Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.102
      1 /*	$NetBSD: vm.c,v 1.102 2010/11/22 20:42:19 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2010 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.102 2010/11/22 20:42:19 pooka Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/mman.h>
     52 #include <sys/null.h>
     53 #include <sys/vnode.h>
     54 
     55 #include <machine/pmap.h>
     56 
     57 #include <rump/rumpuser.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_ddb.h>
     61 #include <uvm/uvm_pdpolicy.h>
     62 #include <uvm/uvm_prot.h>
     63 #include <uvm/uvm_readahead.h>
     64 
     65 #include "rump_private.h"
     66 #include "rump_vfs_private.h"
     67 
     68 kmutex_t uvm_pageqlock;
     69 kmutex_t uvm_swap_data_lock;
     70 
     71 struct uvmexp uvmexp;
     72 int *uvmexp_pagesize;
     73 int *uvmexp_pagemask;
     74 int *uvmexp_pageshift;
     75 struct uvm uvm;
     76 
     77 struct vm_map rump_vmmap;
     78 static struct vm_map_kernel kmem_map_store;
     79 struct vm_map *kmem_map = &kmem_map_store.vmk_map;
     80 
     81 static struct vm_map_kernel kernel_map_store;
     82 struct vm_map *kernel_map = &kernel_map_store.vmk_map;
     83 
     84 static unsigned int pdaemon_waiters;
     85 static kmutex_t pdaemonmtx;
     86 static kcondvar_t pdaemoncv, oomwait;
     87 
     88 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     89 static unsigned long curphysmem;
     90 static unsigned long dddlim;		/* 90% of memory limit used */
     91 #define NEED_PAGEDAEMON() \
     92     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
     93 
     94 /*
     95  * Try to free two pages worth of pages from objects.
     96  * If this succesfully frees a full page cache page, we'll
     97  * free the released page plus PAGE_SIZE/sizeof(vm_page).
     98  */
     99 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    100 
    101 /*
    102  * Keep a list of least recently used pages.  Since the only way a
    103  * rump kernel can "access" a page is via lookup, we put the page
    104  * at the back of queue every time a lookup for it is done.  If the
    105  * page is in front of this global queue and we're short of memory,
    106  * it's a candidate for pageout.
    107  */
    108 static struct pglist vmpage_lruqueue;
    109 static unsigned vmpage_onqueue;
    110 
    111 static int
    112 pg_compare_key(void *ctx, const void *n, const void *key)
    113 {
    114 	voff_t a = ((const struct vm_page *)n)->offset;
    115 	voff_t b = *(const voff_t *)key;
    116 
    117 	if (a < b)
    118 		return -1;
    119 	else if (a > b)
    120 		return 1;
    121 	else
    122 		return 0;
    123 }
    124 
    125 static int
    126 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
    127 {
    128 
    129 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
    130 }
    131 
    132 const rb_tree_ops_t uvm_page_tree_ops = {
    133 	.rbto_compare_nodes = pg_compare_nodes,
    134 	.rbto_compare_key = pg_compare_key,
    135 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    136 	.rbto_context = NULL
    137 };
    138 
    139 /*
    140  * vm pages
    141  */
    142 
    143 static int
    144 pgctor(void *arg, void *obj, int flags)
    145 {
    146 	struct vm_page *pg = obj;
    147 
    148 	memset(pg, 0, sizeof(*pg));
    149 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE, true, "pgalloc");
    150 	return 0;
    151 }
    152 
    153 static void
    154 pgdtor(void *arg, void *obj)
    155 {
    156 	struct vm_page *pg = obj;
    157 
    158 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    159 }
    160 
    161 static struct pool_cache pagecache;
    162 
    163 /*
    164  * Called with the object locked.  We don't support anons.
    165  */
    166 struct vm_page *
    167 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    168 	int flags, int strat, int free_list)
    169 {
    170 	struct vm_page *pg;
    171 
    172 	KASSERT(uobj && mutex_owned(&uobj->vmobjlock));
    173 	KASSERT(anon == NULL);
    174 
    175 	pg = pool_cache_get(&pagecache, PR_WAITOK);
    176 	pg->offset = off;
    177 	pg->uobject = uobj;
    178 
    179 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    180 	if (flags & UVM_PGA_ZERO) {
    181 		uvm_pagezero(pg);
    182 	}
    183 
    184 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    185 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
    186 
    187 	/*
    188 	 * Don't put anons on the LRU page queue.  We can't flush them
    189 	 * (there's no concept of swap in a rump kernel), so no reason
    190 	 * to bother with them.
    191 	 */
    192 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    193 		atomic_inc_uint(&vmpage_onqueue);
    194 		mutex_enter(&uvm_pageqlock);
    195 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    196 		mutex_exit(&uvm_pageqlock);
    197 	}
    198 
    199 	uobj->uo_npages++;
    200 
    201 	return pg;
    202 }
    203 
    204 /*
    205  * Release a page.
    206  *
    207  * Called with the vm object locked.
    208  */
    209 void
    210 uvm_pagefree(struct vm_page *pg)
    211 {
    212 	struct uvm_object *uobj = pg->uobject;
    213 
    214 	KASSERT(mutex_owned(&uvm_pageqlock));
    215 	KASSERT(mutex_owned(&uobj->vmobjlock));
    216 
    217 	if (pg->flags & PG_WANTED)
    218 		wakeup(pg);
    219 
    220 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    221 
    222 	uobj->uo_npages--;
    223 	rb_tree_remove_node(&uobj->rb_tree, pg);
    224 
    225 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    226 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    227 		atomic_dec_uint(&vmpage_onqueue);
    228 	}
    229 
    230 	pool_cache_put(&pagecache, pg);
    231 }
    232 
    233 void
    234 uvm_pagezero(struct vm_page *pg)
    235 {
    236 
    237 	pg->flags &= ~PG_CLEAN;
    238 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    239 }
    240 
    241 /*
    242  * Misc routines
    243  */
    244 
    245 static kmutex_t pagermtx;
    246 
    247 void
    248 uvm_init(void)
    249 {
    250 	char buf[64];
    251 	int error;
    252 
    253 	if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
    254 		rump_physmemlimit = strtoll(buf, NULL, 10);
    255 		/* it's not like we'd get far with, say, 1 byte, but ... */
    256 		if (rump_physmemlimit == 0)
    257 			panic("uvm_init: no memory available");
    258 #define HUMANIZE_BYTES 9
    259 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    260 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    261 #undef HUMANIZE_BYTES
    262 		dddlim = 9 * (rump_physmemlimit / 10);
    263 	} else {
    264 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    265 	}
    266 	aprint_verbose("total memory = %s\n", buf);
    267 
    268 	TAILQ_INIT(&vmpage_lruqueue);
    269 
    270 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    271 
    272 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    273 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    274 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
    275 
    276 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    277 	cv_init(&pdaemoncv, "pdaemon");
    278 	cv_init(&oomwait, "oomwait");
    279 
    280 	kernel_map->pmap = pmap_kernel();
    281 	callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
    282 	kmem_map->pmap = pmap_kernel();
    283 	callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
    284 
    285 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    286 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    287 }
    288 
    289 void
    290 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    291 {
    292 
    293 	vm->vm_map.pmap = pmap_kernel();
    294 	vm->vm_refcnt = 1;
    295 }
    296 
    297 void
    298 uvm_pagewire(struct vm_page *pg)
    299 {
    300 
    301 	/* nada */
    302 }
    303 
    304 void
    305 uvm_pageunwire(struct vm_page *pg)
    306 {
    307 
    308 	/* nada */
    309 }
    310 
    311 /* where's your schmonz now? */
    312 #define PUNLIMIT(a)	\
    313 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    314 void
    315 uvm_init_limits(struct proc *p)
    316 {
    317 
    318 	PUNLIMIT(RLIMIT_STACK);
    319 	PUNLIMIT(RLIMIT_DATA);
    320 	PUNLIMIT(RLIMIT_RSS);
    321 	PUNLIMIT(RLIMIT_AS);
    322 	/* nice, cascade */
    323 }
    324 #undef PUNLIMIT
    325 
    326 /*
    327  * This satisfies the "disgusting mmap hack" used by proplib.
    328  * We probably should grow some more assertables to make sure we're
    329  * not satisfying anything we shouldn't be satisfying.  At least we
    330  * should make sure it's the local machine we're mmapping ...
    331  */
    332 int
    333 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    334 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    335 {
    336 	void *uaddr;
    337 	int error;
    338 
    339 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    340 		panic("uvm_mmap() variant unsupported");
    341 	if (flags != (MAP_PRIVATE | MAP_ANON))
    342 		panic("uvm_mmap() variant unsupported");
    343 
    344 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    345 	if (*addr != 0)
    346 		panic("uvm_mmap() variant unsupported");
    347 
    348 	if (curproc->p_vmspace == vmspace_kernel()) {
    349 		uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    350 	} else {
    351 		error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
    352 		    size, &uaddr);
    353 	}
    354 	if (uaddr == NULL)
    355 		return error;
    356 
    357 	*addr = (vaddr_t)uaddr;
    358 	return 0;
    359 }
    360 
    361 struct pagerinfo {
    362 	vaddr_t pgr_kva;
    363 	int pgr_npages;
    364 	struct vm_page **pgr_pgs;
    365 	bool pgr_read;
    366 
    367 	LIST_ENTRY(pagerinfo) pgr_entries;
    368 };
    369 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    370 
    371 /*
    372  * Pager "map" in routine.  Instead of mapping, we allocate memory
    373  * and copy page contents there.  Not optimal or even strictly
    374  * correct (the caller might modify the page contents after mapping
    375  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    376  */
    377 vaddr_t
    378 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    379 {
    380 	struct pagerinfo *pgri;
    381 	vaddr_t curkva;
    382 	int i;
    383 
    384 	/* allocate structures */
    385 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    386 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    387 	pgri->pgr_npages = npages;
    388 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    389 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    390 
    391 	/* copy contents to "mapped" memory */
    392 	for (i = 0, curkva = pgri->pgr_kva;
    393 	    i < npages;
    394 	    i++, curkva += PAGE_SIZE) {
    395 		/*
    396 		 * We need to copy the previous contents of the pages to
    397 		 * the window even if we are reading from the
    398 		 * device, since the device might not fill the contents of
    399 		 * the full mapped range and we will end up corrupting
    400 		 * data when we unmap the window.
    401 		 */
    402 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    403 		pgri->pgr_pgs[i] = pgs[i];
    404 	}
    405 
    406 	mutex_enter(&pagermtx);
    407 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    408 	mutex_exit(&pagermtx);
    409 
    410 	return pgri->pgr_kva;
    411 }
    412 
    413 /*
    414  * map out the pager window.  return contents from VA to page storage
    415  * and free structures.
    416  *
    417  * Note: does not currently support partial frees
    418  */
    419 void
    420 uvm_pagermapout(vaddr_t kva, int npages)
    421 {
    422 	struct pagerinfo *pgri;
    423 	vaddr_t curkva;
    424 	int i;
    425 
    426 	mutex_enter(&pagermtx);
    427 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    428 		if (pgri->pgr_kva == kva)
    429 			break;
    430 	}
    431 	KASSERT(pgri);
    432 	if (pgri->pgr_npages != npages)
    433 		panic("uvm_pagermapout: partial unmapping not supported");
    434 	LIST_REMOVE(pgri, pgr_entries);
    435 	mutex_exit(&pagermtx);
    436 
    437 	if (pgri->pgr_read) {
    438 		for (i = 0, curkva = pgri->pgr_kva;
    439 		    i < pgri->pgr_npages;
    440 		    i++, curkva += PAGE_SIZE) {
    441 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    442 		}
    443 	}
    444 
    445 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    446 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    447 	kmem_free(pgri, sizeof(*pgri));
    448 }
    449 
    450 /*
    451  * convert va in pager window to page structure.
    452  * XXX: how expensive is this (global lock, list traversal)?
    453  */
    454 struct vm_page *
    455 uvm_pageratop(vaddr_t va)
    456 {
    457 	struct pagerinfo *pgri;
    458 	struct vm_page *pg = NULL;
    459 	int i;
    460 
    461 	mutex_enter(&pagermtx);
    462 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    463 		if (pgri->pgr_kva <= va
    464 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    465 			break;
    466 	}
    467 	if (pgri) {
    468 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    469 		pg = pgri->pgr_pgs[i];
    470 	}
    471 	mutex_exit(&pagermtx);
    472 
    473 	return pg;
    474 }
    475 
    476 /*
    477  * Called with the vm object locked.
    478  *
    479  * Put vnode object pages at the end of the access queue to indicate
    480  * they have been recently accessed and should not be immediate
    481  * candidates for pageout.  Do not do this for lookups done by
    482  * the pagedaemon to mimic pmap_kentered mappings which don't track
    483  * access information.
    484  */
    485 struct vm_page *
    486 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    487 {
    488 	struct vm_page *pg;
    489 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    490 
    491 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
    492 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    493 		mutex_enter(&uvm_pageqlock);
    494 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    495 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    496 		mutex_exit(&uvm_pageqlock);
    497 	}
    498 
    499 	return pg;
    500 }
    501 
    502 void
    503 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    504 {
    505 	struct vm_page *pg;
    506 	int i;
    507 
    508 	KASSERT(npgs > 0);
    509 	KASSERT(mutex_owned(&pgs[0]->uobject->vmobjlock));
    510 
    511 	for (i = 0; i < npgs; i++) {
    512 		pg = pgs[i];
    513 		if (pg == NULL)
    514 			continue;
    515 
    516 		KASSERT(pg->flags & PG_BUSY);
    517 		if (pg->flags & PG_WANTED)
    518 			wakeup(pg);
    519 		if (pg->flags & PG_RELEASED)
    520 			uvm_pagefree(pg);
    521 		else
    522 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    523 	}
    524 }
    525 
    526 void
    527 uvm_estimatepageable(int *active, int *inactive)
    528 {
    529 
    530 	/* XXX: guessing game */
    531 	*active = 1024;
    532 	*inactive = 1024;
    533 }
    534 
    535 struct vm_map_kernel *
    536 vm_map_to_kernel(struct vm_map *map)
    537 {
    538 
    539 	return (struct vm_map_kernel *)map;
    540 }
    541 
    542 bool
    543 vm_map_starved_p(struct vm_map *map)
    544 {
    545 
    546 	if (map->flags & VM_MAP_WANTVA)
    547 		return true;
    548 
    549 	return false;
    550 }
    551 
    552 int
    553 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    554 {
    555 
    556 	panic("%s: unimplemented", __func__);
    557 }
    558 
    559 void
    560 uvm_unloan(void *v, int npages, int flags)
    561 {
    562 
    563 	panic("%s: unimplemented", __func__);
    564 }
    565 
    566 int
    567 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    568 	struct vm_page **opp)
    569 {
    570 
    571 	return EBUSY;
    572 }
    573 
    574 #ifdef DEBUGPRINT
    575 void
    576 uvm_object_printit(struct uvm_object *uobj, bool full,
    577 	void (*pr)(const char *, ...))
    578 {
    579 
    580 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    581 }
    582 #endif
    583 
    584 vaddr_t
    585 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    586 {
    587 
    588 	return 0;
    589 }
    590 
    591 int
    592 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    593 	vm_prot_t prot, bool set_max)
    594 {
    595 
    596 	return EOPNOTSUPP;
    597 }
    598 
    599 /*
    600  * UVM km
    601  */
    602 
    603 vaddr_t
    604 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    605 {
    606 	void *rv, *desired = NULL;
    607 	int alignbit, error;
    608 
    609 #ifdef __x86_64__
    610 	/*
    611 	 * On amd64, allocate all module memory from the lowest 2GB.
    612 	 * This is because NetBSD kernel modules are compiled
    613 	 * with -mcmodel=kernel and reserve only 4 bytes for
    614 	 * offsets.  If we load code compiled with -mcmodel=kernel
    615 	 * anywhere except the lowest or highest 2GB, it will not
    616 	 * work.  Since userspace does not have access to the highest
    617 	 * 2GB, use the lowest 2GB.
    618 	 *
    619 	 * Note: this assumes the rump kernel resides in
    620 	 * the lowest 2GB as well.
    621 	 *
    622 	 * Note2: yes, it's a quick hack, but since this the only
    623 	 * place where we care about the map we're allocating from,
    624 	 * just use a simple "if" instead of coming up with a fancy
    625 	 * generic solution.
    626 	 */
    627 	extern struct vm_map *module_map;
    628 	if (map == module_map) {
    629 		desired = (void *)(0x80000000 - size);
    630 	}
    631 #endif
    632 
    633 	alignbit = 0;
    634 	if (align) {
    635 		alignbit = ffs(align)-1;
    636 	}
    637 
    638 	rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
    639 	    &error);
    640 	if (rv == NULL) {
    641 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    642 			return 0;
    643 		else
    644 			panic("uvm_km_alloc failed");
    645 	}
    646 
    647 	if (flags & UVM_KMF_ZERO)
    648 		memset(rv, 0, size);
    649 
    650 	return (vaddr_t)rv;
    651 }
    652 
    653 void
    654 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    655 {
    656 
    657 	rumpuser_unmap((void *)vaddr, size);
    658 }
    659 
    660 struct vm_map *
    661 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    662 	vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
    663 {
    664 
    665 	return (struct vm_map *)417416;
    666 }
    667 
    668 vaddr_t
    669 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    670 {
    671 
    672 	return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    673 	    waitok, "kmalloc");
    674 }
    675 
    676 void
    677 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    678 {
    679 
    680 	rump_hyperfree((void *)addr, PAGE_SIZE);
    681 }
    682 
    683 vaddr_t
    684 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    685 {
    686 
    687 	return uvm_km_alloc_poolpage(map, waitok);
    688 }
    689 
    690 void
    691 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
    692 {
    693 
    694 	uvm_km_free_poolpage(map, vaddr);
    695 }
    696 
    697 void
    698 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    699 {
    700 
    701 	/* we eventually maybe want some model for available memory */
    702 }
    703 
    704 /*
    705  * VM space locking routines.  We don't really have to do anything,
    706  * since the pages are always "wired" (both local and remote processes).
    707  */
    708 int
    709 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    710 {
    711 
    712 	return 0;
    713 }
    714 
    715 void
    716 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    717 {
    718 
    719 }
    720 
    721 /*
    722  * For the local case the buffer mappers don't need to do anything.
    723  * For the remote case we need to reserve space and copy data in or
    724  * out, depending on B_READ/B_WRITE.
    725  */
    726 void
    727 vmapbuf(struct buf *bp, vsize_t len)
    728 {
    729 
    730 	bp->b_saveaddr = bp->b_data;
    731 
    732 	/* remote case */
    733 	if (curproc->p_vmspace != vmspace_kernel()) {
    734 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    735 		if (BUF_ISWRITE(bp)) {
    736 			copyin(bp->b_saveaddr, bp->b_data, len);
    737 		}
    738 	}
    739 }
    740 
    741 void
    742 vunmapbuf(struct buf *bp, vsize_t len)
    743 {
    744 
    745 	/* remote case */
    746 	if (bp->b_proc->p_vmspace != vmspace_kernel()) {
    747 		if (BUF_ISREAD(bp)) {
    748 			copyout_proc(bp->b_proc,
    749 			    bp->b_data, bp->b_saveaddr, len);
    750 		}
    751 		rump_hyperfree(bp->b_data, len);
    752 	}
    753 
    754 	bp->b_data = bp->b_saveaddr;
    755 	bp->b_saveaddr = 0;
    756 }
    757 
    758 void
    759 uvmspace_addref(struct vmspace *vm)
    760 {
    761 
    762 	/*
    763 	 * there is only vmspace0.  we're not planning on
    764 	 * feeding it to the fishes.
    765 	 */
    766 }
    767 
    768 void
    769 uvmspace_free(struct vmspace *vm)
    770 {
    771 
    772 	/* nothing for now */
    773 }
    774 
    775 /*
    776  * page life cycle stuff.  it really doesn't exist, so just stubs.
    777  */
    778 
    779 void
    780 uvm_pageactivate(struct vm_page *pg)
    781 {
    782 
    783 	/* nada */
    784 }
    785 
    786 void
    787 uvm_pagedeactivate(struct vm_page *pg)
    788 {
    789 
    790 	/* nada */
    791 }
    792 
    793 void
    794 uvm_pagedequeue(struct vm_page *pg)
    795 {
    796 
    797 	/* nada*/
    798 }
    799 
    800 void
    801 uvm_pageenqueue(struct vm_page *pg)
    802 {
    803 
    804 	/* nada */
    805 }
    806 
    807 void
    808 uvmpdpol_anfree(struct vm_anon *an)
    809 {
    810 
    811 	/* nada */
    812 }
    813 
    814 /*
    815  * Physical address accessors.
    816  */
    817 
    818 struct vm_page *
    819 uvm_phys_to_vm_page(paddr_t pa)
    820 {
    821 
    822 	return NULL;
    823 }
    824 
    825 paddr_t
    826 uvm_vm_page_to_phys(const struct vm_page *pg)
    827 {
    828 
    829 	return 0;
    830 }
    831 
    832 /*
    833  * Routines related to the Page Baroness.
    834  */
    835 
    836 void
    837 uvm_wait(const char *msg)
    838 {
    839 
    840 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    841 		panic("pagedaemon out of memory");
    842 	if (__predict_false(rump_threads == 0))
    843 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    844 
    845 	mutex_enter(&pdaemonmtx);
    846 	pdaemon_waiters++;
    847 	cv_signal(&pdaemoncv);
    848 	cv_wait(&oomwait, &pdaemonmtx);
    849 	mutex_exit(&pdaemonmtx);
    850 }
    851 
    852 void
    853 uvm_pageout_start(int npages)
    854 {
    855 
    856 	/* we don't have the heuristics */
    857 }
    858 
    859 void
    860 uvm_pageout_done(int npages)
    861 {
    862 
    863 	/* could wakeup waiters, but just let the pagedaemon do it */
    864 }
    865 
    866 static bool
    867 processpage(struct vm_page *pg)
    868 {
    869 	struct uvm_object *uobj;
    870 
    871 	uobj = pg->uobject;
    872 	if (mutex_tryenter(&uobj->vmobjlock)) {
    873 		if ((pg->flags & PG_BUSY) == 0) {
    874 			mutex_exit(&uvm_pageqlock);
    875 			uobj->pgops->pgo_put(uobj, pg->offset,
    876 			    pg->offset + PAGE_SIZE,
    877 			    PGO_CLEANIT|PGO_FREE);
    878 			KASSERT(!mutex_owned(&uobj->vmobjlock));
    879 			return true;
    880 		} else {
    881 			mutex_exit(&uobj->vmobjlock);
    882 		}
    883 	}
    884 
    885 	return false;
    886 }
    887 
    888 /*
    889  * The Diabolical pageDaemon Director (DDD).
    890  */
    891 void
    892 uvm_pageout(void *arg)
    893 {
    894 	struct vm_page *pg;
    895 	struct pool *pp, *pp_first;
    896 	uint64_t where;
    897 	int timo = 0;
    898 	int cleaned, skip, skipped;
    899 	bool succ = false;
    900 
    901 	mutex_enter(&pdaemonmtx);
    902 	for (;;) {
    903 		if (succ) {
    904 			kernel_map->flags &= ~VM_MAP_WANTVA;
    905 			kmem_map->flags &= ~VM_MAP_WANTVA;
    906 			timo = 0;
    907 			if (pdaemon_waiters) {
    908 				pdaemon_waiters = 0;
    909 				cv_broadcast(&oomwait);
    910 			}
    911 		}
    912 		succ = false;
    913 
    914 		cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
    915 		uvmexp.pdwoke++;
    916 
    917 		/* tell the world that we are hungry */
    918 		kernel_map->flags |= VM_MAP_WANTVA;
    919 		kmem_map->flags |= VM_MAP_WANTVA;
    920 
    921 		if (pdaemon_waiters == 0 && !NEED_PAGEDAEMON())
    922 			continue;
    923 		mutex_exit(&pdaemonmtx);
    924 
    925 		/*
    926 		 * step one: reclaim the page cache.  this should give
    927 		 * us the biggest earnings since whole pages are released
    928 		 * into backing memory.
    929 		 */
    930 		pool_cache_reclaim(&pagecache);
    931 		if (!NEED_PAGEDAEMON()) {
    932 			succ = true;
    933 			mutex_enter(&pdaemonmtx);
    934 			continue;
    935 		}
    936 
    937 		/*
    938 		 * Ok, so that didn't help.  Next, try to hunt memory
    939 		 * by pushing out vnode pages.  The pages might contain
    940 		 * useful cached data, but we need the memory.
    941 		 */
    942 		cleaned = 0;
    943 		skip = 0;
    944  again:
    945 		mutex_enter(&uvm_pageqlock);
    946 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
    947 			skipped = 0;
    948 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
    949 
    950 				/*
    951 				 * skip over pages we _might_ have tried
    952 				 * to handle earlier.  they might not be
    953 				 * exactly the same ones, but I'm not too
    954 				 * concerned.
    955 				 */
    956 				while (skipped++ < skip)
    957 					continue;
    958 
    959 				if (processpage(pg)) {
    960 					cleaned++;
    961 					goto again;
    962 				}
    963 
    964 				skip++;
    965 			}
    966 			break;
    967 		}
    968 		mutex_exit(&uvm_pageqlock);
    969 
    970 		/*
    971 		 * And of course we need to reclaim the page cache
    972 		 * again to actually release memory.
    973 		 */
    974 		pool_cache_reclaim(&pagecache);
    975 		if (!NEED_PAGEDAEMON()) {
    976 			succ = true;
    977 			mutex_enter(&pdaemonmtx);
    978 			continue;
    979 		}
    980 
    981 		/*
    982 		 * Still not there?  sleeves come off right about now.
    983 		 * First: do reclaim on kernel/kmem map.
    984 		 */
    985 		callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
    986 		    NULL);
    987 		callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
    988 		    NULL);
    989 
    990 		/*
    991 		 * And then drain the pools.  Wipe them out ... all of them.
    992 		 */
    993 
    994 		pool_drain_start(&pp_first, &where);
    995 		pp = pp_first;
    996 		for (;;) {
    997 			rump_vfs_drainbufs(10 /* XXX: estimate better */);
    998 			succ = pool_drain_end(pp, where);
    999 			if (succ)
   1000 				break;
   1001 			pool_drain_start(&pp, &where);
   1002 			if (pp == pp_first) {
   1003 				succ = pool_drain_end(pp, where);
   1004 				break;
   1005 			}
   1006 		}
   1007 
   1008 		/*
   1009 		 * Need to use PYEC on our bag of tricks.
   1010 		 * Unfortunately, the wife just borrowed it.
   1011 		 */
   1012 
   1013 		if (!succ) {
   1014 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1015 			    "memory ... sleeping (deadlock?)\n");
   1016 			timo = hz;
   1017 		}
   1018 
   1019 		mutex_enter(&pdaemonmtx);
   1020 	}
   1021 
   1022 	panic("you can swap out any time you like, but you can never leave");
   1023 }
   1024 
   1025 void
   1026 uvm_kick_pdaemon()
   1027 {
   1028 
   1029 	/*
   1030 	 * Wake up the diabolical pagedaemon director if we are over
   1031 	 * 90% of the memory limit.  This is a complete and utter
   1032 	 * stetson-harrison decision which you are allowed to finetune.
   1033 	 * Don't bother locking.  If we have some unflushed caches,
   1034 	 * other waker-uppers will deal with the issue.
   1035 	 */
   1036 	if (NEED_PAGEDAEMON()) {
   1037 		cv_signal(&pdaemoncv);
   1038 	}
   1039 }
   1040 
   1041 void *
   1042 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1043 {
   1044 	unsigned long newmem;
   1045 	void *rv;
   1046 
   1047 	uvm_kick_pdaemon(); /* ouch */
   1048 
   1049 	/* first we must be within the limit */
   1050  limitagain:
   1051 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1052 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1053 		if (newmem > rump_physmemlimit) {
   1054 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1055 			if (!waitok)
   1056 				return NULL;
   1057 			uvm_wait(wmsg);
   1058 			goto limitagain;
   1059 		}
   1060 	}
   1061 
   1062 	/* second, we must get something from the backend */
   1063  again:
   1064 	rv = rumpuser_malloc(howmuch, alignment);
   1065 	if (__predict_false(rv == NULL && waitok)) {
   1066 		uvm_wait(wmsg);
   1067 		goto again;
   1068 	}
   1069 
   1070 	return rv;
   1071 }
   1072 
   1073 void
   1074 rump_hyperfree(void *what, size_t size)
   1075 {
   1076 
   1077 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1078 		atomic_add_long(&curphysmem, -size);
   1079 	}
   1080 	rumpuser_free(what);
   1081 }
   1082