vm.c revision 1.93 1 1.93 pooka /* $NetBSD: vm.c,v 1.93 2010/09/08 21:14:32 pooka Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.76 pooka * Copyright (c) 2007-2010 Antti Kantee. All Rights Reserved.
5 1.1 pooka *
6 1.76 pooka * Development of this software was supported by
7 1.76 pooka * The Finnish Cultural Foundation and the Research Foundation of
8 1.76 pooka * The Helsinki University of Technology.
9 1.1 pooka *
10 1.1 pooka * Redistribution and use in source and binary forms, with or without
11 1.1 pooka * modification, are permitted provided that the following conditions
12 1.1 pooka * are met:
13 1.1 pooka * 1. Redistributions of source code must retain the above copyright
14 1.1 pooka * notice, this list of conditions and the following disclaimer.
15 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pooka * notice, this list of conditions and the following disclaimer in the
17 1.1 pooka * documentation and/or other materials provided with the distribution.
18 1.1 pooka *
19 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 1.1 pooka * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 pooka * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 1.1 pooka * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 1.1 pooka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 pooka * SUCH DAMAGE.
30 1.1 pooka */
31 1.1 pooka
32 1.1 pooka /*
33 1.88 pooka * Virtual memory emulation routines.
34 1.1 pooka */
35 1.1 pooka
36 1.1 pooka /*
37 1.5 pooka * XXX: we abuse pg->uanon for the virtual address of the storage
38 1.1 pooka * for each page. phys_addr would fit the job description better,
39 1.1 pooka * except that it will create unnecessary lossage on some platforms
40 1.1 pooka * due to not being a pointer type.
41 1.1 pooka */
42 1.1 pooka
43 1.48 pooka #include <sys/cdefs.h>
44 1.93 pooka __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.93 2010/09/08 21:14:32 pooka Exp $");
45 1.48 pooka
46 1.1 pooka #include <sys/param.h>
47 1.40 pooka #include <sys/atomic.h>
48 1.80 pooka #include <sys/buf.h>
49 1.80 pooka #include <sys/kernel.h>
50 1.67 pooka #include <sys/kmem.h>
51 1.69 pooka #include <sys/mman.h>
52 1.1 pooka #include <sys/null.h>
53 1.1 pooka #include <sys/vnode.h>
54 1.1 pooka
55 1.34 pooka #include <machine/pmap.h>
56 1.34 pooka
57 1.34 pooka #include <rump/rumpuser.h>
58 1.34 pooka
59 1.1 pooka #include <uvm/uvm.h>
60 1.56 pooka #include <uvm/uvm_ddb.h>
61 1.88 pooka #include <uvm/uvm_pdpolicy.h>
62 1.1 pooka #include <uvm/uvm_prot.h>
63 1.58 he #include <uvm/uvm_readahead.h>
64 1.1 pooka
65 1.13 pooka #include "rump_private.h"
66 1.91 pooka #include "rump_vfs_private.h"
67 1.1 pooka
68 1.25 ad kmutex_t uvm_pageqlock;
69 1.88 pooka kmutex_t uvm_swap_data_lock;
70 1.25 ad
71 1.1 pooka struct uvmexp uvmexp;
72 1.7 pooka struct uvm uvm;
73 1.1 pooka
74 1.1 pooka struct vm_map rump_vmmap;
75 1.50 pooka static struct vm_map_kernel kmem_map_store;
76 1.50 pooka struct vm_map *kmem_map = &kmem_map_store.vmk_map;
77 1.1 pooka
78 1.35 pooka static struct vm_map_kernel kernel_map_store;
79 1.35 pooka struct vm_map *kernel_map = &kernel_map_store.vmk_map;
80 1.35 pooka
81 1.80 pooka static unsigned int pdaemon_waiters;
82 1.80 pooka static kmutex_t pdaemonmtx;
83 1.80 pooka static kcondvar_t pdaemoncv, oomwait;
84 1.80 pooka
85 1.91 pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
86 1.84 pooka static unsigned long curphysmem;
87 1.92 pooka static unsigned long dddlim; /* 90% of memory limit used */
88 1.92 pooka #define NEED_PAGEDAEMON() \
89 1.92 pooka (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
90 1.92 pooka
91 1.92 pooka /*
92 1.92 pooka * Try to free two pages worth of pages from objects.
93 1.92 pooka * If this succesfully frees a full page cache page, we'll
94 1.92 pooka * free the released page plus PAGE_SIZE/sizeof(vm_page).
95 1.92 pooka */
96 1.92 pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
97 1.92 pooka
98 1.92 pooka /*
99 1.92 pooka * Keep a list of least recently used pages. Since the only way a
100 1.92 pooka * rump kernel can "access" a page is via lookup, we put the page
101 1.92 pooka * at the back of queue every time a lookup for it is done. If the
102 1.92 pooka * page is in front of this global queue and we're short of memory,
103 1.92 pooka * it's a candidate for pageout.
104 1.92 pooka */
105 1.92 pooka static struct pglist vmpage_lruqueue;
106 1.92 pooka static unsigned vmpage_onqueue;
107 1.84 pooka
108 1.89 pooka static int
109 1.89 pooka pg_compare_key(const struct rb_node *n, const void *key)
110 1.89 pooka {
111 1.89 pooka voff_t a = ((const struct vm_page *)n)->offset;
112 1.89 pooka voff_t b = *(const voff_t *)key;
113 1.89 pooka
114 1.89 pooka if (a < b)
115 1.89 pooka return 1;
116 1.89 pooka else if (a > b)
117 1.89 pooka return -1;
118 1.89 pooka else
119 1.89 pooka return 0;
120 1.89 pooka }
121 1.89 pooka
122 1.89 pooka static int
123 1.89 pooka pg_compare_nodes(const struct rb_node *n1, const struct rb_node *n2)
124 1.89 pooka {
125 1.89 pooka
126 1.89 pooka return pg_compare_key(n1, &((const struct vm_page *)n2)->offset);
127 1.89 pooka }
128 1.89 pooka
129 1.89 pooka const struct rb_tree_ops uvm_page_tree_ops = {
130 1.89 pooka .rbto_compare_nodes = pg_compare_nodes,
131 1.89 pooka .rbto_compare_key = pg_compare_key,
132 1.89 pooka };
133 1.89 pooka
134 1.1 pooka /*
135 1.1 pooka * vm pages
136 1.1 pooka */
137 1.1 pooka
138 1.90 pooka static int
139 1.90 pooka pgctor(void *arg, void *obj, int flags)
140 1.90 pooka {
141 1.90 pooka struct vm_page *pg = obj;
142 1.90 pooka
143 1.90 pooka memset(pg, 0, sizeof(*pg));
144 1.90 pooka pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE, true, "pgalloc");
145 1.90 pooka return 0;
146 1.90 pooka }
147 1.90 pooka
148 1.90 pooka static void
149 1.90 pooka pgdtor(void *arg, void *obj)
150 1.90 pooka {
151 1.90 pooka struct vm_page *pg = obj;
152 1.90 pooka
153 1.90 pooka rump_hyperfree(pg->uanon, PAGE_SIZE);
154 1.90 pooka }
155 1.90 pooka
156 1.90 pooka static struct pool_cache pagecache;
157 1.90 pooka
158 1.92 pooka /*
159 1.92 pooka * Called with the object locked. We don't support anons.
160 1.92 pooka */
161 1.1 pooka struct vm_page *
162 1.76 pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
163 1.76 pooka int flags, int strat, int free_list)
164 1.1 pooka {
165 1.1 pooka struct vm_page *pg;
166 1.1 pooka
167 1.92 pooka KASSERT(uobj && mutex_owned(&uobj->vmobjlock));
168 1.92 pooka KASSERT(anon == NULL);
169 1.92 pooka
170 1.90 pooka pg = pool_cache_get(&pagecache, PR_WAITOK);
171 1.1 pooka pg->offset = off;
172 1.5 pooka pg->uobject = uobj;
173 1.1 pooka
174 1.22 pooka pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
175 1.90 pooka if (flags & UVM_PGA_ZERO) {
176 1.90 pooka uvm_pagezero(pg);
177 1.90 pooka }
178 1.1 pooka
179 1.31 ad TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
180 1.89 pooka rb_tree_insert_node(&uobj->rb_tree, &pg->rb_node);
181 1.89 pooka
182 1.92 pooka /*
183 1.93 pooka * Don't put anons on the LRU page queue. We can't flush them
184 1.93 pooka * (there's no concept of swap in a rump kernel), so no reason
185 1.93 pooka * to bother with them.
186 1.92 pooka */
187 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
188 1.92 pooka atomic_inc_uint(&vmpage_onqueue);
189 1.92 pooka mutex_enter(&uvm_pageqlock);
190 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
191 1.92 pooka mutex_exit(&uvm_pageqlock);
192 1.92 pooka }
193 1.92 pooka
194 1.59 pooka uobj->uo_npages++;
195 1.21 pooka
196 1.1 pooka return pg;
197 1.1 pooka }
198 1.1 pooka
199 1.21 pooka /*
200 1.21 pooka * Release a page.
201 1.21 pooka *
202 1.22 pooka * Called with the vm object locked.
203 1.21 pooka */
204 1.1 pooka void
205 1.22 pooka uvm_pagefree(struct vm_page *pg)
206 1.1 pooka {
207 1.5 pooka struct uvm_object *uobj = pg->uobject;
208 1.1 pooka
209 1.92 pooka KASSERT(mutex_owned(&uvm_pageqlock));
210 1.92 pooka
211 1.22 pooka if (pg->flags & PG_WANTED)
212 1.22 pooka wakeup(pg);
213 1.22 pooka
214 1.92 pooka TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
215 1.92 pooka
216 1.59 pooka uobj->uo_npages--;
217 1.89 pooka rb_tree_remove_node(&uobj->rb_tree, &pg->rb_node);
218 1.92 pooka
219 1.93 pooka if (!UVM_OBJ_IS_AOBJ(uobj)) {
220 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
221 1.92 pooka atomic_dec_uint(&vmpage_onqueue);
222 1.92 pooka }
223 1.92 pooka
224 1.90 pooka pool_cache_put(&pagecache, pg);
225 1.1 pooka }
226 1.1 pooka
227 1.15 pooka void
228 1.61 pooka uvm_pagezero(struct vm_page *pg)
229 1.15 pooka {
230 1.15 pooka
231 1.61 pooka pg->flags &= ~PG_CLEAN;
232 1.61 pooka memset((void *)pg->uanon, 0, PAGE_SIZE);
233 1.15 pooka }
234 1.15 pooka
235 1.1 pooka /*
236 1.1 pooka * Misc routines
237 1.1 pooka */
238 1.1 pooka
239 1.61 pooka static kmutex_t pagermtx;
240 1.61 pooka
241 1.1 pooka void
242 1.79 pooka uvm_init(void)
243 1.1 pooka {
244 1.84 pooka char buf[64];
245 1.84 pooka int error;
246 1.84 pooka
247 1.84 pooka if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
248 1.91 pooka rump_physmemlimit = strtoll(buf, NULL, 10);
249 1.84 pooka /* it's not like we'd get far with, say, 1 byte, but ... */
250 1.91 pooka if (rump_physmemlimit == 0)
251 1.84 pooka panic("uvm_init: no memory available");
252 1.84 pooka #define HUMANIZE_BYTES 9
253 1.84 pooka CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
254 1.91 pooka format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
255 1.84 pooka #undef HUMANIZE_BYTES
256 1.92 pooka dddlim = 9 * (rump_physmemlimit / 10);
257 1.84 pooka } else {
258 1.84 pooka strlcpy(buf, "unlimited (host limit)", sizeof(buf));
259 1.84 pooka }
260 1.84 pooka aprint_verbose("total memory = %s\n", buf);
261 1.1 pooka
262 1.92 pooka TAILQ_INIT(&vmpage_lruqueue);
263 1.92 pooka
264 1.84 pooka uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
265 1.21 pooka
266 1.61 pooka mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
267 1.25 ad mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
268 1.88 pooka mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
269 1.35 pooka
270 1.80 pooka mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
271 1.80 pooka cv_init(&pdaemoncv, "pdaemon");
272 1.80 pooka cv_init(&oomwait, "oomwait");
273 1.80 pooka
274 1.50 pooka kernel_map->pmap = pmap_kernel();
275 1.35 pooka callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
276 1.50 pooka kmem_map->pmap = pmap_kernel();
277 1.50 pooka callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
278 1.90 pooka
279 1.90 pooka pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
280 1.90 pooka "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
281 1.1 pooka }
282 1.1 pooka
283 1.83 pooka void
284 1.83 pooka uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
285 1.83 pooka {
286 1.83 pooka
287 1.83 pooka vm->vm_map.pmap = pmap_kernel();
288 1.83 pooka vm->vm_refcnt = 1;
289 1.83 pooka }
290 1.1 pooka
291 1.1 pooka void
292 1.7 pooka uvm_pagewire(struct vm_page *pg)
293 1.7 pooka {
294 1.7 pooka
295 1.7 pooka /* nada */
296 1.7 pooka }
297 1.7 pooka
298 1.7 pooka void
299 1.7 pooka uvm_pageunwire(struct vm_page *pg)
300 1.7 pooka {
301 1.7 pooka
302 1.7 pooka /* nada */
303 1.7 pooka }
304 1.7 pooka
305 1.83 pooka /* where's your schmonz now? */
306 1.83 pooka #define PUNLIMIT(a) \
307 1.83 pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
308 1.83 pooka void
309 1.83 pooka uvm_init_limits(struct proc *p)
310 1.83 pooka {
311 1.83 pooka
312 1.83 pooka PUNLIMIT(RLIMIT_STACK);
313 1.83 pooka PUNLIMIT(RLIMIT_DATA);
314 1.83 pooka PUNLIMIT(RLIMIT_RSS);
315 1.83 pooka PUNLIMIT(RLIMIT_AS);
316 1.83 pooka /* nice, cascade */
317 1.83 pooka }
318 1.83 pooka #undef PUNLIMIT
319 1.83 pooka
320 1.69 pooka /*
321 1.69 pooka * This satisfies the "disgusting mmap hack" used by proplib.
322 1.69 pooka * We probably should grow some more assertables to make sure we're
323 1.69 pooka * not satisfying anything we shouldn't be satisfying. At least we
324 1.69 pooka * should make sure it's the local machine we're mmapping ...
325 1.69 pooka */
326 1.49 pooka int
327 1.49 pooka uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
328 1.49 pooka vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
329 1.49 pooka {
330 1.69 pooka void *uaddr;
331 1.69 pooka int error;
332 1.49 pooka
333 1.69 pooka if (prot != (VM_PROT_READ | VM_PROT_WRITE))
334 1.69 pooka panic("uvm_mmap() variant unsupported");
335 1.69 pooka if (flags != (MAP_PRIVATE | MAP_ANON))
336 1.69 pooka panic("uvm_mmap() variant unsupported");
337 1.69 pooka /* no reason in particular, but cf. uvm_default_mapaddr() */
338 1.69 pooka if (*addr != 0)
339 1.69 pooka panic("uvm_mmap() variant unsupported");
340 1.69 pooka
341 1.81 pooka uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
342 1.69 pooka if (uaddr == NULL)
343 1.69 pooka return error;
344 1.69 pooka
345 1.69 pooka *addr = (vaddr_t)uaddr;
346 1.69 pooka return 0;
347 1.49 pooka }
348 1.49 pooka
349 1.61 pooka struct pagerinfo {
350 1.61 pooka vaddr_t pgr_kva;
351 1.61 pooka int pgr_npages;
352 1.61 pooka struct vm_page **pgr_pgs;
353 1.61 pooka bool pgr_read;
354 1.61 pooka
355 1.61 pooka LIST_ENTRY(pagerinfo) pgr_entries;
356 1.61 pooka };
357 1.61 pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
358 1.61 pooka
359 1.61 pooka /*
360 1.61 pooka * Pager "map" in routine. Instead of mapping, we allocate memory
361 1.61 pooka * and copy page contents there. Not optimal or even strictly
362 1.61 pooka * correct (the caller might modify the page contents after mapping
363 1.61 pooka * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
364 1.61 pooka */
365 1.7 pooka vaddr_t
366 1.61 pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
367 1.7 pooka {
368 1.61 pooka struct pagerinfo *pgri;
369 1.61 pooka vaddr_t curkva;
370 1.61 pooka int i;
371 1.61 pooka
372 1.61 pooka /* allocate structures */
373 1.61 pooka pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
374 1.61 pooka pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
375 1.61 pooka pgri->pgr_npages = npages;
376 1.61 pooka pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
377 1.61 pooka pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
378 1.61 pooka
379 1.61 pooka /* copy contents to "mapped" memory */
380 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
381 1.61 pooka i < npages;
382 1.61 pooka i++, curkva += PAGE_SIZE) {
383 1.61 pooka /*
384 1.61 pooka * We need to copy the previous contents of the pages to
385 1.61 pooka * the window even if we are reading from the
386 1.61 pooka * device, since the device might not fill the contents of
387 1.61 pooka * the full mapped range and we will end up corrupting
388 1.61 pooka * data when we unmap the window.
389 1.61 pooka */
390 1.61 pooka memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
391 1.61 pooka pgri->pgr_pgs[i] = pgs[i];
392 1.61 pooka }
393 1.61 pooka
394 1.61 pooka mutex_enter(&pagermtx);
395 1.61 pooka LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
396 1.61 pooka mutex_exit(&pagermtx);
397 1.7 pooka
398 1.61 pooka return pgri->pgr_kva;
399 1.7 pooka }
400 1.7 pooka
401 1.61 pooka /*
402 1.61 pooka * map out the pager window. return contents from VA to page storage
403 1.61 pooka * and free structures.
404 1.61 pooka *
405 1.61 pooka * Note: does not currently support partial frees
406 1.61 pooka */
407 1.61 pooka void
408 1.61 pooka uvm_pagermapout(vaddr_t kva, int npages)
409 1.7 pooka {
410 1.61 pooka struct pagerinfo *pgri;
411 1.61 pooka vaddr_t curkva;
412 1.61 pooka int i;
413 1.7 pooka
414 1.61 pooka mutex_enter(&pagermtx);
415 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
416 1.61 pooka if (pgri->pgr_kva == kva)
417 1.61 pooka break;
418 1.61 pooka }
419 1.61 pooka KASSERT(pgri);
420 1.61 pooka if (pgri->pgr_npages != npages)
421 1.61 pooka panic("uvm_pagermapout: partial unmapping not supported");
422 1.61 pooka LIST_REMOVE(pgri, pgr_entries);
423 1.61 pooka mutex_exit(&pagermtx);
424 1.61 pooka
425 1.61 pooka if (pgri->pgr_read) {
426 1.61 pooka for (i = 0, curkva = pgri->pgr_kva;
427 1.61 pooka i < pgri->pgr_npages;
428 1.61 pooka i++, curkva += PAGE_SIZE) {
429 1.61 pooka memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
430 1.21 pooka }
431 1.21 pooka }
432 1.10 pooka
433 1.61 pooka kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
434 1.61 pooka kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
435 1.61 pooka kmem_free(pgri, sizeof(*pgri));
436 1.7 pooka }
437 1.7 pooka
438 1.61 pooka /*
439 1.61 pooka * convert va in pager window to page structure.
440 1.61 pooka * XXX: how expensive is this (global lock, list traversal)?
441 1.61 pooka */
442 1.14 pooka struct vm_page *
443 1.14 pooka uvm_pageratop(vaddr_t va)
444 1.14 pooka {
445 1.61 pooka struct pagerinfo *pgri;
446 1.61 pooka struct vm_page *pg = NULL;
447 1.61 pooka int i;
448 1.14 pooka
449 1.61 pooka mutex_enter(&pagermtx);
450 1.61 pooka LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
451 1.61 pooka if (pgri->pgr_kva <= va
452 1.61 pooka && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
453 1.21 pooka break;
454 1.61 pooka }
455 1.61 pooka if (pgri) {
456 1.61 pooka i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
457 1.61 pooka pg = pgri->pgr_pgs[i];
458 1.61 pooka }
459 1.61 pooka mutex_exit(&pagermtx);
460 1.21 pooka
461 1.61 pooka return pg;
462 1.61 pooka }
463 1.15 pooka
464 1.61 pooka /* Called with the vm object locked */
465 1.61 pooka struct vm_page *
466 1.61 pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
467 1.61 pooka {
468 1.92 pooka struct vm_page *pg;
469 1.61 pooka
470 1.92 pooka pg = (struct vm_page *)rb_tree_find_node(&uobj->rb_tree, &off);
471 1.93 pooka if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject)) {
472 1.92 pooka mutex_enter(&uvm_pageqlock);
473 1.92 pooka TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
474 1.92 pooka TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
475 1.92 pooka mutex_exit(&uvm_pageqlock);
476 1.92 pooka }
477 1.92 pooka
478 1.92 pooka return pg;
479 1.14 pooka }
480 1.14 pooka
481 1.7 pooka void
482 1.22 pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
483 1.22 pooka {
484 1.22 pooka struct vm_page *pg;
485 1.22 pooka int i;
486 1.22 pooka
487 1.22 pooka for (i = 0; i < npgs; i++) {
488 1.22 pooka pg = pgs[i];
489 1.22 pooka if (pg == NULL)
490 1.22 pooka continue;
491 1.22 pooka
492 1.22 pooka KASSERT(pg->flags & PG_BUSY);
493 1.22 pooka if (pg->flags & PG_WANTED)
494 1.22 pooka wakeup(pg);
495 1.36 pooka if (pg->flags & PG_RELEASED)
496 1.36 pooka uvm_pagefree(pg);
497 1.36 pooka else
498 1.36 pooka pg->flags &= ~(PG_WANTED|PG_BUSY);
499 1.22 pooka }
500 1.22 pooka }
501 1.22 pooka
502 1.22 pooka void
503 1.7 pooka uvm_estimatepageable(int *active, int *inactive)
504 1.7 pooka {
505 1.7 pooka
506 1.19 pooka /* XXX: guessing game */
507 1.19 pooka *active = 1024;
508 1.19 pooka *inactive = 1024;
509 1.7 pooka }
510 1.7 pooka
511 1.39 pooka struct vm_map_kernel *
512 1.39 pooka vm_map_to_kernel(struct vm_map *map)
513 1.39 pooka {
514 1.39 pooka
515 1.39 pooka return (struct vm_map_kernel *)map;
516 1.39 pooka }
517 1.39 pooka
518 1.41 pooka bool
519 1.41 pooka vm_map_starved_p(struct vm_map *map)
520 1.41 pooka {
521 1.41 pooka
522 1.80 pooka if (map->flags & VM_MAP_WANTVA)
523 1.80 pooka return true;
524 1.80 pooka
525 1.41 pooka return false;
526 1.41 pooka }
527 1.41 pooka
528 1.41 pooka int
529 1.41 pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
530 1.41 pooka {
531 1.41 pooka
532 1.41 pooka panic("%s: unimplemented", __func__);
533 1.41 pooka }
534 1.41 pooka
535 1.41 pooka void
536 1.41 pooka uvm_unloan(void *v, int npages, int flags)
537 1.41 pooka {
538 1.41 pooka
539 1.41 pooka panic("%s: unimplemented", __func__);
540 1.41 pooka }
541 1.41 pooka
542 1.43 pooka int
543 1.43 pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
544 1.43 pooka struct vm_page **opp)
545 1.43 pooka {
546 1.43 pooka
547 1.72 pooka return EBUSY;
548 1.43 pooka }
549 1.43 pooka
550 1.73 pooka #ifdef DEBUGPRINT
551 1.56 pooka void
552 1.56 pooka uvm_object_printit(struct uvm_object *uobj, bool full,
553 1.56 pooka void (*pr)(const char *, ...))
554 1.56 pooka {
555 1.56 pooka
556 1.75 pooka pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
557 1.56 pooka }
558 1.73 pooka #endif
559 1.56 pooka
560 1.68 pooka vaddr_t
561 1.68 pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
562 1.68 pooka {
563 1.68 pooka
564 1.68 pooka return 0;
565 1.68 pooka }
566 1.68 pooka
567 1.71 pooka int
568 1.71 pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
569 1.71 pooka vm_prot_t prot, bool set_max)
570 1.71 pooka {
571 1.71 pooka
572 1.71 pooka return EOPNOTSUPP;
573 1.71 pooka }
574 1.71 pooka
575 1.9 pooka /*
576 1.12 pooka * UVM km
577 1.12 pooka */
578 1.12 pooka
579 1.12 pooka vaddr_t
580 1.12 pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
581 1.12 pooka {
582 1.82 pooka void *rv, *desired = NULL;
583 1.50 pooka int alignbit, error;
584 1.50 pooka
585 1.82 pooka #ifdef __x86_64__
586 1.82 pooka /*
587 1.82 pooka * On amd64, allocate all module memory from the lowest 2GB.
588 1.82 pooka * This is because NetBSD kernel modules are compiled
589 1.82 pooka * with -mcmodel=kernel and reserve only 4 bytes for
590 1.82 pooka * offsets. If we load code compiled with -mcmodel=kernel
591 1.82 pooka * anywhere except the lowest or highest 2GB, it will not
592 1.82 pooka * work. Since userspace does not have access to the highest
593 1.82 pooka * 2GB, use the lowest 2GB.
594 1.82 pooka *
595 1.82 pooka * Note: this assumes the rump kernel resides in
596 1.82 pooka * the lowest 2GB as well.
597 1.82 pooka *
598 1.82 pooka * Note2: yes, it's a quick hack, but since this the only
599 1.82 pooka * place where we care about the map we're allocating from,
600 1.82 pooka * just use a simple "if" instead of coming up with a fancy
601 1.82 pooka * generic solution.
602 1.82 pooka */
603 1.82 pooka extern struct vm_map *module_map;
604 1.82 pooka if (map == module_map) {
605 1.82 pooka desired = (void *)(0x80000000 - size);
606 1.82 pooka }
607 1.82 pooka #endif
608 1.82 pooka
609 1.50 pooka alignbit = 0;
610 1.50 pooka if (align) {
611 1.50 pooka alignbit = ffs(align)-1;
612 1.50 pooka }
613 1.50 pooka
614 1.82 pooka rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
615 1.81 pooka &error);
616 1.50 pooka if (rv == NULL) {
617 1.50 pooka if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
618 1.50 pooka return 0;
619 1.50 pooka else
620 1.50 pooka panic("uvm_km_alloc failed");
621 1.50 pooka }
622 1.12 pooka
623 1.50 pooka if (flags & UVM_KMF_ZERO)
624 1.12 pooka memset(rv, 0, size);
625 1.12 pooka
626 1.12 pooka return (vaddr_t)rv;
627 1.12 pooka }
628 1.12 pooka
629 1.12 pooka void
630 1.12 pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
631 1.12 pooka {
632 1.12 pooka
633 1.50 pooka rumpuser_unmap((void *)vaddr, size);
634 1.12 pooka }
635 1.12 pooka
636 1.12 pooka struct vm_map *
637 1.12 pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
638 1.12 pooka vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
639 1.12 pooka {
640 1.12 pooka
641 1.12 pooka return (struct vm_map *)417416;
642 1.12 pooka }
643 1.40 pooka
644 1.40 pooka vaddr_t
645 1.40 pooka uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
646 1.40 pooka {
647 1.40 pooka
648 1.80 pooka return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
649 1.80 pooka waitok, "kmalloc");
650 1.40 pooka }
651 1.40 pooka
652 1.40 pooka void
653 1.40 pooka uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
654 1.40 pooka {
655 1.40 pooka
656 1.84 pooka rump_hyperfree((void *)addr, PAGE_SIZE);
657 1.50 pooka }
658 1.50 pooka
659 1.50 pooka vaddr_t
660 1.50 pooka uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
661 1.50 pooka {
662 1.50 pooka
663 1.77 pooka return uvm_km_alloc_poolpage(map, waitok);
664 1.50 pooka }
665 1.50 pooka
666 1.50 pooka void
667 1.50 pooka uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
668 1.50 pooka {
669 1.50 pooka
670 1.77 pooka uvm_km_free_poolpage(map, vaddr);
671 1.40 pooka }
672 1.57 pooka
673 1.74 pooka void
674 1.74 pooka uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
675 1.74 pooka {
676 1.74 pooka
677 1.74 pooka /* we eventually maybe want some model for available memory */
678 1.74 pooka }
679 1.74 pooka
680 1.57 pooka /*
681 1.57 pooka * Mapping and vm space locking routines.
682 1.57 pooka * XXX: these don't work for non-local vmspaces
683 1.57 pooka */
684 1.57 pooka int
685 1.57 pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
686 1.57 pooka {
687 1.57 pooka
688 1.83 pooka KASSERT(vs == &vmspace0);
689 1.57 pooka return 0;
690 1.57 pooka }
691 1.57 pooka
692 1.57 pooka void
693 1.57 pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
694 1.57 pooka {
695 1.57 pooka
696 1.83 pooka KASSERT(vs == &vmspace0);
697 1.57 pooka }
698 1.57 pooka
699 1.57 pooka void
700 1.57 pooka vmapbuf(struct buf *bp, vsize_t len)
701 1.57 pooka {
702 1.57 pooka
703 1.57 pooka bp->b_saveaddr = bp->b_data;
704 1.57 pooka }
705 1.57 pooka
706 1.57 pooka void
707 1.57 pooka vunmapbuf(struct buf *bp, vsize_t len)
708 1.57 pooka {
709 1.57 pooka
710 1.57 pooka bp->b_data = bp->b_saveaddr;
711 1.57 pooka bp->b_saveaddr = 0;
712 1.57 pooka }
713 1.61 pooka
714 1.61 pooka void
715 1.83 pooka uvmspace_addref(struct vmspace *vm)
716 1.83 pooka {
717 1.83 pooka
718 1.83 pooka /*
719 1.83 pooka * there is only vmspace0. we're not planning on
720 1.83 pooka * feeding it to the fishes.
721 1.83 pooka */
722 1.83 pooka }
723 1.83 pooka
724 1.83 pooka void
725 1.66 pooka uvmspace_free(struct vmspace *vm)
726 1.66 pooka {
727 1.66 pooka
728 1.66 pooka /* nothing for now */
729 1.66 pooka }
730 1.66 pooka
731 1.66 pooka int
732 1.66 pooka uvm_io(struct vm_map *map, struct uio *uio)
733 1.66 pooka {
734 1.66 pooka
735 1.66 pooka /*
736 1.66 pooka * just do direct uio for now. but this needs some vmspace
737 1.66 pooka * olympics for rump_sysproxy.
738 1.66 pooka */
739 1.66 pooka return uiomove((void *)(vaddr_t)uio->uio_offset, uio->uio_resid, uio);
740 1.66 pooka }
741 1.66 pooka
742 1.61 pooka /*
743 1.61 pooka * page life cycle stuff. it really doesn't exist, so just stubs.
744 1.61 pooka */
745 1.61 pooka
746 1.61 pooka void
747 1.61 pooka uvm_pageactivate(struct vm_page *pg)
748 1.61 pooka {
749 1.61 pooka
750 1.61 pooka /* nada */
751 1.61 pooka }
752 1.61 pooka
753 1.61 pooka void
754 1.61 pooka uvm_pagedeactivate(struct vm_page *pg)
755 1.61 pooka {
756 1.61 pooka
757 1.61 pooka /* nada */
758 1.61 pooka }
759 1.61 pooka
760 1.61 pooka void
761 1.61 pooka uvm_pagedequeue(struct vm_page *pg)
762 1.61 pooka {
763 1.61 pooka
764 1.61 pooka /* nada*/
765 1.61 pooka }
766 1.61 pooka
767 1.61 pooka void
768 1.61 pooka uvm_pageenqueue(struct vm_page *pg)
769 1.61 pooka {
770 1.61 pooka
771 1.61 pooka /* nada */
772 1.61 pooka }
773 1.80 pooka
774 1.88 pooka void
775 1.88 pooka uvmpdpol_anfree(struct vm_anon *an)
776 1.88 pooka {
777 1.88 pooka
778 1.88 pooka /* nada */
779 1.88 pooka }
780 1.88 pooka
781 1.80 pooka /*
782 1.80 pooka * Routines related to the Page Baroness.
783 1.80 pooka */
784 1.80 pooka
785 1.80 pooka void
786 1.80 pooka uvm_wait(const char *msg)
787 1.80 pooka {
788 1.80 pooka
789 1.80 pooka if (__predict_false(curlwp == uvm.pagedaemon_lwp))
790 1.80 pooka panic("pagedaemon out of memory");
791 1.80 pooka if (__predict_false(rump_threads == 0))
792 1.80 pooka panic("pagedaemon missing (RUMP_THREADS = 0)");
793 1.80 pooka
794 1.80 pooka mutex_enter(&pdaemonmtx);
795 1.80 pooka pdaemon_waiters++;
796 1.80 pooka cv_signal(&pdaemoncv);
797 1.80 pooka cv_wait(&oomwait, &pdaemonmtx);
798 1.80 pooka mutex_exit(&pdaemonmtx);
799 1.80 pooka }
800 1.80 pooka
801 1.80 pooka void
802 1.80 pooka uvm_pageout_start(int npages)
803 1.80 pooka {
804 1.80 pooka
805 1.80 pooka /* we don't have the heuristics */
806 1.80 pooka }
807 1.80 pooka
808 1.80 pooka void
809 1.80 pooka uvm_pageout_done(int npages)
810 1.80 pooka {
811 1.80 pooka
812 1.80 pooka /* could wakeup waiters, but just let the pagedaemon do it */
813 1.80 pooka }
814 1.80 pooka
815 1.80 pooka /*
816 1.92 pooka * The Diabolical pageDaemon Director (DDD).
817 1.80 pooka */
818 1.80 pooka void
819 1.80 pooka uvm_pageout(void *arg)
820 1.80 pooka {
821 1.92 pooka struct vm_page *pg;
822 1.80 pooka struct pool *pp, *pp_first;
823 1.80 pooka uint64_t where;
824 1.80 pooka int timo = 0;
825 1.92 pooka int cleaned, skip, skipped;
826 1.92 pooka bool succ = false;
827 1.80 pooka
828 1.80 pooka mutex_enter(&pdaemonmtx);
829 1.80 pooka for (;;) {
830 1.92 pooka if (succ) {
831 1.92 pooka kernel_map->flags &= ~VM_MAP_WANTVA;
832 1.92 pooka kmem_map->flags &= VM_MAP_WANTVA;
833 1.92 pooka timo = 0;
834 1.92 pooka }
835 1.92 pooka succ = false;
836 1.92 pooka
837 1.92 pooka /*
838 1.92 pooka * Wake up everyone regardless of perceived success.
839 1.92 pooka * They will just resleep if we're stil out of juice.
840 1.92 pooka */
841 1.92 pooka if (pdaemon_waiters) {
842 1.92 pooka pdaemon_waiters = 0;
843 1.92 pooka cv_broadcast(&oomwait);
844 1.92 pooka }
845 1.92 pooka
846 1.92 pooka cv_timedwait(&pdaemoncv, &pdaemonmtx, 0);
847 1.80 pooka uvmexp.pdwoke++;
848 1.92 pooka
849 1.92 pooka /* tell the world that we are hungry */
850 1.80 pooka kernel_map->flags |= VM_MAP_WANTVA;
851 1.92 pooka kmem_map->flags |= VM_MAP_WANTVA;
852 1.92 pooka
853 1.92 pooka if (pdaemon_waiters == 0 && !NEED_PAGEDAEMON())
854 1.92 pooka continue;
855 1.80 pooka mutex_exit(&pdaemonmtx);
856 1.80 pooka
857 1.92 pooka /*
858 1.92 pooka * step one: reclaim the page cache. this should give
859 1.92 pooka * us the biggest earnings since whole pages are released
860 1.92 pooka * into backing memory.
861 1.92 pooka */
862 1.92 pooka pool_cache_reclaim(&pagecache);
863 1.92 pooka if (!NEED_PAGEDAEMON()) {
864 1.92 pooka succ = true;
865 1.92 pooka mutex_enter(&pdaemonmtx);
866 1.92 pooka continue;
867 1.92 pooka }
868 1.92 pooka
869 1.92 pooka /*
870 1.92 pooka * Ok, so that didn't help. Next, try to hunt memory
871 1.92 pooka * by pushing out vnode pages. The pages might contain
872 1.92 pooka * useful cached data, but we need the memory.
873 1.92 pooka */
874 1.92 pooka cleaned = 0;
875 1.92 pooka skip = 0;
876 1.92 pooka again:
877 1.92 pooka mutex_enter(&uvm_pageqlock);
878 1.92 pooka while (cleaned < PAGEDAEMON_OBJCHUNK) {
879 1.92 pooka skipped = 0;
880 1.92 pooka TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
881 1.92 pooka struct uvm_object *uobj;
882 1.92 pooka
883 1.92 pooka /*
884 1.92 pooka * skip over pages we _might_ have tried
885 1.92 pooka * to handle earlier. they might not be
886 1.92 pooka * exactly the same ones, but I'm not too
887 1.92 pooka * concerned.
888 1.92 pooka */
889 1.92 pooka while (skipped++ < skip)
890 1.92 pooka continue;
891 1.92 pooka
892 1.92 pooka uobj = pg->uobject;
893 1.92 pooka if (mutex_tryenter(&uobj->vmobjlock)) {
894 1.92 pooka if ((pg->flags & PG_BUSY) == 0) {
895 1.92 pooka mutex_exit(&uvm_pageqlock);
896 1.92 pooka uobj->pgops->pgo_put(uobj,
897 1.92 pooka pg->offset,
898 1.92 pooka pg->offset + PAGE_SIZE,
899 1.92 pooka PGO_CLEANIT|PGO_FREE);
900 1.92 pooka cleaned++;
901 1.92 pooka goto again;
902 1.92 pooka }
903 1.92 pooka }
904 1.92 pooka
905 1.92 pooka skip++;
906 1.92 pooka }
907 1.92 pooka break;
908 1.92 pooka }
909 1.92 pooka mutex_exit(&uvm_pageqlock);
910 1.92 pooka
911 1.92 pooka /*
912 1.92 pooka * And of course we need to reclaim the page cache
913 1.92 pooka * again to actually release memory.
914 1.92 pooka */
915 1.92 pooka pool_cache_reclaim(&pagecache);
916 1.92 pooka if (!NEED_PAGEDAEMON()) {
917 1.92 pooka succ = true;
918 1.92 pooka mutex_enter(&pdaemonmtx);
919 1.92 pooka continue;
920 1.92 pooka }
921 1.92 pooka
922 1.92 pooka /*
923 1.92 pooka * Still not there? sleeves come off right about now.
924 1.92 pooka * First: do reclaim on kernel/kmem map.
925 1.92 pooka */
926 1.92 pooka callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
927 1.92 pooka NULL);
928 1.92 pooka callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
929 1.92 pooka NULL);
930 1.92 pooka
931 1.92 pooka /*
932 1.92 pooka * And then drain the pools. Wipe them out ... all of them.
933 1.92 pooka */
934 1.92 pooka
935 1.80 pooka pool_drain_start(&pp_first, &where);
936 1.80 pooka pp = pp_first;
937 1.80 pooka for (;;) {
938 1.91 pooka rump_vfs_drainbufs(10 /* XXX: estimate better */);
939 1.80 pooka succ = pool_drain_end(pp, where);
940 1.80 pooka if (succ)
941 1.80 pooka break;
942 1.80 pooka pool_drain_start(&pp, &where);
943 1.80 pooka if (pp == pp_first) {
944 1.80 pooka succ = pool_drain_end(pp, where);
945 1.80 pooka break;
946 1.80 pooka }
947 1.80 pooka }
948 1.92 pooka
949 1.92 pooka /*
950 1.92 pooka * Need to use PYEC on our bag of tricks.
951 1.92 pooka * Unfortunately, the wife just borrowed it.
952 1.92 pooka */
953 1.80 pooka
954 1.80 pooka if (!succ) {
955 1.80 pooka rumpuser_dprintf("pagedaemoness: failed to reclaim "
956 1.80 pooka "memory ... sleeping (deadlock?)\n");
957 1.92 pooka kpause("dpdd", false, hz, NULL);
958 1.80 pooka }
959 1.80 pooka
960 1.92 pooka mutex_enter(&pdaemonmtx);
961 1.80 pooka }
962 1.80 pooka
963 1.80 pooka panic("you can swap out any time you like, but you can never leave");
964 1.80 pooka }
965 1.80 pooka
966 1.80 pooka void
967 1.80 pooka uvm_kick_pdaemon()
968 1.80 pooka {
969 1.80 pooka
970 1.92 pooka /*
971 1.92 pooka * Wake up the diabolical pagedaemon director if we are over
972 1.92 pooka * 90% of the memory limit. This is a complete and utter
973 1.92 pooka * stetson-harrison decision which you are allowed to finetune.
974 1.92 pooka * Don't bother locking. If we have some unflushed caches,
975 1.92 pooka * other waker-uppers will deal with the issue.
976 1.92 pooka */
977 1.92 pooka if (NEED_PAGEDAEMON()) {
978 1.92 pooka cv_signal(&pdaemoncv);
979 1.92 pooka }
980 1.80 pooka }
981 1.80 pooka
982 1.80 pooka void *
983 1.80 pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
984 1.80 pooka {
985 1.84 pooka unsigned long newmem;
986 1.80 pooka void *rv;
987 1.80 pooka
988 1.92 pooka uvm_kick_pdaemon(); /* ouch */
989 1.92 pooka
990 1.84 pooka /* first we must be within the limit */
991 1.84 pooka limitagain:
992 1.91 pooka if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
993 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, howmuch);
994 1.91 pooka if (newmem > rump_physmemlimit) {
995 1.84 pooka newmem = atomic_add_long_nv(&curphysmem, -howmuch);
996 1.84 pooka if (!waitok)
997 1.84 pooka return NULL;
998 1.84 pooka uvm_wait(wmsg);
999 1.84 pooka goto limitagain;
1000 1.84 pooka }
1001 1.84 pooka }
1002 1.84 pooka
1003 1.84 pooka /* second, we must get something from the backend */
1004 1.80 pooka again:
1005 1.80 pooka rv = rumpuser_malloc(howmuch, alignment);
1006 1.80 pooka if (__predict_false(rv == NULL && waitok)) {
1007 1.80 pooka uvm_wait(wmsg);
1008 1.80 pooka goto again;
1009 1.80 pooka }
1010 1.80 pooka
1011 1.80 pooka return rv;
1012 1.80 pooka }
1013 1.84 pooka
1014 1.84 pooka void
1015 1.84 pooka rump_hyperfree(void *what, size_t size)
1016 1.84 pooka {
1017 1.84 pooka
1018 1.91 pooka if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1019 1.84 pooka atomic_add_long(&curphysmem, -size);
1020 1.84 pooka }
1021 1.84 pooka rumpuser_free(what);
1022 1.84 pooka }
1023