vm.c revision 1.92 1 1.92 pooka /* $NetBSD: vm.c,v 1.92 2010/09/08 21:02:11 pooka Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.76 pooka * Copyright (c) 2007-2010 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.76 pooka * Development of this software was supported by
7 1.76 pooka * The Finnish Cultural Foundation and the Research Foundation of
8 1.76 pooka * The Helsinki University of Technology.
9 1.1 pooka *
10 1.1 pooka * Redistribution and use in source and binary forms, with or without
11 1.1 pooka * modification, are permitted provided that the following conditions
12 1.1 pooka * are met:
13 1.1 pooka * 1. Redistributions of source code must retain the above copyright
14 1.1 pooka * notice, this list of conditions and the following disclaimer.
15 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pooka * notice, this list of conditions and the following disclaimer in the
17 1.1 pooka * documentation and/or other materials provided with the distribution.
18 1.1 pooka *
19 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 pooka * SUCH DAMAGE.
30 1.1 pooka */
31 1.1 pooka
32 1.1 pooka /*
33 1.88 pooka * Virtual memory emulation routines.
34 1.1 pooka */
35 1.1 pooka
36 1.1 pooka /*
37 1.5 pooka * XXX: we abuse pg->uanon for the virtual address of the storage
38 1.1 pooka * for each page. phys_addr would fit the job description better,
39 1.1 pooka * except that it will create unnecessary lossage on some platforms
40 1.1 pooka * due to not being a pointer type.
41 1.1 pooka */
42 1.1 pooka
43 1.48 pooka #include <sys/cdefs.h>
44 1.92 pooka __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.92 2010/09/08 21:02:11 pooka Exp $");
45 1.48 pooka
46 1.1 pooka #include <sys/param.h>
47 1.40 pooka #include <sys/atomic.h>
48 1.80 pooka #include <sys/buf.h>
49 1.80 pooka #include <sys/kernel.h>
50 1.67 pooka #include <sys/kmem.h>
51 1.69 pooka #include <sys/mman.h>
52 1.1 pooka #include <sys/null.h>
53 1.1 pooka #include <sys/vnode.h>
54 1.1 pooka
55 1.34 pooka #include <machine/pmap.h>
56 1.34 pooka
57 1.34 pooka #include <rump/rumpuser.h>
58 1.34 pooka
59 1.1 pooka #include <uvm/uvm.h>
60 1.56 pooka #include <uvm/uvm_ddb.h>
61 1.88 pooka #include <uvm/uvm_pdpolicy.h>
62 1.1 pooka #include <uvm/uvm_prot.h>
63 1.58 he #include <uvm/uvm_readahead.h>
64 1.1 pooka
65 1.13 pooka #include "rump_private.h"
66 1.91 pooka #include "rump_vfs_private.h"
67 1.1 pooka
68 1.25 ad kmutex_t uvm_pageqlock;
69 1.88 pooka kmutex_t uvm_swap_data_lock;
70 1.25 ad
71 1.1 pooka struct uvmexp uvmexp;
72 1.7 pooka struct uvm uvm;
73 1.1 pooka
74 1.1 pooka struct vm_map rump_vmmap;
75 1.50 pooka static struct vm_map_kernel kmem_map_store;
76 1.50 pooka struct vm_map *kmem_map = &kmem_map_store.vmk_map;
77 1.1 pooka
78 1.35 pooka static struct vm_map_kernel kernel_map_store;
79 1.35 pooka struct vm_map *kernel_map = &kernel_map_store.vmk_map;
80 1.35 pooka
81 1.80 pooka static unsigned int pdaemon_waiters;
82 1.80 pooka static kmutex_t pdaemonmtx;
83 1.80 pooka static kcondvar_t pdaemoncv, oomwait;
84 1.80 pooka
85 1.91 pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
86 1.84 pooka static unsigned long curphysmem;
87 1.92 pooka static unsigned long dddlim; /* 90% of memory limit used */
88 1.92 pooka #define NEED_PAGEDAEMON() \
89 1.92 pooka (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
90 1.92 pooka
91 1.92 pooka /*
92 1.92 pooka * Try to free two pages worth of pages from objects.
93 1.92 pooka * If this succesfully frees a full page cache page, we'll
94 1.92 pooka * free the released page plus PAGE_SIZE/sizeof(vm_page).
95 1.92 pooka */
96 1.92 pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
97 1.92 pooka
98 1.92 pooka /*
99 1.92 pooka * Keep a list of least recently used pages. Since the only way a
100 1.92 pooka * rump kernel can "access" a page is via lookup, we put the page
101 1.92 pooka * at the back of queue every time a lookup for it is done. If the
102 1.92 pooka * page is in front of this global queue and we're short of memory,
103 1.92 pooka * it's a candidate for pageout.
104 1.92 pooka */
105 1.92 pooka static struct pglist vmpage_lruqueue;
106 1.92 pooka static unsigned vmpage_onqueue;
107 1.84 pooka
108 1.89 pooka static int
109 1.89 pooka pg_compare_key(const struct rb_node *n, const void *key)
110 1.89 pooka {
111 1.89 pooka voff_t a = ((const struct vm_page *)n)->offset;
112 1.89 pooka voff_t b = *(const voff_t *)key;
113 1.89 pooka
114 1.89 pooka if (a < b)
115 1.89 pooka return 1;
116 1.89 pooka else if (a > b)
117 1.89 pooka return -1;
118 1.89 pooka else
119 1.89 pooka return 0;
120 1.89 pooka }
121 1.89 pooka
122 1.89 pooka static int
123 1.89 pooka pg_compare_nodes(const struct rb_node *n1, const struct rb_node *n2)
124 1.89 pooka {
125 1.89 pooka
126 1.89 pooka return pg_compare_key(n1, &((const struct vm_page *)n2)->offset);
127 1.89 pooka }
128 1.89 pooka
129 1.89 pooka const struct rb_tree_ops uvm_page_tree_ops = {
130 1.89 pooka .rbto_compare_nodes = pg_compare_nodes,
131 1.89 pooka .rbto_compare_key = pg_compare_key,
132 1.89 pooka };
133 1.89 pooka
134 1.1 pooka /*
135 1.1 pooka * vm pages
136 1.1 pooka */
137 1.1 pooka
138 1.90 pooka static int
139 1.90 pooka pgctor(void *arg, void *obj, int flags)
140 1.90 pooka {
141 1.90 pooka struct vm_page *pg = obj;
142 1.90 pooka
143 1.90 pooka memset(pg, 0, sizeof(*pg));
144 1.90 pooka pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE, true, "pgalloc");
145 1.90 pooka return 0;
146 1.90 pooka }
147 1.90 pooka
148 1.90 pooka static void
149 1.90 pooka pgdtor(void *arg, void *obj)
150 1.90 pooka {
151 1.90 pooka struct vm_page *pg = obj;
152 1.90 pooka
153 1.90 pooka rump_hyperfree(pg->uanon, PAGE_SIZE);
154 1.90 pooka }
155 1.90 pooka
156 1.90 pooka static struct pool_cache pagecache;
157 1.90 pooka
158 1.92 pooka /*
159 1.92 pooka * Called with the object locked. We don't support anons.
160 1.92 pooka */
161 1.1 pooka struct vm_page *
162 1.76 pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
163 1.76 pooka int flags, int strat, int free_list)
164 1.1 pooka {
165 1.1 pooka struct vm_page *pg;
166 1.1 pooka
167 1.92 pooka KASSERT(uobj && mutex_owned(&uobj->vmobjlock));
168 1.92 pooka KASSERT(anon == NULL);
169 1.92 pooka
170 1.90 pooka pg = pool_cache_get(&pagecache, PR_WAITOK);
171 1.1 pooka pg->offset = off;
172 1.5 pooka pg->uobject = uobj;
173 1.1 pooka
174 1.22 pooka pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
175 1.90 pooka if (flags & UVM_PGA_ZERO) {
176 1.90 pooka uvm_pagezero(pg);
177 1.90 pooka }
178 1.1 pooka
179 1.31 ad TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
180 1.89 pooka rb_tree_insert_node(&uobj->rb_tree, &pg->rb_node);
181 1.89 pooka
182 1.92 pooka /*
183 1.92 pooka * Put vnodes on the LRU page queue. we can't flush others,
184 1.92 pooka * so don't bother with them.
185 1.92 pooka */
186 1.92 pooka if (UVM_OBJ_IS_VNODE(uobj)) {
187 1.92 pooka atomic_inc_uint(&vmpage_onqueue);
188 1.92 pooka mutex_enter(&uvm_pageqlock);
189 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
190 1.92 pooka mutex_exit(&uvm_pageqlock);
191 1.92 pooka }
192 1.92 pooka
193 1.59 pooka uobj->uo_npages++;
194 1.21 pooka
195 1.1 pooka return pg;
196 1.1 pooka }
197 1.1 pooka
198 1.21 pooka /*
199 1.21 pooka * Release a page.
200 1.21 pooka *
201 1.22 pooka * Called with the vm object locked.
202 1.21 pooka */
203 1.1 pooka void
204 1.22 pooka uvm_pagefree(struct vm_page *pg)
205 1.1 pooka {
206 1.5 pooka struct uvm_object *uobj = pg->uobject;
207 1.1 pooka
208 1.92 pooka KASSERT(mutex_owned(&uvm_pageqlock));
209 1.92 pooka
210 1.22 pooka if (pg->flags & PG_WANTED)
211 1.22 pooka wakeup(pg);
212 1.22 pooka
213 1.92 pooka TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
214 1.92 pooka
215 1.59 pooka uobj->uo_npages--;
216 1.89 pooka rb_tree_remove_node(&uobj->rb_tree, &pg->rb_node);
217 1.92 pooka
218 1.92 pooka if (UVM_OBJ_IS_VNODE(uobj)) {
219 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
220 1.92 pooka atomic_dec_uint(&vmpage_onqueue);
221 1.92 pooka }
222 1.92 pooka
223 1.90 pooka pool_cache_put(&pagecache, pg);
224 1.1 pooka }
225 1.1 pooka
226 1.15 pooka void
227 1.61 pooka uvm_pagezero(struct vm_page *pg)
228 1.15 pooka {
229 1.15 pooka
230 1.61 pooka pg->flags &= ~PG_CLEAN;
231 1.61 pooka memset((void *)pg->uanon, 0, PAGE_SIZE);
232 1.15 pooka }
233 1.15 pooka
234 1.1 pooka /*
235 1.1 pooka * Misc routines
236 1.1 pooka */
237 1.1 pooka
238 1.61 pooka static kmutex_t pagermtx;
239 1.61 pooka
240 1.1 pooka void
241 1.79 pooka uvm_init(void)
242 1.1 pooka {
243 1.84 pooka char buf[64];
244 1.84 pooka int error;
245 1.84 pooka
246 1.84 pooka if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
247 1.91 pooka rump_physmemlimit = strtoll(buf, NULL, 10);
248 1.84 pooka /* it's not like we'd get far with, say, 1 byte, but ... */
249 1.91 pooka if (rump_physmemlimit == 0)
250 1.84 pooka panic("uvm_init: no memory available");
251 1.84 pooka #define HUMANIZE_BYTES 9
252 1.84 pooka CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
253 1.91 pooka format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
254 1.84 pooka #undef HUMANIZE_BYTES
255 1.92 pooka dddlim = 9 * (rump_physmemlimit / 10);
256 1.84 pooka } else {
257 1.84 pooka strlcpy(buf, "unlimited (host limit)", sizeof(buf));
258 1.84 pooka }
259 1.84 pooka aprint_verbose("total memory = %s\n", buf);
260 1.1 pooka
261 1.92 pooka TAILQ_INIT(&vmpage_lruqueue);
262 1.92 pooka
263 1.84 pooka uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
264 1.21 pooka
265 1.61 pooka mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
266 1.25 ad mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
267 1.88 pooka mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
268 1.35 pooka
269 1.80 pooka mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
270 1.80 pooka cv_init(&pdaemoncv, "pdaemon");
271 1.80 pooka cv_init(&oomwait, "oomwait");
272 1.80 pooka
273 1.50 pooka kernel_map->pmap = pmap_kernel();
274 1.35 pooka callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
275 1.50 pooka kmem_map->pmap = pmap_kernel();
276 1.50 pooka callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
277 1.90 pooka
278 1.90 pooka pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
279 1.90 pooka "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
280 1.1 pooka }
281 1.1 pooka
282 1.83 pooka void
283 1.83 pooka uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
284 1.83 pooka {
285 1.83 pooka
286 1.83 pooka vm->vm_map.pmap = pmap_kernel();
287 1.83 pooka vm->vm_refcnt = 1;
288 1.83 pooka }
289 1.1 pooka
290 1.1 pooka void
291 1.7 pooka uvm_pagewire(struct vm_page *pg)
292 1.7 pooka {
293 1.7 pooka
294 1.7 pooka /* nada */
295 1.7 pooka }
296 1.7 pooka
297 1.7 pooka void
298 1.7 pooka uvm_pageunwire(struct vm_page *pg)
299 1.7 pooka {
300 1.7 pooka
301 1.7 pooka /* nada */
302 1.7 pooka }
303 1.7 pooka
304 1.83 pooka /* where's your schmonz now? */
305 1.83 pooka #define PUNLIMIT(a) \
306 1.83 pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
307 1.83 pooka void
308 1.83 pooka uvm_init_limits(struct proc *p)
309 1.83 pooka {
310 1.83 pooka
311 1.83 pooka PUNLIMIT(RLIMIT_STACK);
312 1.83 pooka PUNLIMIT(RLIMIT_DATA);
313 1.83 pooka PUNLIMIT(RLIMIT_RSS);
314 1.83 pooka PUNLIMIT(RLIMIT_AS);
315 1.83 pooka /* nice, cascade */
316 1.83 pooka }
317 1.83 pooka #undef PUNLIMIT
318 1.83 pooka
319 1.69 pooka /*
320 1.69 pooka * This satisfies the "disgusting mmap hack" used by proplib.
321 1.69 pooka * We probably should grow some more assertables to make sure we're
322 1.69 pooka * not satisfying anything we shouldn't be satisfying. At least we
323 1.69 pooka * should make sure it's the local machine we're mmapping ...
324 1.69 pooka */
325 1.49 pooka int
326 1.49 pooka uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
327 1.49 pooka vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
328 1.49 pooka {
329 1.69 pooka void *uaddr;
330 1.69 pooka int error;
331 1.49 pooka
332 1.69 pooka if (prot != (VM_PROT_READ | VM_PROT_WRITE))
333 1.69 pooka panic("uvm_mmap() variant unsupported");
334 1.69 pooka if (flags != (MAP_PRIVATE | MAP_ANON))
335 1.69 pooka panic("uvm_mmap() variant unsupported");
336 1.69 pooka /* no reason in particular, but cf. uvm_default_mapaddr() */
337 1.69 pooka if (*addr != 0)
338 1.69 pooka panic("uvm_mmap() variant unsupported");
339 1.69 pooka
340 1.81 pooka uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
341 1.69 pooka if (uaddr == NULL)
342 1.69 pooka return error;
343 1.69 pooka
344 1.69 pooka *addr = (vaddr_t)uaddr;
345 1.69 pooka return 0;
346 1.49 pooka }
347 1.49 pooka
348 1.61 pooka struct pagerinfo {
349 1.61 pooka vaddr_t pgr_kva;
350 1.61 pooka int pgr_npages;
351 1.61 pooka struct vm_page **pgr_pgs;
352 1.61 pooka bool pgr_read;
353 1.61 pooka
354 1.61 pooka LIST_ENTRY(pagerinfo) pgr_entries;
355 1.61 pooka };
356 1.61 pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
357 1.61 pooka
358 1.61 pooka /*
359 1.61 pooka * Pager "map" in routine. Instead of mapping, we allocate memory
360 1.61 pooka * and copy page contents there. Not optimal or even strictly
361 1.61 pooka * correct (the caller might modify the page contents after mapping
362 1.61 pooka * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
363 1.61 pooka */
364 1.7 pooka vaddr_t
365 1.61 pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
366 1.7 pooka {
367 1.61 pooka struct pagerinfo *pgri;
368 1.61 pooka vaddr_t curkva;
369 1.61 pooka int i;
370 1.61 pooka
371 1.61 pooka /* allocate structures */
372 1.61 pooka pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
373 1.61 pooka pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
374 1.61 pooka pgri->pgr_npages = npages;
375 1.61 pooka pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
376 1.61 pooka pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
377 1.61 pooka
378 1.61 pooka /* copy contents to "mapped" memory */
379 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
380 1.61 pooka i < npages;
381 1.61 pooka i++, curkva += PAGE_SIZE) {
382 1.61 pooka /*
383 1.61 pooka * We need to copy the previous contents of the pages to
384 1.61 pooka * the window even if we are reading from the
385 1.61 pooka * device, since the device might not fill the contents of
386 1.61 pooka * the full mapped range and we will end up corrupting
387 1.61 pooka * data when we unmap the window.
388 1.61 pooka */
389 1.61 pooka memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
390 1.61 pooka pgri->pgr_pgs[i] = pgs[i];
391 1.61 pooka }
392 1.61 pooka
393 1.61 pooka mutex_enter(&pagermtx);
394 1.61 pooka LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
395 1.61 pooka mutex_exit(&pagermtx);
396 1.7 pooka
397 1.61 pooka return pgri->pgr_kva;
398 1.7 pooka }
399 1.7 pooka
400 1.61 pooka /*
401 1.61 pooka * map out the pager window. return contents from VA to page storage
402 1.61 pooka * and free structures.
403 1.61 pooka *
404 1.61 pooka * Note: does not currently support partial frees
405 1.61 pooka */
406 1.61 pooka void
407 1.61 pooka uvm_pagermapout(vaddr_t kva, int npages)
408 1.7 pooka {
409 1.61 pooka struct pagerinfo *pgri;
410 1.61 pooka vaddr_t curkva;
411 1.61 pooka int i;
412 1.7 pooka
413 1.61 pooka mutex_enter(&pagermtx);
414 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
415 1.61 pooka if (pgri->pgr_kva == kva)
416 1.61 pooka break;
417 1.61 pooka }
418 1.61 pooka KASSERT(pgri);
419 1.61 pooka if (pgri->pgr_npages != npages)
420 1.61 pooka panic("uvm_pagermapout: partial unmapping not supported");
421 1.61 pooka LIST_REMOVE(pgri, pgr_entries);
422 1.61 pooka mutex_exit(&pagermtx);
423 1.61 pooka
424 1.61 pooka if (pgri->pgr_read) {
425 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
426 1.61 pooka i < pgri->pgr_npages;
427 1.61 pooka i++, curkva += PAGE_SIZE) {
428 1.61 pooka memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
429 1.21 pooka }
430 1.21 pooka }
431 1.10 pooka
432 1.61 pooka kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
433 1.61 pooka kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
434 1.61 pooka kmem_free(pgri, sizeof(*pgri));
435 1.7 pooka }
436 1.7 pooka
437 1.61 pooka /*
438 1.61 pooka * convert va in pager window to page structure.
439 1.61 pooka * XXX: how expensive is this (global lock, list traversal)?
440 1.61 pooka */
441 1.14 pooka struct vm_page *
442 1.14 pooka uvm_pageratop(vaddr_t va)
443 1.14 pooka {
444 1.61 pooka struct pagerinfo *pgri;
445 1.61 pooka struct vm_page *pg = NULL;
446 1.61 pooka int i;
447 1.14 pooka
448 1.61 pooka mutex_enter(&pagermtx);
449 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
450 1.61 pooka if (pgri->pgr_kva <= va
451 1.61 pooka && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
452 1.21 pooka break;
453 1.61 pooka }
454 1.61 pooka if (pgri) {
455 1.61 pooka i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
456 1.61 pooka pg = pgri->pgr_pgs[i];
457 1.61 pooka }
458 1.61 pooka mutex_exit(&pagermtx);
459 1.21 pooka
460 1.61 pooka return pg;
461 1.61 pooka }
462 1.15 pooka
463 1.61 pooka /* Called with the vm object locked */
464 1.61 pooka struct vm_page *
465 1.61 pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
466 1.61 pooka {
467 1.92 pooka struct vm_page *pg;
468 1.61 pooka
469 1.92 pooka pg = (struct vm_page *)rb_tree_find_node(&uobj->rb_tree, &off);
470 1.92 pooka if (pg && UVM_OBJ_IS_VNODE(pg->uobject)) {
471 1.92 pooka mutex_enter(&uvm_pageqlock);
472 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
473 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
474 1.92 pooka mutex_exit(&uvm_pageqlock);
475 1.92 pooka }
476 1.92 pooka
477 1.92 pooka return pg;
478 1.14 pooka }
479 1.14 pooka
480 1.7 pooka void
481 1.22 pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
482 1.22 pooka {
483 1.22 pooka struct vm_page *pg;
484 1.22 pooka int i;
485 1.22 pooka
486 1.22 pooka for (i = 0; i < npgs; i++) {
487 1.22 pooka pg = pgs[i];
488 1.22 pooka if (pg == NULL)
489 1.22 pooka continue;
490 1.22 pooka
491 1.22 pooka KASSERT(pg->flags & PG_BUSY);
492 1.22 pooka if (pg->flags & PG_WANTED)
493 1.22 pooka wakeup(pg);
494 1.36 pooka if (pg->flags & PG_RELEASED)
495 1.36 pooka uvm_pagefree(pg);
496 1.36 pooka else
497 1.36 pooka pg->flags &= ~(PG_WANTED|PG_BUSY);
498 1.22 pooka }
499 1.22 pooka }
500 1.22 pooka
501 1.22 pooka void
502 1.7 pooka uvm_estimatepageable(int *active, int *inactive)
503 1.7 pooka {
504 1.7 pooka
505 1.19 pooka /* XXX: guessing game */
506 1.19 pooka *active = 1024;
507 1.19 pooka *inactive = 1024;
508 1.7 pooka }
509 1.7 pooka
510 1.39 pooka struct vm_map_kernel *
511 1.39 pooka vm_map_to_kernel(struct vm_map *map)
512 1.39 pooka {
513 1.39 pooka
514 1.39 pooka return (struct vm_map_kernel *)map;
515 1.39 pooka }
516 1.39 pooka
517 1.41 pooka bool
518 1.41 pooka vm_map_starved_p(struct vm_map *map)
519 1.41 pooka {
520 1.41 pooka
521 1.80 pooka if (map->flags & VM_MAP_WANTVA)
522 1.80 pooka return true;
523 1.80 pooka
524 1.41 pooka return false;
525 1.41 pooka }
526 1.41 pooka
527 1.41 pooka int
528 1.41 pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
529 1.41 pooka {
530 1.41 pooka
531 1.41 pooka panic("%s: unimplemented", __func__);
532 1.41 pooka }
533 1.41 pooka
534 1.41 pooka void
535 1.41 pooka uvm_unloan(void *v, int npages, int flags)
536 1.41 pooka {
537 1.41 pooka
538 1.41 pooka panic("%s: unimplemented", __func__);
539 1.41 pooka }
540 1.41 pooka
541 1.43 pooka int
542 1.43 pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
543 1.43 pooka struct vm_page **opp)
544 1.43 pooka {
545 1.43 pooka
546 1.72 pooka return EBUSY;
547 1.43 pooka }
548 1.43 pooka
549 1.73 pooka #ifdef DEBUGPRINT
550 1.56 pooka void
551 1.56 pooka uvm_object_printit(struct uvm_object *uobj, bool full,
552 1.56 pooka void (*pr)(const char *, ...))
553 1.56 pooka {
554 1.56 pooka
555 1.75 pooka pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
556 1.56 pooka }
557 1.73 pooka #endif
558 1.56 pooka
559 1.68 pooka vaddr_t
560 1.68 pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
561 1.68 pooka {
562 1.68 pooka
563 1.68 pooka return 0;
564 1.68 pooka }
565 1.68 pooka
566 1.71 pooka int
567 1.71 pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
568 1.71 pooka vm_prot_t prot, bool set_max)
569 1.71 pooka {
570 1.71 pooka
571 1.71 pooka return EOPNOTSUPP;
572 1.71 pooka }
573 1.71 pooka
574 1.9 pooka /*
575 1.12 pooka * UVM km
576 1.12 pooka */
577 1.12 pooka
578 1.12 pooka vaddr_t
579 1.12 pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
580 1.12 pooka {
581 1.82 pooka void *rv, *desired = NULL;
582 1.50 pooka int alignbit, error;
583 1.50 pooka
584 1.82 pooka #ifdef __x86_64__
585 1.82 pooka /*
586 1.82 pooka * On amd64, allocate all module memory from the lowest 2GB.
587 1.82 pooka * This is because NetBSD kernel modules are compiled
588 1.82 pooka * with -mcmodel=kernel and reserve only 4 bytes for
589 1.82 pooka * offsets. If we load code compiled with -mcmodel=kernel
590 1.82 pooka * anywhere except the lowest or highest 2GB, it will not
591 1.82 pooka * work. Since userspace does not have access to the highest
592 1.82 pooka * 2GB, use the lowest 2GB.
593 1.82 pooka *
594 1.82 pooka * Note: this assumes the rump kernel resides in
595 1.82 pooka * the lowest 2GB as well.
596 1.82 pooka *
597 1.82 pooka * Note2: yes, it's a quick hack, but since this the only
598 1.82 pooka * place where we care about the map we're allocating from,
599 1.82 pooka * just use a simple "if" instead of coming up with a fancy
600 1.82 pooka * generic solution.
601 1.82 pooka */
602 1.82 pooka extern struct vm_map *module_map;
603 1.82 pooka if (map == module_map) {
604 1.82 pooka desired = (void *)(0x80000000 - size);
605 1.82 pooka }
606 1.82 pooka #endif
607 1.82 pooka
608 1.50 pooka alignbit = 0;
609 1.50 pooka if (align) {
610 1.50 pooka alignbit = ffs(align)-1;
611 1.50 pooka }
612 1.50 pooka
613 1.82 pooka rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
614 1.81 pooka &error);
615 1.50 pooka if (rv == NULL) {
616 1.50 pooka if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
617 1.50 pooka return 0;
618 1.50 pooka else
619 1.50 pooka panic("uvm_km_alloc failed");
620 1.50 pooka }
621 1.12 pooka
622 1.50 pooka if (flags & UVM_KMF_ZERO)
623 1.12 pooka memset(rv, 0, size);
624 1.12 pooka
625 1.12 pooka return (vaddr_t)rv;
626 1.12 pooka }
627 1.12 pooka
628 1.12 pooka void
629 1.12 pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
630 1.12 pooka {
631 1.12 pooka
632 1.50 pooka rumpuser_unmap((void *)vaddr, size);
633 1.12 pooka }
634 1.12 pooka
635 1.12 pooka struct vm_map *
636 1.12 pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
637 1.12 pooka vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
638 1.12 pooka {
639 1.12 pooka
640 1.12 pooka return (struct vm_map *)417416;
641 1.12 pooka }
642 1.40 pooka
643 1.40 pooka vaddr_t
644 1.40 pooka uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
645 1.40 pooka {
646 1.40 pooka
647 1.80 pooka return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
648 1.80 pooka waitok, "kmalloc");
649 1.40 pooka }
650 1.40 pooka
651 1.40 pooka void
652 1.40 pooka uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
653 1.40 pooka {
654 1.40 pooka
655 1.84 pooka rump_hyperfree((void *)addr, PAGE_SIZE);
656 1.50 pooka }
657 1.50 pooka
658 1.50 pooka vaddr_t
659 1.50 pooka uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
660 1.50 pooka {
661 1.50 pooka
662 1.77 pooka return uvm_km_alloc_poolpage(map, waitok);
663 1.50 pooka }
664 1.50 pooka
665 1.50 pooka void
666 1.50 pooka uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
667 1.50 pooka {
668 1.50 pooka
669 1.77 pooka uvm_km_free_poolpage(map, vaddr);
670 1.40 pooka }
671 1.57 pooka
672 1.74 pooka void
673 1.74 pooka uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
674 1.74 pooka {
675 1.74 pooka
676 1.74 pooka /* we eventually maybe want some model for available memory */
677 1.74 pooka }
678 1.74 pooka
679 1.57 pooka /*
680 1.57 pooka * Mapping and vm space locking routines.
681 1.57 pooka * XXX: these don't work for non-local vmspaces
682 1.57 pooka */
683 1.57 pooka int
684 1.57 pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
685 1.57 pooka {
686 1.57 pooka
687 1.83 pooka KASSERT(vs == &vmspace0);
688 1.57 pooka return 0;
689 1.57 pooka }
690 1.57 pooka
691 1.57 pooka void
692 1.57 pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
693 1.57 pooka {
694 1.57 pooka
695 1.83 pooka KASSERT(vs == &vmspace0);
696 1.57 pooka }
697 1.57 pooka
698 1.57 pooka void
699 1.57 pooka vmapbuf(struct buf *bp, vsize_t len)
700 1.57 pooka {
701 1.57 pooka
702 1.57 pooka bp->b_saveaddr = bp->b_data;
703 1.57 pooka }
704 1.57 pooka
705 1.57 pooka void
706 1.57 pooka vunmapbuf(struct buf *bp, vsize_t len)
707 1.57 pooka {
708 1.57 pooka
709 1.57 pooka bp->b_data = bp->b_saveaddr;
710 1.57 pooka bp->b_saveaddr = 0;
711 1.57 pooka }
712 1.61 pooka
713 1.61 pooka void
714 1.83 pooka uvmspace_addref(struct vmspace *vm)
715 1.83 pooka {
716 1.83 pooka
717 1.83 pooka /*
718 1.83 pooka * there is only vmspace0. we're not planning on
719 1.83 pooka * feeding it to the fishes.
720 1.83 pooka */
721 1.83 pooka }
722 1.83 pooka
723 1.83 pooka void
724 1.66 pooka uvmspace_free(struct vmspace *vm)
725 1.66 pooka {
726 1.66 pooka
727 1.66 pooka /* nothing for now */
728 1.66 pooka }
729 1.66 pooka
730 1.66 pooka int
731 1.66 pooka uvm_io(struct vm_map *map, struct uio *uio)
732 1.66 pooka {
733 1.66 pooka
734 1.66 pooka /*
735 1.66 pooka * just do direct uio for now. but this needs some vmspace
736 1.66 pooka * olympics for rump_sysproxy.
737 1.66 pooka */
738 1.66 pooka return uiomove((void *)(vaddr_t)uio->uio_offset, uio->uio_resid, uio);
739 1.66 pooka }
740 1.66 pooka
741 1.61 pooka /*
742 1.61 pooka * page life cycle stuff. it really doesn't exist, so just stubs.
743 1.61 pooka */
744 1.61 pooka
745 1.61 pooka void
746 1.61 pooka uvm_pageactivate(struct vm_page *pg)
747 1.61 pooka {
748 1.61 pooka
749 1.61 pooka /* nada */
750 1.61 pooka }
751 1.61 pooka
752 1.61 pooka void
753 1.61 pooka uvm_pagedeactivate(struct vm_page *pg)
754 1.61 pooka {
755 1.61 pooka
756 1.61 pooka /* nada */
757 1.61 pooka }
758 1.61 pooka
759 1.61 pooka void
760 1.61 pooka uvm_pagedequeue(struct vm_page *pg)
761 1.61 pooka {
762 1.61 pooka
763 1.61 pooka /* nada*/
764 1.61 pooka }
765 1.61 pooka
766 1.61 pooka void
767 1.61 pooka uvm_pageenqueue(struct vm_page *pg)
768 1.61 pooka {
769 1.61 pooka
770 1.61 pooka /* nada */
771 1.61 pooka }
772 1.80 pooka
773 1.88 pooka void
774 1.88 pooka uvmpdpol_anfree(struct vm_anon *an)
775 1.88 pooka {
776 1.88 pooka
777 1.88 pooka /* nada */
778 1.88 pooka }
779 1.88 pooka
780 1.80 pooka /*
781 1.80 pooka * Routines related to the Page Baroness.
782 1.80 pooka */
783 1.80 pooka
784 1.80 pooka void
785 1.80 pooka uvm_wait(const char *msg)
786 1.80 pooka {
787 1.80 pooka
788 1.80 pooka if (__predict_false(curlwp == uvm.pagedaemon_lwp))
789 1.80 pooka panic("pagedaemon out of memory");
790 1.80 pooka if (__predict_false(rump_threads == 0))
791 1.80 pooka panic("pagedaemon missing (RUMP_THREADS = 0)");
792 1.80 pooka
793 1.80 pooka mutex_enter(&pdaemonmtx);
794 1.80 pooka pdaemon_waiters++;
795 1.80 pooka cv_signal(&pdaemoncv);
796 1.80 pooka cv_wait(&oomwait, &pdaemonmtx);
797 1.80 pooka mutex_exit(&pdaemonmtx);
798 1.80 pooka }
799 1.80 pooka
800 1.80 pooka void
801 1.80 pooka uvm_pageout_start(int npages)
802 1.80 pooka {
803 1.80 pooka
804 1.80 pooka /* we don't have the heuristics */
805 1.80 pooka }
806 1.80 pooka
807 1.80 pooka void
808 1.80 pooka uvm_pageout_done(int npages)
809 1.80 pooka {
810 1.80 pooka
811 1.80 pooka /* could wakeup waiters, but just let the pagedaemon do it */
812 1.80 pooka }
813 1.80 pooka
814 1.80 pooka /*
815 1.92 pooka * The Diabolical pageDaemon Director (DDD).
816 1.80 pooka */
817 1.80 pooka void
818 1.80 pooka uvm_pageout(void *arg)
819 1.80 pooka {
820 1.92 pooka struct vm_page *pg;
821 1.80 pooka struct pool *pp, *pp_first;
822 1.80 pooka uint64_t where;
823 1.80 pooka int timo = 0;
824 1.92 pooka int cleaned, skip, skipped;
825 1.92 pooka bool succ = false;
826 1.80 pooka
827 1.80 pooka mutex_enter(&pdaemonmtx);
828 1.80 pooka for (;;) {
829 1.92 pooka if (succ) {
830 1.92 pooka kernel_map->flags &= ~VM_MAP_WANTVA;
831 1.92 pooka kmem_map->flags &= VM_MAP_WANTVA;
832 1.92 pooka timo = 0;
833 1.92 pooka }
834 1.92 pooka succ = false;
835 1.92 pooka
836 1.92 pooka /*
837 1.92 pooka * Wake up everyone regardless of perceived success.
838 1.92 pooka * They will just resleep if we're stil out of juice.
839 1.92 pooka */
840 1.92 pooka if (pdaemon_waiters) {
841 1.92 pooka pdaemon_waiters = 0;
842 1.92 pooka cv_broadcast(&oomwait);
843 1.92 pooka }
844 1.92 pooka
845 1.92 pooka cv_timedwait(&pdaemoncv, &pdaemonmtx, 0);
846 1.80 pooka uvmexp.pdwoke++;
847 1.92 pooka
848 1.92 pooka /* tell the world that we are hungry */
849 1.80 pooka kernel_map->flags |= VM_MAP_WANTVA;
850 1.92 pooka kmem_map->flags |= VM_MAP_WANTVA;
851 1.92 pooka
852 1.92 pooka if (pdaemon_waiters == 0 && !NEED_PAGEDAEMON())
853 1.92 pooka continue;
854 1.80 pooka mutex_exit(&pdaemonmtx);
855 1.80 pooka
856 1.92 pooka /*
857 1.92 pooka * step one: reclaim the page cache. this should give
858 1.92 pooka * us the biggest earnings since whole pages are released
859 1.92 pooka * into backing memory.
860 1.92 pooka */
861 1.92 pooka pool_cache_reclaim(&pagecache);
862 1.92 pooka if (!NEED_PAGEDAEMON()) {
863 1.92 pooka succ = true;
864 1.92 pooka mutex_enter(&pdaemonmtx);
865 1.92 pooka continue;
866 1.92 pooka }
867 1.92 pooka
868 1.92 pooka /*
869 1.92 pooka * Ok, so that didn't help. Next, try to hunt memory
870 1.92 pooka * by pushing out vnode pages. The pages might contain
871 1.92 pooka * useful cached data, but we need the memory.
872 1.92 pooka */
873 1.92 pooka cleaned = 0;
874 1.92 pooka skip = 0;
875 1.92 pooka again:
876 1.92 pooka mutex_enter(&uvm_pageqlock);
877 1.92 pooka while (cleaned < PAGEDAEMON_OBJCHUNK) {
878 1.92 pooka skipped = 0;
879 1.92 pooka TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
880 1.92 pooka struct uvm_object *uobj;
881 1.92 pooka
882 1.92 pooka /*
883 1.92 pooka * skip over pages we _might_ have tried
884 1.92 pooka * to handle earlier. they might not be
885 1.92 pooka * exactly the same ones, but I'm not too
886 1.92 pooka * concerned.
887 1.92 pooka */
888 1.92 pooka while (skipped++ < skip)
889 1.92 pooka continue;
890 1.92 pooka
891 1.92 pooka uobj = pg->uobject;
892 1.92 pooka if (mutex_tryenter(&uobj->vmobjlock)) {
893 1.92 pooka if ((pg->flags & PG_BUSY) == 0) {
894 1.92 pooka mutex_exit(&uvm_pageqlock);
895 1.92 pooka uobj->pgops->pgo_put(uobj,
896 1.92 pooka pg->offset,
897 1.92 pooka pg->offset + PAGE_SIZE,
898 1.92 pooka PGO_CLEANIT|PGO_FREE);
899 1.92 pooka cleaned++;
900 1.92 pooka goto again;
901 1.92 pooka }
902 1.92 pooka }
903 1.92 pooka
904 1.92 pooka skip++;
905 1.92 pooka }
906 1.92 pooka break;
907 1.92 pooka }
908 1.92 pooka mutex_exit(&uvm_pageqlock);
909 1.92 pooka
910 1.92 pooka /*
911 1.92 pooka * And of course we need to reclaim the page cache
912 1.92 pooka * again to actually release memory.
913 1.92 pooka */
914 1.92 pooka pool_cache_reclaim(&pagecache);
915 1.92 pooka if (!NEED_PAGEDAEMON()) {
916 1.92 pooka succ = true;
917 1.92 pooka mutex_enter(&pdaemonmtx);
918 1.92 pooka continue;
919 1.92 pooka }
920 1.92 pooka
921 1.92 pooka /*
922 1.92 pooka * Still not there? sleeves come off right about now.
923 1.92 pooka * First: do reclaim on kernel/kmem map.
924 1.92 pooka */
925 1.92 pooka callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
926 1.92 pooka NULL);
927 1.92 pooka callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
928 1.92 pooka NULL);
929 1.92 pooka
930 1.92 pooka /*
931 1.92 pooka * And then drain the pools. Wipe them out ... all of them.
932 1.92 pooka */
933 1.92 pooka
934 1.80 pooka pool_drain_start(&pp_first, &where);
935 1.80 pooka pp = pp_first;
936 1.80 pooka for (;;) {
937 1.91 pooka rump_vfs_drainbufs(10 /* XXX: estimate better */);
938 1.80 pooka succ = pool_drain_end(pp, where);
939 1.80 pooka if (succ)
940 1.80 pooka break;
941 1.80 pooka pool_drain_start(&pp, &where);
942 1.80 pooka if (pp == pp_first) {
943 1.80 pooka succ = pool_drain_end(pp, where);
944 1.80 pooka break;
945 1.80 pooka }
946 1.80 pooka }
947 1.92 pooka
948 1.92 pooka /*
949 1.92 pooka * Need to use PYEC on our bag of tricks.
950 1.92 pooka * Unfortunately, the wife just borrowed it.
951 1.92 pooka */
952 1.80 pooka
953 1.80 pooka if (!succ) {
954 1.80 pooka rumpuser_dprintf("pagedaemoness: failed to reclaim "
955 1.80 pooka "memory ... sleeping (deadlock?)\n");
956 1.92 pooka kpause("dpdd", false, hz, NULL);
957 1.80 pooka }
958 1.80 pooka
959 1.92 pooka mutex_enter(&pdaemonmtx);
960 1.80 pooka }
961 1.80 pooka
962 1.80 pooka panic("you can swap out any time you like, but you can never leave");
963 1.80 pooka }
964 1.80 pooka
965 1.80 pooka void
966 1.80 pooka uvm_kick_pdaemon()
967 1.80 pooka {
968 1.80 pooka
969 1.92 pooka /*
970 1.92 pooka * Wake up the diabolical pagedaemon director if we are over
971 1.92 pooka * 90% of the memory limit. This is a complete and utter
972 1.92 pooka * stetson-harrison decision which you are allowed to finetune.
973 1.92 pooka * Don't bother locking. If we have some unflushed caches,
974 1.92 pooka * other waker-uppers will deal with the issue.
975 1.92 pooka */
976 1.92 pooka if (NEED_PAGEDAEMON()) {
977 1.92 pooka cv_signal(&pdaemoncv);
978 1.92 pooka }
979 1.80 pooka }
980 1.80 pooka
981 1.80 pooka void *
982 1.80 pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
983 1.80 pooka {
984 1.84 pooka unsigned long newmem;
985 1.80 pooka void *rv;
986 1.80 pooka
987 1.92 pooka uvm_kick_pdaemon(); /* ouch */
988 1.92 pooka
989 1.84 pooka /* first we must be within the limit */
990 1.84 pooka limitagain:
991 1.91 pooka if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
992 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, howmuch);
993 1.91 pooka if (newmem > rump_physmemlimit) {
994 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, -howmuch);
995 1.84 pooka if (!waitok)
996 1.84 pooka return NULL;
997 1.84 pooka uvm_wait(wmsg);
998 1.84 pooka goto limitagain;
999 1.84 pooka }
1000 1.84 pooka }
1001 1.84 pooka
1002 1.84 pooka /* second, we must get something from the backend */
1003 1.80 pooka again:
1004 1.80 pooka rv = rumpuser_malloc(howmuch, alignment);
1005 1.80 pooka if (__predict_false(rv == NULL && waitok)) {
1006 1.80 pooka uvm_wait(wmsg);
1007 1.80 pooka goto again;
1008 1.80 pooka }
1009 1.80 pooka
1010 1.80 pooka return rv;
1011 1.80 pooka }
1012 1.84 pooka
1013 1.84 pooka void
1014 1.84 pooka rump_hyperfree(void *what, size_t size)
1015 1.84 pooka {
1016 1.84 pooka
1017 1.91 pooka if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1018 1.84 pooka atomic_add_long(&curphysmem, -size);
1019 1.84 pooka }
1020 1.84 pooka rumpuser_free(what);
1021 1.84 pooka }
1022