Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.96
      1  1.96  rmind /*	$NetBSD: vm.c,v 1.96 2010/09/24 22:51:51 rmind Exp $	*/
      2   1.1  pooka 
      3   1.1  pooka /*
      4  1.76  pooka  * Copyright (c) 2007-2010 Antti Kantee.  All Rights Reserved.
      5   1.1  pooka  *
      6  1.76  pooka  * Development of this software was supported by
      7  1.76  pooka  * The Finnish Cultural Foundation and the Research Foundation of
      8  1.76  pooka  * The Helsinki University of Technology.
      9   1.1  pooka  *
     10   1.1  pooka  * Redistribution and use in source and binary forms, with or without
     11   1.1  pooka  * modification, are permitted provided that the following conditions
     12   1.1  pooka  * are met:
     13   1.1  pooka  * 1. Redistributions of source code must retain the above copyright
     14   1.1  pooka  *    notice, this list of conditions and the following disclaimer.
     15   1.1  pooka  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1  pooka  *    notice, this list of conditions and the following disclaimer in the
     17   1.1  pooka  *    documentation and/or other materials provided with the distribution.
     18   1.1  pooka  *
     19   1.1  pooka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20   1.1  pooka  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21   1.1  pooka  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22   1.1  pooka  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23   1.1  pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24   1.1  pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25   1.1  pooka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26   1.1  pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27   1.1  pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28   1.1  pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29   1.1  pooka  * SUCH DAMAGE.
     30   1.1  pooka  */
     31   1.1  pooka 
     32   1.1  pooka /*
     33  1.88  pooka  * Virtual memory emulation routines.
     34   1.1  pooka  */
     35   1.1  pooka 
     36   1.1  pooka /*
     37   1.5  pooka  * XXX: we abuse pg->uanon for the virtual address of the storage
     38   1.1  pooka  * for each page.  phys_addr would fit the job description better,
     39   1.1  pooka  * except that it will create unnecessary lossage on some platforms
     40   1.1  pooka  * due to not being a pointer type.
     41   1.1  pooka  */
     42   1.1  pooka 
     43  1.48  pooka #include <sys/cdefs.h>
     44  1.96  rmind __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.96 2010/09/24 22:51:51 rmind Exp $");
     45  1.48  pooka 
     46   1.1  pooka #include <sys/param.h>
     47  1.40  pooka #include <sys/atomic.h>
     48  1.80  pooka #include <sys/buf.h>
     49  1.80  pooka #include <sys/kernel.h>
     50  1.67  pooka #include <sys/kmem.h>
     51  1.69  pooka #include <sys/mman.h>
     52   1.1  pooka #include <sys/null.h>
     53   1.1  pooka #include <sys/vnode.h>
     54   1.1  pooka 
     55  1.34  pooka #include <machine/pmap.h>
     56  1.34  pooka 
     57  1.34  pooka #include <rump/rumpuser.h>
     58  1.34  pooka 
     59   1.1  pooka #include <uvm/uvm.h>
     60  1.56  pooka #include <uvm/uvm_ddb.h>
     61  1.88  pooka #include <uvm/uvm_pdpolicy.h>
     62   1.1  pooka #include <uvm/uvm_prot.h>
     63  1.58     he #include <uvm/uvm_readahead.h>
     64   1.1  pooka 
     65  1.13  pooka #include "rump_private.h"
     66  1.91  pooka #include "rump_vfs_private.h"
     67   1.1  pooka 
     68  1.25     ad kmutex_t uvm_pageqlock;
     69  1.88  pooka kmutex_t uvm_swap_data_lock;
     70  1.25     ad 
     71   1.1  pooka struct uvmexp uvmexp;
     72   1.7  pooka struct uvm uvm;
     73   1.1  pooka 
     74   1.1  pooka struct vm_map rump_vmmap;
     75  1.50  pooka static struct vm_map_kernel kmem_map_store;
     76  1.50  pooka struct vm_map *kmem_map = &kmem_map_store.vmk_map;
     77   1.1  pooka 
     78  1.35  pooka static struct vm_map_kernel kernel_map_store;
     79  1.35  pooka struct vm_map *kernel_map = &kernel_map_store.vmk_map;
     80  1.35  pooka 
     81  1.80  pooka static unsigned int pdaemon_waiters;
     82  1.80  pooka static kmutex_t pdaemonmtx;
     83  1.80  pooka static kcondvar_t pdaemoncv, oomwait;
     84  1.80  pooka 
     85  1.91  pooka unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     86  1.84  pooka static unsigned long curphysmem;
     87  1.92  pooka static unsigned long dddlim;		/* 90% of memory limit used */
     88  1.92  pooka #define NEED_PAGEDAEMON() \
     89  1.92  pooka     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
     90  1.92  pooka 
     91  1.92  pooka /*
     92  1.92  pooka  * Try to free two pages worth of pages from objects.
     93  1.92  pooka  * If this succesfully frees a full page cache page, we'll
     94  1.92  pooka  * free the released page plus PAGE_SIZE/sizeof(vm_page).
     95  1.92  pooka  */
     96  1.92  pooka #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
     97  1.92  pooka 
     98  1.92  pooka /*
     99  1.92  pooka  * Keep a list of least recently used pages.  Since the only way a
    100  1.92  pooka  * rump kernel can "access" a page is via lookup, we put the page
    101  1.92  pooka  * at the back of queue every time a lookup for it is done.  If the
    102  1.92  pooka  * page is in front of this global queue and we're short of memory,
    103  1.92  pooka  * it's a candidate for pageout.
    104  1.92  pooka  */
    105  1.92  pooka static struct pglist vmpage_lruqueue;
    106  1.92  pooka static unsigned vmpage_onqueue;
    107  1.84  pooka 
    108  1.89  pooka static int
    109  1.96  rmind pg_compare_key(void *ctx, const void *n, const void *key)
    110  1.89  pooka {
    111  1.89  pooka 	voff_t a = ((const struct vm_page *)n)->offset;
    112  1.89  pooka 	voff_t b = *(const voff_t *)key;
    113  1.89  pooka 
    114  1.89  pooka 	if (a < b)
    115  1.96  rmind 		return -1;
    116  1.96  rmind 	else if (a > b)
    117  1.89  pooka 		return 1;
    118  1.89  pooka 	else
    119  1.89  pooka 		return 0;
    120  1.89  pooka }
    121  1.89  pooka 
    122  1.89  pooka static int
    123  1.96  rmind pg_compare_nodes(void *ctx, const void *n1, const void *n2)
    124  1.89  pooka {
    125  1.89  pooka 
    126  1.96  rmind 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
    127  1.89  pooka }
    128  1.89  pooka 
    129  1.96  rmind const rb_tree_ops_t uvm_page_tree_ops = {
    130  1.89  pooka 	.rbto_compare_nodes = pg_compare_nodes,
    131  1.89  pooka 	.rbto_compare_key = pg_compare_key,
    132  1.96  rmind 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    133  1.96  rmind 	.rbto_context = NULL
    134  1.89  pooka };
    135  1.89  pooka 
    136   1.1  pooka /*
    137   1.1  pooka  * vm pages
    138   1.1  pooka  */
    139   1.1  pooka 
    140  1.90  pooka static int
    141  1.90  pooka pgctor(void *arg, void *obj, int flags)
    142  1.90  pooka {
    143  1.90  pooka 	struct vm_page *pg = obj;
    144  1.90  pooka 
    145  1.90  pooka 	memset(pg, 0, sizeof(*pg));
    146  1.90  pooka 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE, true, "pgalloc");
    147  1.90  pooka 	return 0;
    148  1.90  pooka }
    149  1.90  pooka 
    150  1.90  pooka static void
    151  1.90  pooka pgdtor(void *arg, void *obj)
    152  1.90  pooka {
    153  1.90  pooka 	struct vm_page *pg = obj;
    154  1.90  pooka 
    155  1.90  pooka 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    156  1.90  pooka }
    157  1.90  pooka 
    158  1.90  pooka static struct pool_cache pagecache;
    159  1.90  pooka 
    160  1.92  pooka /*
    161  1.92  pooka  * Called with the object locked.  We don't support anons.
    162  1.92  pooka  */
    163   1.1  pooka struct vm_page *
    164  1.76  pooka uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    165  1.76  pooka 	int flags, int strat, int free_list)
    166   1.1  pooka {
    167   1.1  pooka 	struct vm_page *pg;
    168   1.1  pooka 
    169  1.92  pooka 	KASSERT(uobj && mutex_owned(&uobj->vmobjlock));
    170  1.92  pooka 	KASSERT(anon == NULL);
    171  1.92  pooka 
    172  1.90  pooka 	pg = pool_cache_get(&pagecache, PR_WAITOK);
    173   1.1  pooka 	pg->offset = off;
    174   1.5  pooka 	pg->uobject = uobj;
    175   1.1  pooka 
    176  1.22  pooka 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    177  1.90  pooka 	if (flags & UVM_PGA_ZERO) {
    178  1.90  pooka 		uvm_pagezero(pg);
    179  1.90  pooka 	}
    180   1.1  pooka 
    181  1.31     ad 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    182  1.96  rmind 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
    183  1.89  pooka 
    184  1.92  pooka 	/*
    185  1.93  pooka 	 * Don't put anons on the LRU page queue.  We can't flush them
    186  1.93  pooka 	 * (there's no concept of swap in a rump kernel), so no reason
    187  1.93  pooka 	 * to bother with them.
    188  1.92  pooka 	 */
    189  1.93  pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    190  1.92  pooka 		atomic_inc_uint(&vmpage_onqueue);
    191  1.92  pooka 		mutex_enter(&uvm_pageqlock);
    192  1.92  pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    193  1.92  pooka 		mutex_exit(&uvm_pageqlock);
    194  1.92  pooka 	}
    195  1.92  pooka 
    196  1.59  pooka 	uobj->uo_npages++;
    197  1.21  pooka 
    198   1.1  pooka 	return pg;
    199   1.1  pooka }
    200   1.1  pooka 
    201  1.21  pooka /*
    202  1.21  pooka  * Release a page.
    203  1.21  pooka  *
    204  1.22  pooka  * Called with the vm object locked.
    205  1.21  pooka  */
    206   1.1  pooka void
    207  1.22  pooka uvm_pagefree(struct vm_page *pg)
    208   1.1  pooka {
    209   1.5  pooka 	struct uvm_object *uobj = pg->uobject;
    210   1.1  pooka 
    211  1.92  pooka 	KASSERT(mutex_owned(&uvm_pageqlock));
    212  1.95  pooka 	KASSERT(mutex_owned(&uobj->vmobjlock));
    213  1.92  pooka 
    214  1.22  pooka 	if (pg->flags & PG_WANTED)
    215  1.22  pooka 		wakeup(pg);
    216  1.22  pooka 
    217  1.92  pooka 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    218  1.92  pooka 
    219  1.59  pooka 	uobj->uo_npages--;
    220  1.96  rmind 	rb_tree_remove_node(&uobj->rb_tree, pg);
    221  1.92  pooka 
    222  1.93  pooka 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    223  1.92  pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    224  1.92  pooka 		atomic_dec_uint(&vmpage_onqueue);
    225  1.92  pooka 	}
    226  1.92  pooka 
    227  1.90  pooka 	pool_cache_put(&pagecache, pg);
    228   1.1  pooka }
    229   1.1  pooka 
    230  1.15  pooka void
    231  1.61  pooka uvm_pagezero(struct vm_page *pg)
    232  1.15  pooka {
    233  1.15  pooka 
    234  1.61  pooka 	pg->flags &= ~PG_CLEAN;
    235  1.61  pooka 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    236  1.15  pooka }
    237  1.15  pooka 
    238   1.1  pooka /*
    239   1.1  pooka  * Misc routines
    240   1.1  pooka  */
    241   1.1  pooka 
    242  1.61  pooka static kmutex_t pagermtx;
    243  1.61  pooka 
    244   1.1  pooka void
    245  1.79  pooka uvm_init(void)
    246   1.1  pooka {
    247  1.84  pooka 	char buf[64];
    248  1.84  pooka 	int error;
    249  1.84  pooka 
    250  1.84  pooka 	if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
    251  1.91  pooka 		rump_physmemlimit = strtoll(buf, NULL, 10);
    252  1.84  pooka 		/* it's not like we'd get far with, say, 1 byte, but ... */
    253  1.91  pooka 		if (rump_physmemlimit == 0)
    254  1.84  pooka 			panic("uvm_init: no memory available");
    255  1.84  pooka #define HUMANIZE_BYTES 9
    256  1.84  pooka 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    257  1.91  pooka 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    258  1.84  pooka #undef HUMANIZE_BYTES
    259  1.92  pooka 		dddlim = 9 * (rump_physmemlimit / 10);
    260  1.84  pooka 	} else {
    261  1.84  pooka 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    262  1.84  pooka 	}
    263  1.84  pooka 	aprint_verbose("total memory = %s\n", buf);
    264   1.1  pooka 
    265  1.92  pooka 	TAILQ_INIT(&vmpage_lruqueue);
    266  1.92  pooka 
    267  1.84  pooka 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    268  1.21  pooka 
    269  1.61  pooka 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    270  1.25     ad 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    271  1.88  pooka 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
    272  1.35  pooka 
    273  1.80  pooka 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    274  1.80  pooka 	cv_init(&pdaemoncv, "pdaemon");
    275  1.80  pooka 	cv_init(&oomwait, "oomwait");
    276  1.80  pooka 
    277  1.50  pooka 	kernel_map->pmap = pmap_kernel();
    278  1.35  pooka 	callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
    279  1.50  pooka 	kmem_map->pmap = pmap_kernel();
    280  1.50  pooka 	callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
    281  1.90  pooka 
    282  1.90  pooka 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    283  1.90  pooka 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    284   1.1  pooka }
    285   1.1  pooka 
    286  1.83  pooka void
    287  1.83  pooka uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    288  1.83  pooka {
    289  1.83  pooka 
    290  1.83  pooka 	vm->vm_map.pmap = pmap_kernel();
    291  1.83  pooka 	vm->vm_refcnt = 1;
    292  1.83  pooka }
    293   1.1  pooka 
    294   1.1  pooka void
    295   1.7  pooka uvm_pagewire(struct vm_page *pg)
    296   1.7  pooka {
    297   1.7  pooka 
    298   1.7  pooka 	/* nada */
    299   1.7  pooka }
    300   1.7  pooka 
    301   1.7  pooka void
    302   1.7  pooka uvm_pageunwire(struct vm_page *pg)
    303   1.7  pooka {
    304   1.7  pooka 
    305   1.7  pooka 	/* nada */
    306   1.7  pooka }
    307   1.7  pooka 
    308  1.83  pooka /* where's your schmonz now? */
    309  1.83  pooka #define PUNLIMIT(a)	\
    310  1.83  pooka p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    311  1.83  pooka void
    312  1.83  pooka uvm_init_limits(struct proc *p)
    313  1.83  pooka {
    314  1.83  pooka 
    315  1.83  pooka 	PUNLIMIT(RLIMIT_STACK);
    316  1.83  pooka 	PUNLIMIT(RLIMIT_DATA);
    317  1.83  pooka 	PUNLIMIT(RLIMIT_RSS);
    318  1.83  pooka 	PUNLIMIT(RLIMIT_AS);
    319  1.83  pooka 	/* nice, cascade */
    320  1.83  pooka }
    321  1.83  pooka #undef PUNLIMIT
    322  1.83  pooka 
    323  1.69  pooka /*
    324  1.69  pooka  * This satisfies the "disgusting mmap hack" used by proplib.
    325  1.69  pooka  * We probably should grow some more assertables to make sure we're
    326  1.69  pooka  * not satisfying anything we shouldn't be satisfying.  At least we
    327  1.69  pooka  * should make sure it's the local machine we're mmapping ...
    328  1.69  pooka  */
    329  1.49  pooka int
    330  1.49  pooka uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    331  1.49  pooka 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    332  1.49  pooka {
    333  1.69  pooka 	void *uaddr;
    334  1.69  pooka 	int error;
    335  1.49  pooka 
    336  1.69  pooka 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    337  1.69  pooka 		panic("uvm_mmap() variant unsupported");
    338  1.69  pooka 	if (flags != (MAP_PRIVATE | MAP_ANON))
    339  1.69  pooka 		panic("uvm_mmap() variant unsupported");
    340  1.69  pooka 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    341  1.69  pooka 	if (*addr != 0)
    342  1.69  pooka 		panic("uvm_mmap() variant unsupported");
    343  1.69  pooka 
    344  1.81  pooka 	uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    345  1.69  pooka 	if (uaddr == NULL)
    346  1.69  pooka 		return error;
    347  1.69  pooka 
    348  1.69  pooka 	*addr = (vaddr_t)uaddr;
    349  1.69  pooka 	return 0;
    350  1.49  pooka }
    351  1.49  pooka 
    352  1.61  pooka struct pagerinfo {
    353  1.61  pooka 	vaddr_t pgr_kva;
    354  1.61  pooka 	int pgr_npages;
    355  1.61  pooka 	struct vm_page **pgr_pgs;
    356  1.61  pooka 	bool pgr_read;
    357  1.61  pooka 
    358  1.61  pooka 	LIST_ENTRY(pagerinfo) pgr_entries;
    359  1.61  pooka };
    360  1.61  pooka static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    361  1.61  pooka 
    362  1.61  pooka /*
    363  1.61  pooka  * Pager "map" in routine.  Instead of mapping, we allocate memory
    364  1.61  pooka  * and copy page contents there.  Not optimal or even strictly
    365  1.61  pooka  * correct (the caller might modify the page contents after mapping
    366  1.61  pooka  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    367  1.61  pooka  */
    368   1.7  pooka vaddr_t
    369  1.61  pooka uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    370   1.7  pooka {
    371  1.61  pooka 	struct pagerinfo *pgri;
    372  1.61  pooka 	vaddr_t curkva;
    373  1.61  pooka 	int i;
    374  1.61  pooka 
    375  1.61  pooka 	/* allocate structures */
    376  1.61  pooka 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    377  1.61  pooka 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    378  1.61  pooka 	pgri->pgr_npages = npages;
    379  1.61  pooka 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    380  1.61  pooka 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    381  1.61  pooka 
    382  1.61  pooka 	/* copy contents to "mapped" memory */
    383  1.61  pooka 	for (i = 0, curkva = pgri->pgr_kva;
    384  1.61  pooka 	    i < npages;
    385  1.61  pooka 	    i++, curkva += PAGE_SIZE) {
    386  1.61  pooka 		/*
    387  1.61  pooka 		 * We need to copy the previous contents of the pages to
    388  1.61  pooka 		 * the window even if we are reading from the
    389  1.61  pooka 		 * device, since the device might not fill the contents of
    390  1.61  pooka 		 * the full mapped range and we will end up corrupting
    391  1.61  pooka 		 * data when we unmap the window.
    392  1.61  pooka 		 */
    393  1.61  pooka 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    394  1.61  pooka 		pgri->pgr_pgs[i] = pgs[i];
    395  1.61  pooka 	}
    396  1.61  pooka 
    397  1.61  pooka 	mutex_enter(&pagermtx);
    398  1.61  pooka 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    399  1.61  pooka 	mutex_exit(&pagermtx);
    400   1.7  pooka 
    401  1.61  pooka 	return pgri->pgr_kva;
    402   1.7  pooka }
    403   1.7  pooka 
    404  1.61  pooka /*
    405  1.61  pooka  * map out the pager window.  return contents from VA to page storage
    406  1.61  pooka  * and free structures.
    407  1.61  pooka  *
    408  1.61  pooka  * Note: does not currently support partial frees
    409  1.61  pooka  */
    410  1.61  pooka void
    411  1.61  pooka uvm_pagermapout(vaddr_t kva, int npages)
    412   1.7  pooka {
    413  1.61  pooka 	struct pagerinfo *pgri;
    414  1.61  pooka 	vaddr_t curkva;
    415  1.61  pooka 	int i;
    416   1.7  pooka 
    417  1.61  pooka 	mutex_enter(&pagermtx);
    418  1.61  pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    419  1.61  pooka 		if (pgri->pgr_kva == kva)
    420  1.61  pooka 			break;
    421  1.61  pooka 	}
    422  1.61  pooka 	KASSERT(pgri);
    423  1.61  pooka 	if (pgri->pgr_npages != npages)
    424  1.61  pooka 		panic("uvm_pagermapout: partial unmapping not supported");
    425  1.61  pooka 	LIST_REMOVE(pgri, pgr_entries);
    426  1.61  pooka 	mutex_exit(&pagermtx);
    427  1.61  pooka 
    428  1.61  pooka 	if (pgri->pgr_read) {
    429  1.61  pooka 		for (i = 0, curkva = pgri->pgr_kva;
    430  1.61  pooka 		    i < pgri->pgr_npages;
    431  1.61  pooka 		    i++, curkva += PAGE_SIZE) {
    432  1.61  pooka 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    433  1.21  pooka 		}
    434  1.21  pooka 	}
    435  1.10  pooka 
    436  1.61  pooka 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    437  1.61  pooka 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    438  1.61  pooka 	kmem_free(pgri, sizeof(*pgri));
    439   1.7  pooka }
    440   1.7  pooka 
    441  1.61  pooka /*
    442  1.61  pooka  * convert va in pager window to page structure.
    443  1.61  pooka  * XXX: how expensive is this (global lock, list traversal)?
    444  1.61  pooka  */
    445  1.14  pooka struct vm_page *
    446  1.14  pooka uvm_pageratop(vaddr_t va)
    447  1.14  pooka {
    448  1.61  pooka 	struct pagerinfo *pgri;
    449  1.61  pooka 	struct vm_page *pg = NULL;
    450  1.61  pooka 	int i;
    451  1.14  pooka 
    452  1.61  pooka 	mutex_enter(&pagermtx);
    453  1.61  pooka 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    454  1.61  pooka 		if (pgri->pgr_kva <= va
    455  1.61  pooka 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    456  1.21  pooka 			break;
    457  1.61  pooka 	}
    458  1.61  pooka 	if (pgri) {
    459  1.61  pooka 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    460  1.61  pooka 		pg = pgri->pgr_pgs[i];
    461  1.61  pooka 	}
    462  1.61  pooka 	mutex_exit(&pagermtx);
    463  1.21  pooka 
    464  1.61  pooka 	return pg;
    465  1.61  pooka }
    466  1.15  pooka 
    467  1.61  pooka /* Called with the vm object locked */
    468  1.61  pooka struct vm_page *
    469  1.61  pooka uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    470  1.61  pooka {
    471  1.92  pooka 	struct vm_page *pg;
    472  1.61  pooka 
    473  1.96  rmind 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
    474  1.93  pooka 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject)) {
    475  1.92  pooka 		mutex_enter(&uvm_pageqlock);
    476  1.92  pooka 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    477  1.92  pooka 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    478  1.92  pooka 		mutex_exit(&uvm_pageqlock);
    479  1.92  pooka 	}
    480  1.92  pooka 
    481  1.92  pooka 	return pg;
    482  1.14  pooka }
    483  1.14  pooka 
    484   1.7  pooka void
    485  1.22  pooka uvm_page_unbusy(struct vm_page **pgs, int npgs)
    486  1.22  pooka {
    487  1.22  pooka 	struct vm_page *pg;
    488  1.22  pooka 	int i;
    489  1.22  pooka 
    490  1.94  pooka 	KASSERT(npgs > 0);
    491  1.94  pooka 	KASSERT(mutex_owned(&pgs[0]->uobject->vmobjlock));
    492  1.94  pooka 
    493  1.22  pooka 	for (i = 0; i < npgs; i++) {
    494  1.22  pooka 		pg = pgs[i];
    495  1.22  pooka 		if (pg == NULL)
    496  1.22  pooka 			continue;
    497  1.22  pooka 
    498  1.22  pooka 		KASSERT(pg->flags & PG_BUSY);
    499  1.22  pooka 		if (pg->flags & PG_WANTED)
    500  1.22  pooka 			wakeup(pg);
    501  1.36  pooka 		if (pg->flags & PG_RELEASED)
    502  1.36  pooka 			uvm_pagefree(pg);
    503  1.36  pooka 		else
    504  1.36  pooka 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    505  1.22  pooka 	}
    506  1.22  pooka }
    507  1.22  pooka 
    508  1.22  pooka void
    509   1.7  pooka uvm_estimatepageable(int *active, int *inactive)
    510   1.7  pooka {
    511   1.7  pooka 
    512  1.19  pooka 	/* XXX: guessing game */
    513  1.19  pooka 	*active = 1024;
    514  1.19  pooka 	*inactive = 1024;
    515   1.7  pooka }
    516   1.7  pooka 
    517  1.39  pooka struct vm_map_kernel *
    518  1.39  pooka vm_map_to_kernel(struct vm_map *map)
    519  1.39  pooka {
    520  1.39  pooka 
    521  1.39  pooka 	return (struct vm_map_kernel *)map;
    522  1.39  pooka }
    523  1.39  pooka 
    524  1.41  pooka bool
    525  1.41  pooka vm_map_starved_p(struct vm_map *map)
    526  1.41  pooka {
    527  1.41  pooka 
    528  1.80  pooka 	if (map->flags & VM_MAP_WANTVA)
    529  1.80  pooka 		return true;
    530  1.80  pooka 
    531  1.41  pooka 	return false;
    532  1.41  pooka }
    533  1.41  pooka 
    534  1.41  pooka int
    535  1.41  pooka uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    536  1.41  pooka {
    537  1.41  pooka 
    538  1.41  pooka 	panic("%s: unimplemented", __func__);
    539  1.41  pooka }
    540  1.41  pooka 
    541  1.41  pooka void
    542  1.41  pooka uvm_unloan(void *v, int npages, int flags)
    543  1.41  pooka {
    544  1.41  pooka 
    545  1.41  pooka 	panic("%s: unimplemented", __func__);
    546  1.41  pooka }
    547  1.41  pooka 
    548  1.43  pooka int
    549  1.43  pooka uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    550  1.43  pooka 	struct vm_page **opp)
    551  1.43  pooka {
    552  1.43  pooka 
    553  1.72  pooka 	return EBUSY;
    554  1.43  pooka }
    555  1.43  pooka 
    556  1.73  pooka #ifdef DEBUGPRINT
    557  1.56  pooka void
    558  1.56  pooka uvm_object_printit(struct uvm_object *uobj, bool full,
    559  1.56  pooka 	void (*pr)(const char *, ...))
    560  1.56  pooka {
    561  1.56  pooka 
    562  1.75  pooka 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    563  1.56  pooka }
    564  1.73  pooka #endif
    565  1.56  pooka 
    566  1.68  pooka vaddr_t
    567  1.68  pooka uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    568  1.68  pooka {
    569  1.68  pooka 
    570  1.68  pooka 	return 0;
    571  1.68  pooka }
    572  1.68  pooka 
    573  1.71  pooka int
    574  1.71  pooka uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    575  1.71  pooka 	vm_prot_t prot, bool set_max)
    576  1.71  pooka {
    577  1.71  pooka 
    578  1.71  pooka 	return EOPNOTSUPP;
    579  1.71  pooka }
    580  1.71  pooka 
    581   1.9  pooka /*
    582  1.12  pooka  * UVM km
    583  1.12  pooka  */
    584  1.12  pooka 
    585  1.12  pooka vaddr_t
    586  1.12  pooka uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    587  1.12  pooka {
    588  1.82  pooka 	void *rv, *desired = NULL;
    589  1.50  pooka 	int alignbit, error;
    590  1.50  pooka 
    591  1.82  pooka #ifdef __x86_64__
    592  1.82  pooka 	/*
    593  1.82  pooka 	 * On amd64, allocate all module memory from the lowest 2GB.
    594  1.82  pooka 	 * This is because NetBSD kernel modules are compiled
    595  1.82  pooka 	 * with -mcmodel=kernel and reserve only 4 bytes for
    596  1.82  pooka 	 * offsets.  If we load code compiled with -mcmodel=kernel
    597  1.82  pooka 	 * anywhere except the lowest or highest 2GB, it will not
    598  1.82  pooka 	 * work.  Since userspace does not have access to the highest
    599  1.82  pooka 	 * 2GB, use the lowest 2GB.
    600  1.82  pooka 	 *
    601  1.82  pooka 	 * Note: this assumes the rump kernel resides in
    602  1.82  pooka 	 * the lowest 2GB as well.
    603  1.82  pooka 	 *
    604  1.82  pooka 	 * Note2: yes, it's a quick hack, but since this the only
    605  1.82  pooka 	 * place where we care about the map we're allocating from,
    606  1.82  pooka 	 * just use a simple "if" instead of coming up with a fancy
    607  1.82  pooka 	 * generic solution.
    608  1.82  pooka 	 */
    609  1.82  pooka 	extern struct vm_map *module_map;
    610  1.82  pooka 	if (map == module_map) {
    611  1.82  pooka 		desired = (void *)(0x80000000 - size);
    612  1.82  pooka 	}
    613  1.82  pooka #endif
    614  1.82  pooka 
    615  1.50  pooka 	alignbit = 0;
    616  1.50  pooka 	if (align) {
    617  1.50  pooka 		alignbit = ffs(align)-1;
    618  1.50  pooka 	}
    619  1.50  pooka 
    620  1.82  pooka 	rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
    621  1.81  pooka 	    &error);
    622  1.50  pooka 	if (rv == NULL) {
    623  1.50  pooka 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    624  1.50  pooka 			return 0;
    625  1.50  pooka 		else
    626  1.50  pooka 			panic("uvm_km_alloc failed");
    627  1.50  pooka 	}
    628  1.12  pooka 
    629  1.50  pooka 	if (flags & UVM_KMF_ZERO)
    630  1.12  pooka 		memset(rv, 0, size);
    631  1.12  pooka 
    632  1.12  pooka 	return (vaddr_t)rv;
    633  1.12  pooka }
    634  1.12  pooka 
    635  1.12  pooka void
    636  1.12  pooka uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    637  1.12  pooka {
    638  1.12  pooka 
    639  1.50  pooka 	rumpuser_unmap((void *)vaddr, size);
    640  1.12  pooka }
    641  1.12  pooka 
    642  1.12  pooka struct vm_map *
    643  1.12  pooka uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    644  1.12  pooka 	vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
    645  1.12  pooka {
    646  1.12  pooka 
    647  1.12  pooka 	return (struct vm_map *)417416;
    648  1.12  pooka }
    649  1.40  pooka 
    650  1.40  pooka vaddr_t
    651  1.40  pooka uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    652  1.40  pooka {
    653  1.40  pooka 
    654  1.80  pooka 	return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    655  1.80  pooka 	    waitok, "kmalloc");
    656  1.40  pooka }
    657  1.40  pooka 
    658  1.40  pooka void
    659  1.40  pooka uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    660  1.40  pooka {
    661  1.40  pooka 
    662  1.84  pooka 	rump_hyperfree((void *)addr, PAGE_SIZE);
    663  1.50  pooka }
    664  1.50  pooka 
    665  1.50  pooka vaddr_t
    666  1.50  pooka uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    667  1.50  pooka {
    668  1.50  pooka 
    669  1.77  pooka 	return uvm_km_alloc_poolpage(map, waitok);
    670  1.50  pooka }
    671  1.50  pooka 
    672  1.50  pooka void
    673  1.50  pooka uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
    674  1.50  pooka {
    675  1.50  pooka 
    676  1.77  pooka 	uvm_km_free_poolpage(map, vaddr);
    677  1.40  pooka }
    678  1.57  pooka 
    679  1.74  pooka void
    680  1.74  pooka uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    681  1.74  pooka {
    682  1.74  pooka 
    683  1.74  pooka 	/* we eventually maybe want some model for available memory */
    684  1.74  pooka }
    685  1.74  pooka 
    686  1.57  pooka /*
    687  1.57  pooka  * Mapping and vm space locking routines.
    688  1.57  pooka  * XXX: these don't work for non-local vmspaces
    689  1.57  pooka  */
    690  1.57  pooka int
    691  1.57  pooka uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    692  1.57  pooka {
    693  1.57  pooka 
    694  1.83  pooka 	KASSERT(vs == &vmspace0);
    695  1.57  pooka 	return 0;
    696  1.57  pooka }
    697  1.57  pooka 
    698  1.57  pooka void
    699  1.57  pooka uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    700  1.57  pooka {
    701  1.57  pooka 
    702  1.83  pooka 	KASSERT(vs == &vmspace0);
    703  1.57  pooka }
    704  1.57  pooka 
    705  1.57  pooka void
    706  1.57  pooka vmapbuf(struct buf *bp, vsize_t len)
    707  1.57  pooka {
    708  1.57  pooka 
    709  1.57  pooka 	bp->b_saveaddr = bp->b_data;
    710  1.57  pooka }
    711  1.57  pooka 
    712  1.57  pooka void
    713  1.57  pooka vunmapbuf(struct buf *bp, vsize_t len)
    714  1.57  pooka {
    715  1.57  pooka 
    716  1.57  pooka 	bp->b_data = bp->b_saveaddr;
    717  1.57  pooka 	bp->b_saveaddr = 0;
    718  1.57  pooka }
    719  1.61  pooka 
    720  1.61  pooka void
    721  1.83  pooka uvmspace_addref(struct vmspace *vm)
    722  1.83  pooka {
    723  1.83  pooka 
    724  1.83  pooka 	/*
    725  1.83  pooka 	 * there is only vmspace0.  we're not planning on
    726  1.83  pooka 	 * feeding it to the fishes.
    727  1.83  pooka 	 */
    728  1.83  pooka }
    729  1.83  pooka 
    730  1.83  pooka void
    731  1.66  pooka uvmspace_free(struct vmspace *vm)
    732  1.66  pooka {
    733  1.66  pooka 
    734  1.66  pooka 	/* nothing for now */
    735  1.66  pooka }
    736  1.66  pooka 
    737  1.66  pooka int
    738  1.66  pooka uvm_io(struct vm_map *map, struct uio *uio)
    739  1.66  pooka {
    740  1.66  pooka 
    741  1.66  pooka 	/*
    742  1.66  pooka 	 * just do direct uio for now.  but this needs some vmspace
    743  1.66  pooka 	 * olympics for rump_sysproxy.
    744  1.66  pooka 	 */
    745  1.66  pooka 	return uiomove((void *)(vaddr_t)uio->uio_offset, uio->uio_resid, uio);
    746  1.66  pooka }
    747  1.66  pooka 
    748  1.61  pooka /*
    749  1.61  pooka  * page life cycle stuff.  it really doesn't exist, so just stubs.
    750  1.61  pooka  */
    751  1.61  pooka 
    752  1.61  pooka void
    753  1.61  pooka uvm_pageactivate(struct vm_page *pg)
    754  1.61  pooka {
    755  1.61  pooka 
    756  1.61  pooka 	/* nada */
    757  1.61  pooka }
    758  1.61  pooka 
    759  1.61  pooka void
    760  1.61  pooka uvm_pagedeactivate(struct vm_page *pg)
    761  1.61  pooka {
    762  1.61  pooka 
    763  1.61  pooka 	/* nada */
    764  1.61  pooka }
    765  1.61  pooka 
    766  1.61  pooka void
    767  1.61  pooka uvm_pagedequeue(struct vm_page *pg)
    768  1.61  pooka {
    769  1.61  pooka 
    770  1.61  pooka 	/* nada*/
    771  1.61  pooka }
    772  1.61  pooka 
    773  1.61  pooka void
    774  1.61  pooka uvm_pageenqueue(struct vm_page *pg)
    775  1.61  pooka {
    776  1.61  pooka 
    777  1.61  pooka 	/* nada */
    778  1.61  pooka }
    779  1.80  pooka 
    780  1.88  pooka void
    781  1.88  pooka uvmpdpol_anfree(struct vm_anon *an)
    782  1.88  pooka {
    783  1.88  pooka 
    784  1.88  pooka 	/* nada */
    785  1.88  pooka }
    786  1.88  pooka 
    787  1.80  pooka /*
    788  1.80  pooka  * Routines related to the Page Baroness.
    789  1.80  pooka  */
    790  1.80  pooka 
    791  1.80  pooka void
    792  1.80  pooka uvm_wait(const char *msg)
    793  1.80  pooka {
    794  1.80  pooka 
    795  1.80  pooka 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    796  1.80  pooka 		panic("pagedaemon out of memory");
    797  1.80  pooka 	if (__predict_false(rump_threads == 0))
    798  1.80  pooka 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    799  1.80  pooka 
    800  1.80  pooka 	mutex_enter(&pdaemonmtx);
    801  1.80  pooka 	pdaemon_waiters++;
    802  1.80  pooka 	cv_signal(&pdaemoncv);
    803  1.80  pooka 	cv_wait(&oomwait, &pdaemonmtx);
    804  1.80  pooka 	mutex_exit(&pdaemonmtx);
    805  1.80  pooka }
    806  1.80  pooka 
    807  1.80  pooka void
    808  1.80  pooka uvm_pageout_start(int npages)
    809  1.80  pooka {
    810  1.80  pooka 
    811  1.80  pooka 	/* we don't have the heuristics */
    812  1.80  pooka }
    813  1.80  pooka 
    814  1.80  pooka void
    815  1.80  pooka uvm_pageout_done(int npages)
    816  1.80  pooka {
    817  1.80  pooka 
    818  1.80  pooka 	/* could wakeup waiters, but just let the pagedaemon do it */
    819  1.80  pooka }
    820  1.80  pooka 
    821  1.95  pooka static bool
    822  1.95  pooka processpage(struct vm_page *pg)
    823  1.95  pooka {
    824  1.95  pooka 	struct uvm_object *uobj;
    825  1.95  pooka 
    826  1.95  pooka 	uobj = pg->uobject;
    827  1.95  pooka 	if (mutex_tryenter(&uobj->vmobjlock)) {
    828  1.95  pooka 		if ((pg->flags & PG_BUSY) == 0) {
    829  1.95  pooka 			mutex_exit(&uvm_pageqlock);
    830  1.95  pooka 			uobj->pgops->pgo_put(uobj, pg->offset,
    831  1.95  pooka 			    pg->offset + PAGE_SIZE,
    832  1.95  pooka 			    PGO_CLEANIT|PGO_FREE);
    833  1.95  pooka 			KASSERT(!mutex_owned(&uobj->vmobjlock));
    834  1.95  pooka 			return true;
    835  1.95  pooka 		} else {
    836  1.95  pooka 			mutex_exit(&uobj->vmobjlock);
    837  1.95  pooka 		}
    838  1.95  pooka 	}
    839  1.95  pooka 
    840  1.95  pooka 	return false;
    841  1.95  pooka }
    842  1.95  pooka 
    843  1.80  pooka /*
    844  1.92  pooka  * The Diabolical pageDaemon Director (DDD).
    845  1.80  pooka  */
    846  1.80  pooka void
    847  1.80  pooka uvm_pageout(void *arg)
    848  1.80  pooka {
    849  1.92  pooka 	struct vm_page *pg;
    850  1.80  pooka 	struct pool *pp, *pp_first;
    851  1.80  pooka 	uint64_t where;
    852  1.80  pooka 	int timo = 0;
    853  1.92  pooka 	int cleaned, skip, skipped;
    854  1.92  pooka 	bool succ = false;
    855  1.80  pooka 
    856  1.80  pooka 	mutex_enter(&pdaemonmtx);
    857  1.80  pooka 	for (;;) {
    858  1.92  pooka 		if (succ) {
    859  1.92  pooka 			kernel_map->flags &= ~VM_MAP_WANTVA;
    860  1.95  pooka 			kmem_map->flags &= ~VM_MAP_WANTVA;
    861  1.92  pooka 			timo = 0;
    862  1.95  pooka 			if (pdaemon_waiters) {
    863  1.95  pooka 				pdaemon_waiters = 0;
    864  1.95  pooka 				cv_broadcast(&oomwait);
    865  1.95  pooka 			}
    866  1.92  pooka 		}
    867  1.92  pooka 		succ = false;
    868  1.92  pooka 
    869  1.95  pooka 		cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
    870  1.80  pooka 		uvmexp.pdwoke++;
    871  1.92  pooka 
    872  1.92  pooka 		/* tell the world that we are hungry */
    873  1.80  pooka 		kernel_map->flags |= VM_MAP_WANTVA;
    874  1.92  pooka 		kmem_map->flags |= VM_MAP_WANTVA;
    875  1.92  pooka 
    876  1.92  pooka 		if (pdaemon_waiters == 0 && !NEED_PAGEDAEMON())
    877  1.92  pooka 			continue;
    878  1.80  pooka 		mutex_exit(&pdaemonmtx);
    879  1.80  pooka 
    880  1.92  pooka 		/*
    881  1.92  pooka 		 * step one: reclaim the page cache.  this should give
    882  1.92  pooka 		 * us the biggest earnings since whole pages are released
    883  1.92  pooka 		 * into backing memory.
    884  1.92  pooka 		 */
    885  1.92  pooka 		pool_cache_reclaim(&pagecache);
    886  1.92  pooka 		if (!NEED_PAGEDAEMON()) {
    887  1.92  pooka 			succ = true;
    888  1.92  pooka 			mutex_enter(&pdaemonmtx);
    889  1.92  pooka 			continue;
    890  1.92  pooka 		}
    891  1.92  pooka 
    892  1.92  pooka 		/*
    893  1.92  pooka 		 * Ok, so that didn't help.  Next, try to hunt memory
    894  1.92  pooka 		 * by pushing out vnode pages.  The pages might contain
    895  1.92  pooka 		 * useful cached data, but we need the memory.
    896  1.92  pooka 		 */
    897  1.92  pooka 		cleaned = 0;
    898  1.92  pooka 		skip = 0;
    899  1.92  pooka  again:
    900  1.92  pooka 		mutex_enter(&uvm_pageqlock);
    901  1.92  pooka 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
    902  1.92  pooka 			skipped = 0;
    903  1.92  pooka 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
    904  1.92  pooka 
    905  1.92  pooka 				/*
    906  1.92  pooka 				 * skip over pages we _might_ have tried
    907  1.92  pooka 				 * to handle earlier.  they might not be
    908  1.92  pooka 				 * exactly the same ones, but I'm not too
    909  1.92  pooka 				 * concerned.
    910  1.92  pooka 				 */
    911  1.92  pooka 				while (skipped++ < skip)
    912  1.92  pooka 					continue;
    913  1.92  pooka 
    914  1.95  pooka 				if (processpage(pg)) {
    915  1.95  pooka 					cleaned++;
    916  1.95  pooka 					goto again;
    917  1.92  pooka 				}
    918  1.92  pooka 
    919  1.92  pooka 				skip++;
    920  1.92  pooka 			}
    921  1.92  pooka 			break;
    922  1.92  pooka 		}
    923  1.92  pooka 		mutex_exit(&uvm_pageqlock);
    924  1.92  pooka 
    925  1.92  pooka 		/*
    926  1.92  pooka 		 * And of course we need to reclaim the page cache
    927  1.92  pooka 		 * again to actually release memory.
    928  1.92  pooka 		 */
    929  1.92  pooka 		pool_cache_reclaim(&pagecache);
    930  1.92  pooka 		if (!NEED_PAGEDAEMON()) {
    931  1.92  pooka 			succ = true;
    932  1.92  pooka 			mutex_enter(&pdaemonmtx);
    933  1.92  pooka 			continue;
    934  1.92  pooka 		}
    935  1.92  pooka 
    936  1.92  pooka 		/*
    937  1.92  pooka 		 * Still not there?  sleeves come off right about now.
    938  1.92  pooka 		 * First: do reclaim on kernel/kmem map.
    939  1.92  pooka 		 */
    940  1.92  pooka 		callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
    941  1.92  pooka 		    NULL);
    942  1.92  pooka 		callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
    943  1.92  pooka 		    NULL);
    944  1.92  pooka 
    945  1.92  pooka 		/*
    946  1.92  pooka 		 * And then drain the pools.  Wipe them out ... all of them.
    947  1.92  pooka 		 */
    948  1.92  pooka 
    949  1.80  pooka 		pool_drain_start(&pp_first, &where);
    950  1.80  pooka 		pp = pp_first;
    951  1.80  pooka 		for (;;) {
    952  1.91  pooka 			rump_vfs_drainbufs(10 /* XXX: estimate better */);
    953  1.80  pooka 			succ = pool_drain_end(pp, where);
    954  1.80  pooka 			if (succ)
    955  1.80  pooka 				break;
    956  1.80  pooka 			pool_drain_start(&pp, &where);
    957  1.80  pooka 			if (pp == pp_first) {
    958  1.80  pooka 				succ = pool_drain_end(pp, where);
    959  1.80  pooka 				break;
    960  1.80  pooka 			}
    961  1.80  pooka 		}
    962  1.92  pooka 
    963  1.92  pooka 		/*
    964  1.92  pooka 		 * Need to use PYEC on our bag of tricks.
    965  1.92  pooka 		 * Unfortunately, the wife just borrowed it.
    966  1.92  pooka 		 */
    967  1.80  pooka 
    968  1.80  pooka 		if (!succ) {
    969  1.80  pooka 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
    970  1.80  pooka 			    "memory ... sleeping (deadlock?)\n");
    971  1.95  pooka 			timo = hz;
    972  1.80  pooka 		}
    973  1.80  pooka 
    974  1.92  pooka 		mutex_enter(&pdaemonmtx);
    975  1.80  pooka 	}
    976  1.80  pooka 
    977  1.80  pooka 	panic("you can swap out any time you like, but you can never leave");
    978  1.80  pooka }
    979  1.80  pooka 
    980  1.80  pooka void
    981  1.80  pooka uvm_kick_pdaemon()
    982  1.80  pooka {
    983  1.80  pooka 
    984  1.92  pooka 	/*
    985  1.92  pooka 	 * Wake up the diabolical pagedaemon director if we are over
    986  1.92  pooka 	 * 90% of the memory limit.  This is a complete and utter
    987  1.92  pooka 	 * stetson-harrison decision which you are allowed to finetune.
    988  1.92  pooka 	 * Don't bother locking.  If we have some unflushed caches,
    989  1.92  pooka 	 * other waker-uppers will deal with the issue.
    990  1.92  pooka 	 */
    991  1.92  pooka 	if (NEED_PAGEDAEMON()) {
    992  1.92  pooka 		cv_signal(&pdaemoncv);
    993  1.92  pooka 	}
    994  1.80  pooka }
    995  1.80  pooka 
    996  1.80  pooka void *
    997  1.80  pooka rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
    998  1.80  pooka {
    999  1.84  pooka 	unsigned long newmem;
   1000  1.80  pooka 	void *rv;
   1001  1.80  pooka 
   1002  1.92  pooka 	uvm_kick_pdaemon(); /* ouch */
   1003  1.92  pooka 
   1004  1.84  pooka 	/* first we must be within the limit */
   1005  1.84  pooka  limitagain:
   1006  1.91  pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1007  1.84  pooka 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1008  1.91  pooka 		if (newmem > rump_physmemlimit) {
   1009  1.84  pooka 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1010  1.84  pooka 			if (!waitok)
   1011  1.84  pooka 				return NULL;
   1012  1.84  pooka 			uvm_wait(wmsg);
   1013  1.84  pooka 			goto limitagain;
   1014  1.84  pooka 		}
   1015  1.84  pooka 	}
   1016  1.84  pooka 
   1017  1.84  pooka 	/* second, we must get something from the backend */
   1018  1.80  pooka  again:
   1019  1.80  pooka 	rv = rumpuser_malloc(howmuch, alignment);
   1020  1.80  pooka 	if (__predict_false(rv == NULL && waitok)) {
   1021  1.80  pooka 		uvm_wait(wmsg);
   1022  1.80  pooka 		goto again;
   1023  1.80  pooka 	}
   1024  1.80  pooka 
   1025  1.80  pooka 	return rv;
   1026  1.80  pooka }
   1027  1.84  pooka 
   1028  1.84  pooka void
   1029  1.84  pooka rump_hyperfree(void *what, size_t size)
   1030  1.84  pooka {
   1031  1.84  pooka 
   1032  1.91  pooka 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1033  1.84  pooka 		atomic_add_long(&curphysmem, -size);
   1034  1.84  pooka 	}
   1035  1.84  pooka 	rumpuser_free(what);
   1036  1.84  pooka }
   1037