | MAP_ANON))
    265  1.69  pooka 		panic("uvm_mmap() variant unsupported");
    266  1.69  pooka 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    267  1.69  pooka 	if (*addr != 0)
    268  1.69  pooka 		panic("uvm_mmap() variant unsupported");
    269  1.69  pooka 
    270  1.81  pooka 	uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    271  1.69  pooka 	if (uaddr == NULL)
    272  1.69  pooka 		return error;
    273  1.69  pooka 
    274  1.69  pooka 	*addr = (vaddr_t)uaddr;
    275  1.69  pooka 	return 0;
    276  1.49  pooka }
    277  1.49  pooka 
    278  1.61  pooka struct pagerinfo {
    279  1.61  pooka 	vaddr_t pgr_kva;
    280  1.61  pooka 	int pgr_npages;
    281  1.61  pooka 	struct vm_page **pgr_pgs;
    282  1.61  pooka 	bool pgr_read;
    283  1.61  pooka 
    284  1.61  pooka 	LIST_ENTRY(pagerinfo) pgr_entries;
    285  1.61  pooka };
    286  1.61  pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    287  1.61  pooka 
    288  1.61  pooka /*
    289  1.61  pooka  * Pager "map" in routine.  Instead of mapping, we allocate memory
    290  1.61  pooka  * and copy page contents there.  Not optimal or even strictly
    291  1.61  pooka  * correct (the caller might modify the page contents after mapping
    292  1.61  pooka  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    293  1.61  pooka  */
    294   1.7  pooka vaddr_t
    295  1.61  pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    296   1.7  pooka {
    297  1.61  pooka 	struct pagerinfo *pgri;
    298  1.61  pooka 	vaddr_t curkva;
    299  1.61  pooka 	int i;
    300  1.61  pooka 
    301  1.61  pooka 	/* allocate structures */
    302  1.61  pooka 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    303  1.61  pooka 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    304  1.61  pooka 	pgri->pgr_npages = npages;
    305  1.61  pooka 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    306  1.61  pooka 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    307  1.61  pooka 
    308  1.61  pooka 	/* copy contents to "mapped" memory */
    309  1.61  pooka 	for (i = 0, curkva = pgri->pgr_kva;
    310  1.61  pooka 	    i < npages;
    311  1.61  pooka 	    i++, curkva += PAGE_SIZE) {
    312  1.61  pooka 		/*
    313  1.61  pooka 		 * We need to copy the previous contents of the pages to
    314  1.61  pooka 		 * the window even if we are reading from the
    315  1.61  pooka 		 * device, since the device might not fill the contents of
    316  1.61  pooka 		 * the full mapped range and we will end up corrupting
    317  1.61  pooka 		 * data when we unmap the window.
    318  1.61  pooka 		 */
    319  1.61  pooka 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    320  1.61  pooka 		pgri->pgr_pgs[i] = pgs[i];
    321  1.61  pooka 	}
    322  1.61  pooka 
    323  1.61  pooka 	mutex_enter(&pagermtx);
    324  1.61  pooka 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    325  1.61  pooka 	mutex_exit(&pagermtx);
    326   1.7  pooka 
    327  1.61  pooka 	return pgri->pgr_kva;
    328   1.7  pooka }
    329   1.7  pooka 
    330  1.61  pooka /*
    331  1.61  pooka  * map out the pager window.  return contents from VA to page storage
    332  1.61  pooka  * and free structures.
    333  1.61  pooka  *
    334  1.61  pooka  * Note: does not currently support partial frees
    335  1.61  pooka  */
    336  1.61  pooka void
    337  1.61  pooka uvm_pagermapout(vaddr_t kva, int npages)
    338   1.7  pooka {
    339  1.61  pooka 	struct pagerinfo *pgri;
    340  1.61  pooka 	vaddr_t curkva;
    341  1.61  pooka 	int i;
    342   1.7  pooka 
    343  1.61  pooka 	mutex_enter(&pagermtx);
    344  1.61  pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    345  1.61  pooka 		if (pgri->pgr_kva == kva)
    346  1.61  pooka 			break;
    347  1.61  pooka 	}
    348  1.61  pooka 	KASSERT(pgri);
    349  1.61  pooka 	if (pgri->pgr_npages != npages)
    350  1.61  pooka 		panic("uvm_pagermapout: partial unmapping not supported");
    351  1.61  pooka 	LIST_REMOVE(pgri, pgr_entries);
    352  1.61  pooka 	mutex_exit(&pagermtx);
    353  1.61  pooka 
    354  1.61  pooka 	if (pgri->pgr_read) {
    355  1.61  pooka 		for (i = 0, curkva = pgri->pgr_kva;
    356  1.61  pooka 		    i < pgri->pgr_npages;
    357  1.61  pooka 		    i++, curkva += PAGE_SIZE) {
    358  1.61  pooka 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    359  1.21  pooka 		}
    360  1.21  pooka 	}
    361  1.10  pooka 
    362  1.61  pooka 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    363  1.61  pooka 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    364  1.61  pooka 	kmem_free(pgri, sizeof(*pgri));
    365   1.7  pooka }
    366   1.7  pooka 
    367  1.61  pooka /*
    368  1.61  pooka  * convert va in pager window to page structure.
    369  1.61  pooka  * XXX: how expensive is this (global lock, list traversal)?
    370  1.61  pooka  */
    371  1.14  pooka struct vm_page *
    372  1.14  pooka uvm_pageratop(vaddr_t va)
    373  1.14  pooka {
    374  1.61  pooka 	struct pagerinfo *pgri;
    375  1.61  pooka 	struct vm_page *pg = NULL;
    376  1.61  pooka 	int i;
    377  1.14  pooka 
    378  1.61  pooka 	mutex_enter(&pagermtx);
    379  1.61  pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    380  1.61  pooka 		if (pgri->pgr_kva <= va
    381  1.61  pooka 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    382  1.21  pooka 			break;
    383  1.61  pooka 	}
    384  1.61  pooka 	if (pgri) {
    385  1.61  pooka 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    386  1.61  pooka 		pg = pgri->pgr_pgs[i];
    387  1.61  pooka 	}
    388  1.61  pooka 	mutex_exit(&pagermtx);
    389  1.21  pooka 
    390  1.61  pooka 	return pg;
    391  1.61  pooka }
    392  1.15  pooka 
    393  1.61  pooka /* Called with the vm object locked */
    394  1.61  pooka struct vm_page *
    395  1.61  pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    396  1.61  pooka {
    397  1.61  pooka 
    398  1.89  pooka 	return (struct vm_page *)rb_tree_find_node(&uobj->rb_tree, &off);
    399  1.14  pooka }
    400  1.14  pooka 
    401   1.7  pooka void
    402  1.22  pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
    403  1.22  pooka {
    404  1.22  pooka 	struct vm_page *pg;
    405  1.22  pooka 	int i;
    406  1.22  pooka 
    407  1.22  pooka 	for (i = 0; i < npgs; i++) {
    408  1.22  pooka 		pg = pgs[i];
    409  1.22  pooka 		if (pg == NULL)
    410  1.22  pooka 			continue;
    411  1.22  pooka 
    412  1.22  pooka 		KASSERT(pg->flags & PG_BUSY);
    413  1.22  pooka 		if (pg->flags & PG_WANTED)
    414  1.22  pooka 			wakeup(pg);
    415  1.36  pooka 		if (pg->flags & PG_RELEASED)
    416  1.36  pooka 			uvm_pagefree(pg);
    417  1.36  pooka 		else
    418  1.36  pooka 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    419  1.22  pooka 	}
    420  1.22  pooka }
    421  1.22  pooka 
    422  1.22  pooka void
    423   1.7  pooka uvm_estimatepageable(int *active, int *inactive)
    424   1.7  pooka {
    425   1.7  pooka 
    426  1.19  pooka 	/* XXX: guessing game */
    427  1.19  pooka 	*active = 1024;
    428  1.19  pooka 	*inactive = 1024;
    429   1.7  pooka }
    430   1.7  pooka 
    431  1.39  pooka struct vm_map_kernel *
    432  1.39  pooka vm_map_to_kernel(struct vm_map *map)
    433  1.39  pooka {
    434  1.39  pooka 
    435  1.39  pooka 	return (struct vm_map_kernel *)map;
    436  1.39  pooka }
    437  1.39  pooka 
    438  1.41  pooka bool
    439  1.41  pooka vm_map_starved_p(struct vm_map *map)
    440  1.41  pooka {
    441  1.41  pooka 
    442  1.80  pooka 	if (map->flags & VM_MAP_WANTVA)
    443  1.80  pooka 		return true;
    444  1.80  pooka 
    445  1.41  pooka 	return false;
    446  1.41  pooka }
    447  1.41  pooka 
    448  1.41  pooka int
    449  1.41  pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    450  1.41  pooka {
    451  1.41  pooka 
    452  1.41  pooka 	panic("%s: unimplemented", __func__);
    453  1.41  pooka }
    454  1.41  pooka 
    455  1.41  pooka void
    456  1.41  pooka uvm_unloan(void *v, int npages, int flags)
    457  1.41  pooka {
    458  1.41  pooka 
    459  1.41  pooka 	panic("%s: unimplemented", __func__);
    460  1.41  pooka }
    461  1.41  pooka 
    462  1.43  pooka int
    463  1.43  pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    464  1.43  pooka 	struct vm_page **opp)
    465  1.43  pooka {
    466  1.43  pooka 
    467  1.72  pooka 	return EBUSY;
    468  1.43  pooka }
    469  1.43  pooka 
    470  1.73  pooka #ifdef DEBUGPRINT
    471  1.56  pooka void
    472  1.56  pooka uvm_object_printit(struct uvm_object *uobj, bool full,
    473  1.56  pooka 	void (*pr)(const char *, ...))
    474  1.56  pooka {
    475  1.56  pooka 
    476  1.75  pooka 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    477  1.56  pooka }
    478  1.73  pooka #endif
    479  1.56  pooka 
    480  1.68  pooka vaddr_t
    481  1.68  pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    482  1.68  pooka {
    483  1.68  pooka 
    484  1.68  pooka 	return 0;
    485  1.68  pooka }
    486  1.68  pooka 
    487  1.71  pooka int
    488  1.71  pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    489  1.71  pooka 	vm_prot_t prot, bool set_max)
    490  1.71  pooka {
    491  1.71  pooka 
    492  1.71  pooka 	return EOPNOTSUPP;
    493  1.71  pooka }
    494  1.71  pooka 
    495   1.9  pooka /*
    496  1.12  pooka  * UVM km
    497  1.12  pooka  */
    498  1.12  pooka 
    499  1.12  pooka vaddr_t
    500  1.12  pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    501  1.12  pooka {
    502  1.82  pooka 	void *rv, *desired = NULL;
    503  1.50  pooka 	int alignbit, error;
    504  1.50  pooka 
    505  1.82  pooka #ifdef __x86_64__
    506  1.82  pooka 	/*
    507  1.82  pooka 	 * On amd64, allocate all module memory from the lowest 2GB.
    508  1.82  pooka 	 * This is because NetBSD kernel modules are compiled
    509  1.82  pooka 	 * with -mcmodel=kernel and reserve only 4 bytes for
    510  1.82  pooka 	 * offsets.  If we load code compiled with -mcmodel=kernel
    511  1.82  pooka 	 * anywhere except the lowest or highest 2GB, it will not
    512  1.82  pooka 	 * work.  Since userspace does not have access to the highest
    513  1.82  pooka 	 * 2GB, use the lowest 2GB.
    514  1.82  pooka 	 *
    515  1.82  pooka 	 * Note: this assumes the rump kernel resides in
    516  1.82  pooka 	 * the lowest 2GB as well.
    517  1.82  pooka 	 *
    518  1.82  pooka 	 * Note2: yes, it's a quick hack, but since this the only
    519  1.82  pooka 	 * place where we care about the map we're allocating from,
    520  1.82  pooka 	 * just use a simple "if" instead of coming up with a fancy
    521  1.82  pooka 	 * generic solution.
    522  1.82  pooka 	 */
    523  1.82  pooka 	extern struct vm_map *module_map;
    524  1.82  pooka 	if (map == module_map) {
    525  1.82  pooka 		desired = (void *)(0x80000000 - size);
    526  1.82  pooka 	}
    527  1.82  pooka #endif
    528  1.82  pooka 
    529  1.50  pooka 	alignbit = 0;
    530  1.50  pooka 	if (align) {
    531  1.50  pooka 		alignbit = ffs(align)-1;
    532  1.50  pooka 	}
    533  1.50  pooka 
    534  1.82  pooka 	rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
    535  1.81  pooka 	    &error);
    536  1.50  pooka 	if (rv == NULL) {
    537  1.50  pooka 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    538  1.50  pooka 			return 0;
    539  1.50  pooka 		else
    540  1.50  pooka 			panic("uvm_km_alloc failed");
    541  1.50  pooka 	}
    542  1.12  pooka 
    543  1.50  pooka 	if (flags & UVM_KMF_ZERO)
    544  1.12  pooka 		memset(rv, 0, size);
    545  1.12  pooka 
    546  1.12  pooka 	return (vaddr_t)rv;
    547  1.12  pooka }
    548  1.12  pooka 
    549  1.12  pooka void
    550  1.12  pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    551  1.12  pooka {
    552  1.12  pooka 
    553  1.50  pooka 	rumpuser_unmap((void *)vaddr, size);
    554  1.12  pooka }
    555  1.12  pooka 
    556  1.12  pooka struct vm_map *
    557  1.12  pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    558  1.12  pooka 	vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
    559  1.12  pooka {
    560  1.12  pooka 
    561  1.12  pooka 	return (struct vm_map *)417416;
    562  1.12  pooka }
    563  1.40  pooka 
    564  1.40  pooka vaddr_t
    565  1.40  pooka uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    566  1.40  pooka {
    567  1.40  pooka 
    568  1.80  pooka 	return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    569  1.80  pooka 	    waitok, "kmalloc");
    570  1.40  pooka }
    571  1.40  pooka 
    572  1.40  pooka void
    573  1.40  pooka uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    574  1.40  pooka {
    575  1.40  pooka 
    576  1.84  pooka 	rump_hyperfree((void *)addr, PAGE_SIZE);
    577  1.50  pooka }
    578  1.50  pooka 
    579  1.50  pooka vaddr_t
    580  1.50  pooka uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    581  1.50  pooka {
    582  1.50  pooka 
    583  1.77  pooka 	return uvm_km_alloc_poolpage(map, waitok);
    584  1.50  pooka }
    585  1.50  pooka 
    586  1.50  pooka void
    587  1.50  pooka uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
    588  1.50  pooka {
    589  1.50  pooka 
    590  1.77  pooka 	uvm_km_free_poolpage(map, vaddr);
    591  1.40  pooka }
    592  1.57  pooka 
    593  1.74  pooka void
    594  1.74  pooka uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    595  1.74  pooka {
    596  1.74  pooka 
    597  1.74  pooka 	/* we eventually maybe want some model for available memory */
    598  1.74  pooka }
    599  1.74  pooka 
    600  1.57  pooka /*
    601  1.57  pooka  * Mapping and vm space locking routines.
    602  1.57  pooka  * XXX: these don't work for non-local vmspaces
    603  1.57  pooka  */
    604  1.57  pooka int
    605  1.57  pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    606  1.57  pooka {
    607  1.57  pooka 
    608  1.83  pooka 	KASSERT(vs == &vmspace0);
    609  1.57  pooka 	return 0;
    610  1.57  pooka }
    611  1.57  pooka 
    612  1.57  pooka void
    613  1.57  pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    614  1.57  pooka {
    615  1.57  pooka 
    616  1.83  pooka 	KASSERT(vs == &vmspace0);
    617  1.57  pooka }
    618  1.57  pooka 
    619  1.57  pooka void
    620  1.57  pooka vmapbuf(struct buf *bp, vsize_t len)
    621  1.57  pooka {
    622  1.57  pooka 
    623  1.57  pooka 	bp->b_saveaddr = bp->b_data;
    624  1.57  pooka }
    625  1.57  pooka 
    626  1.57  pooka void
    627  1.57  pooka vunmapbuf(struct buf *bp, vsize_t len)
    628  1.57  pooka {
    629  1.57  pooka 
    630  1.57  pooka 	bp->b_data = bp->b_saveaddr;
    631  1.57  pooka 	bp->b_saveaddr = 0;
    632  1.57  pooka }
    633  1.61  pooka 
    634  1.61  pooka void
    635  1.83  pooka uvmspace_addref(struct vmspace *vm)
    636  1.83  pooka {
    637  1.83  pooka 
    638  1.83  pooka 	/*
    639  1.83  pooka 	 * there is only vmspace0.  we're not planning on
    640  1.83  pooka 	 * feeding it to the fishes.
    641  1.83  pooka 	 */
    642  1.83  pooka }
    643  1.83  pooka 
    644  1.83  pooka void
    645  1.66  pooka uvmspace_free(struct vmspace *vm)
    646  1.66  pooka {
    647  1.66  pooka 
    648  1.66  pooka 	/* nothing for now */
    649  1.66  pooka }
    650  1.66  pooka 
    651  1.66  pooka int
    652  1.66  pooka uvm_io(struct vm_map *map, struct uio *uio)
    653  1.66  pooka {
    654  1.66  pooka 
    655  1.66  pooka 	/*
    656  1.66  pooka 	 * just do direct uio for now.  but this needs some vmspace
    657  1.66  pooka 	 * olympics for rump_sysproxy.
    658  1.66  pooka 	 */
    659  1.66  pooka 	return uiomove((void *)(vaddr_t)uio->uio_offset, uio->uio_resid, uio);
    660  1.66  pooka }
    661  1.66  pooka 
    662  1.61  pooka /*
    663  1.61  pooka  * page life cycle stuff.  it really doesn't exist, so just stubs.
    664  1.61  pooka  */
    665  1.61  pooka 
    666  1.61  pooka void
    667  1.61  pooka uvm_pageactivate(struct vm_page *pg)
    668  1.61  pooka {
    669  1.61  pooka 
    670  1.61  pooka 	/* nada */
    671  1.61  pooka }
    672  1.61  pooka 
    673  1.61  pooka void
    674  1.61  pooka uvm_pagedeactivate(struct vm_page *pg)
    675  1.61  pooka {
    676  1.61  pooka 
    677  1.61  pooka 	/* nada */
    678  1.61  pooka }
    679  1.61  pooka 
    680  1.61  pooka void
    681  1.61  pooka uvm_pagedequeue(struct vm_page *pg)
    682  1.61  pooka {
    683  1.61  pooka 
    684  1.61  pooka 	/* nada*/
    685  1.61  pooka }
    686  1.61  pooka 
    687  1.61  pooka void
    688  1.61  pooka uvm_pageenqueue(struct vm_page *pg)
    689  1.61  pooka {
    690  1.61  pooka 
    691  1.61  pooka 	/* nada */
    692  1.61  pooka }
    693  1.80  pooka 
    694  1.88  pooka void
    695  1.88  pooka uvmpdpol_anfree(struct vm_anon *an)
    696  1.88  pooka {
    697  1.88  pooka 
    698  1.88  pooka 	/* nada */
    699  1.88  pooka }
    700  1.88  pooka 
    701  1.80  pooka /*
    702  1.80  pooka  * Routines related to the Page Baroness.
    703  1.80  pooka  */
    704  1.80  pooka 
    705  1.80  pooka void
    706  1.80  pooka uvm_wait(const char *msg)
    707  1.80  pooka {
    708  1.80  pooka 
    709  1.80  pooka 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    710  1.80  pooka 		panic("pagedaemon out of memory");
    711  1.80  pooka 	if (__predict_false(rump_threads == 0))
    712  1.80  pooka 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    713  1.80  pooka 
    714  1.80  pooka 	mutex_enter(&pdaemonmtx);
    715  1.80  pooka 	pdaemon_waiters++;
    716  1.80  pooka 	cv_signal(&pdaemoncv);
    717  1.80  pooka 	cv_wait(&oomwait, &pdaemonmtx);
    718  1.80  pooka 	mutex_exit(&pdaemonmtx);
    719  1.80  pooka }
    720  1.80  pooka 
    721  1.80  pooka void
    722  1.80  pooka uvm_pageout_start(int npages)
    723  1.80  pooka {
    724  1.80  pooka 
    725  1.80  pooka 	/* we don't have the heuristics */
    726  1.80  pooka }
    727  1.80  pooka 
    728  1.80  pooka void
    729  1.80  pooka uvm_pageout_done(int npages)
    730  1.80  pooka {
    731  1.80  pooka 
    732  1.80  pooka 	/* could wakeup waiters, but just let the pagedaemon do it */
    733  1.80  pooka }
    734  1.80  pooka 
    735  1.80  pooka /*
    736  1.80  pooka  * Under-construction page mistress.  This is lacking vfs support, namely:
    737  1.80  pooka  *
    738  1.80  pooka  *  1) draining vfs buffers
    739  1.80  pooka  *  2) paging out pages in vm vnode objects
    740  1.80  pooka  *     (we will not page out anon memory on the basis that
    741  1.80  pooka  *     that's the task of the host)
    742  1.80  pooka  */
    743  1.80  pooka 
    744  1.80  pooka void
    745  1.80  pooka uvm_pageout(void *arg)
    746  1.80  pooka {
    747  1.80  pooka 	struct pool *pp, *pp_first;
    748  1.80  pooka 	uint64_t where;
    749  1.80  pooka 	int timo = 0;
    750  1.80  pooka 	bool succ;
    751  1.80  pooka 
    752  1.80  pooka 	mutex_enter(&pdaemonmtx);
    753  1.80  pooka 	for (;;) {
    754  1.80  pooka 		cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
    755  1.80  pooka 		uvmexp.pdwoke++;
    756  1.80  pooka 		kernel_map->flags |= VM_MAP_WANTVA;
    757  1.80  pooka 		mutex_exit(&pdaemonmtx);
    758  1.80  pooka 
    759  1.80  pooka 		succ = false;
    760  1.80  pooka 		pool_drain_start(&pp_first, &where);
    761  1.80  pooka 		pp = pp_first;
    762  1.80  pooka 		for (;;) {
    763  1.80  pooka 			succ = pool_drain_end(pp, where);
    764  1.80  pooka 			if (succ)
    765  1.80  pooka 				break;
    766  1.80  pooka 			pool_drain_start(&pp, &where);
    767  1.80  pooka 			if (pp == pp_first) {
    768  1.80  pooka 				succ = pool_drain_end(pp, where);
    769  1.80  pooka 				break;
    770  1.80  pooka 			}
    771  1.80  pooka 		}
    772  1.80  pooka 		mutex_enter(&pdaemonmtx);
    773  1.80  pooka 
    774  1.80  pooka 		if (!succ) {
    775  1.80  pooka 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
    776  1.80  pooka 			    "memory ... sleeping (deadlock?)\n");
    777  1.80  pooka 			timo = hz;
    778  1.80  pooka 			continue;
    779  1.80  pooka 		}
    780  1.80  pooka 		kernel_map->flags &= ~VM_MAP_WANTVA;
    781  1.80  pooka 		timo = 0;
    782  1.80  pooka 
    783  1.80  pooka 		if (pdaemon_waiters) {
    784  1.80  pooka 			pdaemon_waiters = 0;
    785  1.80  pooka 			cv_broadcast(&oomwait);
    786  1.80  pooka 		}
    787  1.80  pooka 	}
    788  1.80  pooka 
    789  1.80  pooka 	panic("you can swap out any time you like, but you can never leave");
    790  1.80  pooka }
    791  1.80  pooka 
    792  1.80  pooka /*
    793  1.80  pooka  * In a regular kernel the pagedaemon is activated when memory becomes
    794  1.80  pooka  * low.  In a virtual rump kernel we do not know exactly how much memory
    795  1.80  pooka  * we have available -- it depends on the conditions on the host.
    796  1.80  pooka  * Therefore, we cannot preemptively kick the pagedaemon.  Rather, we
    797  1.80  pooka  * wait until things we desperate and we're forced to uvm_wait().
    798  1.80  pooka  *
    799  1.80  pooka  * The alternative would be to allocate a huge chunk of memory at
    800  1.80  pooka  * startup, but that solution has a number of problems including
    801  1.80  pooka  * being a resource hog, failing anyway due to host memory overcommit
    802  1.80  pooka  * and core dump size.
    803  1.80  pooka  */
    804  1.80  pooka 
    805  1.80  pooka void
    806  1.80  pooka uvm_kick_pdaemon()
    807  1.80  pooka {
    808  1.80  pooka 
    809  1.80  pooka 	/* nada */
    810  1.80  pooka }
    811  1.80  pooka 
    812  1.80  pooka void *
    813  1.80  pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
    814  1.80  pooka {
    815  1.84  pooka 	unsigned long newmem;
    816  1.80  pooka 	void *rv;
    817  1.80  pooka 
    818  1.84  pooka 	/* first we must be within the limit */
    819  1.84  pooka  limitagain:
    820  1.84  pooka 	if (physmemlimit != RUMPMEM_UNLIMITED) {
    821  1.84  pooka 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
    822  1.84  pooka 		if (newmem > physmemlimit) {
    823  1.84  pooka 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
    824  1.84  pooka 			if (!waitok)
    825  1.84  pooka 				return NULL;
    826  1.84  pooka 			uvm_wait(wmsg);
    827  1.84  pooka 			goto limitagain;
    828  1.84  pooka 		}
    829  1.84  pooka 	}
    830  1.84  pooka 
    831  1.84  pooka 	/* second, we must get something from the backend */
    832  1.80  pooka  again:
    833  1.80  pooka 	rv = rumpuser_malloc(howmuch, alignment);
    834  1.80  pooka 	if (__predict_false(rv == NULL && waitok)) {
    835  1.80  pooka 		uvm_wait(wmsg);
    836  1.80  pooka 		goto again;
    837  1.80  pooka 	}
    838  1.80  pooka 
    839  1.80  pooka 	return rv;
    840  1.80  pooka }
    841  1.84  pooka 
    842  1.84  pooka void
    843  1.84  pooka rump_hyperfree(void *what, size_t size)
    844  1.84  pooka {
    845  1.84  pooka 
    846  1.84  pooka 	if (physmemlimit != RUMPMEM_UNLIMITED) {
    847  1.84  pooka 		atomic_add_long(&curphysmem, -size);
    848  1.84  pooka 	}
    849  1.84  pooka 	rumpuser_free(what);
    850  1.84  pooka }
    851