vm.c revision 1.104 1 /* $NetBSD: vm.c,v 1.104 2010/12/01 20:29:57 pooka Exp $ */
2
3 /*
4 * Copyright (c) 2007-2010 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.104 2010/12/01 20:29:57 pooka Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/mman.h>
52 #include <sys/null.h>
53 #include <sys/vnode.h>
54
55 #include <machine/pmap.h>
56
57 #include <rump/rumpuser.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_ddb.h>
61 #include <uvm/uvm_pdpolicy.h>
62 #include <uvm/uvm_prot.h>
63 #include <uvm/uvm_readahead.h>
64
65 #include "rump_private.h"
66 #include "rump_vfs_private.h"
67
68 kmutex_t uvm_pageqlock;
69 kmutex_t uvm_swap_data_lock;
70
71 struct uvmexp uvmexp;
72 int *uvmexp_pagesize;
73 int *uvmexp_pagemask;
74 int *uvmexp_pageshift;
75 struct uvm uvm;
76
77 struct vm_map rump_vmmap;
78 static struct vm_map_kernel kmem_map_store;
79 struct vm_map *kmem_map = &kmem_map_store.vmk_map;
80
81 static struct vm_map_kernel kernel_map_store;
82 struct vm_map *kernel_map = &kernel_map_store.vmk_map;
83
84 static unsigned int pdaemon_waiters;
85 static kmutex_t pdaemonmtx;
86 static kcondvar_t pdaemoncv, oomwait;
87
88 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
89 static unsigned long curphysmem;
90 static unsigned long dddlim; /* 90% of memory limit used */
91 #define NEED_PAGEDAEMON() \
92 (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
93
94 /*
95 * Try to free two pages worth of pages from objects.
96 * If this succesfully frees a full page cache page, we'll
97 * free the released page plus PAGE_SIZE/sizeof(vm_page).
98 */
99 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
100
101 /*
102 * Keep a list of least recently used pages. Since the only way a
103 * rump kernel can "access" a page is via lookup, we put the page
104 * at the back of queue every time a lookup for it is done. If the
105 * page is in front of this global queue and we're short of memory,
106 * it's a candidate for pageout.
107 */
108 static struct pglist vmpage_lruqueue;
109 static unsigned vmpage_onqueue;
110
111 static int
112 pg_compare_key(void *ctx, const void *n, const void *key)
113 {
114 voff_t a = ((const struct vm_page *)n)->offset;
115 voff_t b = *(const voff_t *)key;
116
117 if (a < b)
118 return -1;
119 else if (a > b)
120 return 1;
121 else
122 return 0;
123 }
124
125 static int
126 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
127 {
128
129 return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
130 }
131
132 const rb_tree_ops_t uvm_page_tree_ops = {
133 .rbto_compare_nodes = pg_compare_nodes,
134 .rbto_compare_key = pg_compare_key,
135 .rbto_node_offset = offsetof(struct vm_page, rb_node),
136 .rbto_context = NULL
137 };
138
139 /*
140 * vm pages
141 */
142
143 static int
144 pgctor(void *arg, void *obj, int flags)
145 {
146 struct vm_page *pg = obj;
147
148 memset(pg, 0, sizeof(*pg));
149 pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
150 (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
151 return pg->uanon == NULL;
152 }
153
154 static void
155 pgdtor(void *arg, void *obj)
156 {
157 struct vm_page *pg = obj;
158
159 rump_hyperfree(pg->uanon, PAGE_SIZE);
160 }
161
162 static struct pool_cache pagecache;
163
164 /*
165 * Called with the object locked. We don't support anons.
166 */
167 struct vm_page *
168 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
169 int flags, int strat, int free_list)
170 {
171 struct vm_page *pg;
172
173 KASSERT(uobj && mutex_owned(&uobj->vmobjlock));
174 KASSERT(anon == NULL);
175
176 pg = pool_cache_get(&pagecache, PR_NOWAIT);
177 if (__predict_false(pg == NULL)) {
178 return NULL;
179 }
180
181 pg->offset = off;
182 pg->uobject = uobj;
183
184 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
185 if (flags & UVM_PGA_ZERO) {
186 uvm_pagezero(pg);
187 }
188
189 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
190 (void)rb_tree_insert_node(&uobj->rb_tree, pg);
191
192 /*
193 * Don't put anons on the LRU page queue. We can't flush them
194 * (there's no concept of swap in a rump kernel), so no reason
195 * to bother with them.
196 */
197 if (!UVM_OBJ_IS_AOBJ(uobj)) {
198 atomic_inc_uint(&vmpage_onqueue);
199 mutex_enter(&uvm_pageqlock);
200 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
201 mutex_exit(&uvm_pageqlock);
202 }
203
204 uobj->uo_npages++;
205
206 return pg;
207 }
208
209 /*
210 * Release a page.
211 *
212 * Called with the vm object locked.
213 */
214 void
215 uvm_pagefree(struct vm_page *pg)
216 {
217 struct uvm_object *uobj = pg->uobject;
218
219 KASSERT(mutex_owned(&uvm_pageqlock));
220 KASSERT(mutex_owned(&uobj->vmobjlock));
221
222 if (pg->flags & PG_WANTED)
223 wakeup(pg);
224
225 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
226
227 uobj->uo_npages--;
228 rb_tree_remove_node(&uobj->rb_tree, pg);
229
230 if (!UVM_OBJ_IS_AOBJ(uobj)) {
231 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
232 atomic_dec_uint(&vmpage_onqueue);
233 }
234
235 pool_cache_put(&pagecache, pg);
236 }
237
238 void
239 uvm_pagezero(struct vm_page *pg)
240 {
241
242 pg->flags &= ~PG_CLEAN;
243 memset((void *)pg->uanon, 0, PAGE_SIZE);
244 }
245
246 /*
247 * Misc routines
248 */
249
250 static kmutex_t pagermtx;
251
252 void
253 uvm_init(void)
254 {
255 char buf[64];
256 int error;
257
258 if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
259 rump_physmemlimit = strtoll(buf, NULL, 10);
260 /* it's not like we'd get far with, say, 1 byte, but ... */
261 if (rump_physmemlimit == 0)
262 panic("uvm_init: no memory available");
263 #define HUMANIZE_BYTES 9
264 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
265 format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
266 #undef HUMANIZE_BYTES
267 dddlim = 9 * (rump_physmemlimit / 10);
268 } else {
269 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
270 }
271 aprint_verbose("total memory = %s\n", buf);
272
273 TAILQ_INIT(&vmpage_lruqueue);
274
275 uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
276
277 mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
278 mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
279 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
280
281 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
282 cv_init(&pdaemoncv, "pdaemon");
283 cv_init(&oomwait, "oomwait");
284
285 kernel_map->pmap = pmap_kernel();
286 callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
287 kmem_map->pmap = pmap_kernel();
288 callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
289
290 pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
291 "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
292 }
293
294 void
295 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
296 {
297
298 vm->vm_map.pmap = pmap_kernel();
299 vm->vm_refcnt = 1;
300 }
301
302 void
303 uvm_pagewire(struct vm_page *pg)
304 {
305
306 /* nada */
307 }
308
309 void
310 uvm_pageunwire(struct vm_page *pg)
311 {
312
313 /* nada */
314 }
315
316 /* where's your schmonz now? */
317 #define PUNLIMIT(a) \
318 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
319 void
320 uvm_init_limits(struct proc *p)
321 {
322
323 PUNLIMIT(RLIMIT_STACK);
324 PUNLIMIT(RLIMIT_DATA);
325 PUNLIMIT(RLIMIT_RSS);
326 PUNLIMIT(RLIMIT_AS);
327 /* nice, cascade */
328 }
329 #undef PUNLIMIT
330
331 /*
332 * This satisfies the "disgusting mmap hack" used by proplib.
333 * We probably should grow some more assertables to make sure we're
334 * not satisfying anything we shouldn't be satisfying.
335 */
336 int
337 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
338 vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
339 {
340 void *uaddr;
341 int error;
342
343 if (prot != (VM_PROT_READ | VM_PROT_WRITE))
344 panic("uvm_mmap() variant unsupported");
345 if (flags != (MAP_PRIVATE | MAP_ANON))
346 panic("uvm_mmap() variant unsupported");
347
348 /* no reason in particular, but cf. uvm_default_mapaddr() */
349 if (*addr != 0)
350 panic("uvm_mmap() variant unsupported");
351
352 if (curproc->p_vmspace == vmspace_kernel()) {
353 uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
354 } else {
355 error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
356 size, &uaddr);
357 }
358 if (uaddr == NULL)
359 return error;
360
361 *addr = (vaddr_t)uaddr;
362 return 0;
363 }
364
365 struct pagerinfo {
366 vaddr_t pgr_kva;
367 int pgr_npages;
368 struct vm_page **pgr_pgs;
369 bool pgr_read;
370
371 LIST_ENTRY(pagerinfo) pgr_entries;
372 };
373 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
374
375 /*
376 * Pager "map" in routine. Instead of mapping, we allocate memory
377 * and copy page contents there. Not optimal or even strictly
378 * correct (the caller might modify the page contents after mapping
379 * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
380 */
381 vaddr_t
382 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
383 {
384 struct pagerinfo *pgri;
385 vaddr_t curkva;
386 int i;
387
388 /* allocate structures */
389 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
390 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
391 pgri->pgr_npages = npages;
392 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
393 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
394
395 /* copy contents to "mapped" memory */
396 for (i = 0, curkva = pgri->pgr_kva;
397 i < npages;
398 i++, curkva += PAGE_SIZE) {
399 /*
400 * We need to copy the previous contents of the pages to
401 * the window even if we are reading from the
402 * device, since the device might not fill the contents of
403 * the full mapped range and we will end up corrupting
404 * data when we unmap the window.
405 */
406 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
407 pgri->pgr_pgs[i] = pgs[i];
408 }
409
410 mutex_enter(&pagermtx);
411 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
412 mutex_exit(&pagermtx);
413
414 return pgri->pgr_kva;
415 }
416
417 /*
418 * map out the pager window. return contents from VA to page storage
419 * and free structures.
420 *
421 * Note: does not currently support partial frees
422 */
423 void
424 uvm_pagermapout(vaddr_t kva, int npages)
425 {
426 struct pagerinfo *pgri;
427 vaddr_t curkva;
428 int i;
429
430 mutex_enter(&pagermtx);
431 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
432 if (pgri->pgr_kva == kva)
433 break;
434 }
435 KASSERT(pgri);
436 if (pgri->pgr_npages != npages)
437 panic("uvm_pagermapout: partial unmapping not supported");
438 LIST_REMOVE(pgri, pgr_entries);
439 mutex_exit(&pagermtx);
440
441 if (pgri->pgr_read) {
442 for (i = 0, curkva = pgri->pgr_kva;
443 i < pgri->pgr_npages;
444 i++, curkva += PAGE_SIZE) {
445 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
446 }
447 }
448
449 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
450 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
451 kmem_free(pgri, sizeof(*pgri));
452 }
453
454 /*
455 * convert va in pager window to page structure.
456 * XXX: how expensive is this (global lock, list traversal)?
457 */
458 struct vm_page *
459 uvm_pageratop(vaddr_t va)
460 {
461 struct pagerinfo *pgri;
462 struct vm_page *pg = NULL;
463 int i;
464
465 mutex_enter(&pagermtx);
466 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
467 if (pgri->pgr_kva <= va
468 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
469 break;
470 }
471 if (pgri) {
472 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
473 pg = pgri->pgr_pgs[i];
474 }
475 mutex_exit(&pagermtx);
476
477 return pg;
478 }
479
480 /*
481 * Called with the vm object locked.
482 *
483 * Put vnode object pages at the end of the access queue to indicate
484 * they have been recently accessed and should not be immediate
485 * candidates for pageout. Do not do this for lookups done by
486 * the pagedaemon to mimic pmap_kentered mappings which don't track
487 * access information.
488 */
489 struct vm_page *
490 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
491 {
492 struct vm_page *pg;
493 bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
494
495 pg = rb_tree_find_node(&uobj->rb_tree, &off);
496 if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
497 mutex_enter(&uvm_pageqlock);
498 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
499 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
500 mutex_exit(&uvm_pageqlock);
501 }
502
503 return pg;
504 }
505
506 void
507 uvm_page_unbusy(struct vm_page **pgs, int npgs)
508 {
509 struct vm_page *pg;
510 int i;
511
512 KASSERT(npgs > 0);
513 KASSERT(mutex_owned(&pgs[0]->uobject->vmobjlock));
514
515 for (i = 0; i < npgs; i++) {
516 pg = pgs[i];
517 if (pg == NULL)
518 continue;
519
520 KASSERT(pg->flags & PG_BUSY);
521 if (pg->flags & PG_WANTED)
522 wakeup(pg);
523 if (pg->flags & PG_RELEASED)
524 uvm_pagefree(pg);
525 else
526 pg->flags &= ~(PG_WANTED|PG_BUSY);
527 }
528 }
529
530 void
531 uvm_estimatepageable(int *active, int *inactive)
532 {
533
534 /* XXX: guessing game */
535 *active = 1024;
536 *inactive = 1024;
537 }
538
539 struct vm_map_kernel *
540 vm_map_to_kernel(struct vm_map *map)
541 {
542
543 return (struct vm_map_kernel *)map;
544 }
545
546 bool
547 vm_map_starved_p(struct vm_map *map)
548 {
549
550 if (map->flags & VM_MAP_WANTVA)
551 return true;
552
553 return false;
554 }
555
556 int
557 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
558 {
559
560 panic("%s: unimplemented", __func__);
561 }
562
563 void
564 uvm_unloan(void *v, int npages, int flags)
565 {
566
567 panic("%s: unimplemented", __func__);
568 }
569
570 int
571 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
572 struct vm_page **opp)
573 {
574
575 return EBUSY;
576 }
577
578 #ifdef DEBUGPRINT
579 void
580 uvm_object_printit(struct uvm_object *uobj, bool full,
581 void (*pr)(const char *, ...))
582 {
583
584 pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
585 }
586 #endif
587
588 vaddr_t
589 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
590 {
591
592 return 0;
593 }
594
595 int
596 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
597 vm_prot_t prot, bool set_max)
598 {
599
600 return EOPNOTSUPP;
601 }
602
603 /*
604 * UVM km
605 */
606
607 vaddr_t
608 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
609 {
610 void *rv, *desired = NULL;
611 int alignbit, error;
612
613 #ifdef __x86_64__
614 /*
615 * On amd64, allocate all module memory from the lowest 2GB.
616 * This is because NetBSD kernel modules are compiled
617 * with -mcmodel=kernel and reserve only 4 bytes for
618 * offsets. If we load code compiled with -mcmodel=kernel
619 * anywhere except the lowest or highest 2GB, it will not
620 * work. Since userspace does not have access to the highest
621 * 2GB, use the lowest 2GB.
622 *
623 * Note: this assumes the rump kernel resides in
624 * the lowest 2GB as well.
625 *
626 * Note2: yes, it's a quick hack, but since this the only
627 * place where we care about the map we're allocating from,
628 * just use a simple "if" instead of coming up with a fancy
629 * generic solution.
630 */
631 extern struct vm_map *module_map;
632 if (map == module_map) {
633 desired = (void *)(0x80000000 - size);
634 }
635 #endif
636
637 alignbit = 0;
638 if (align) {
639 alignbit = ffs(align)-1;
640 }
641
642 rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
643 &error);
644 if (rv == NULL) {
645 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
646 return 0;
647 else
648 panic("uvm_km_alloc failed");
649 }
650
651 if (flags & UVM_KMF_ZERO)
652 memset(rv, 0, size);
653
654 return (vaddr_t)rv;
655 }
656
657 void
658 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
659 {
660
661 rumpuser_unmap((void *)vaddr, size);
662 }
663
664 struct vm_map *
665 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
666 vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
667 {
668
669 return (struct vm_map *)417416;
670 }
671
672 vaddr_t
673 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
674 {
675
676 return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
677 waitok, "kmalloc");
678 }
679
680 void
681 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
682 {
683
684 rump_hyperfree((void *)addr, PAGE_SIZE);
685 }
686
687 vaddr_t
688 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
689 {
690
691 return uvm_km_alloc_poolpage(map, waitok);
692 }
693
694 void
695 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
696 {
697
698 uvm_km_free_poolpage(map, vaddr);
699 }
700
701 void
702 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
703 {
704
705 /* we eventually maybe want some model for available memory */
706 }
707
708 /*
709 * VM space locking routines. We don't really have to do anything,
710 * since the pages are always "wired" (both local and remote processes).
711 */
712 int
713 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
714 {
715
716 return 0;
717 }
718
719 void
720 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
721 {
722
723 }
724
725 /*
726 * For the local case the buffer mappers don't need to do anything.
727 * For the remote case we need to reserve space and copy data in or
728 * out, depending on B_READ/B_WRITE.
729 */
730 void
731 vmapbuf(struct buf *bp, vsize_t len)
732 {
733
734 bp->b_saveaddr = bp->b_data;
735
736 /* remote case */
737 if (curproc->p_vmspace != vmspace_kernel()) {
738 bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
739 if (BUF_ISWRITE(bp)) {
740 copyin(bp->b_saveaddr, bp->b_data, len);
741 }
742 }
743 }
744
745 void
746 vunmapbuf(struct buf *bp, vsize_t len)
747 {
748
749 /* remote case */
750 if (bp->b_proc->p_vmspace != vmspace_kernel()) {
751 if (BUF_ISREAD(bp)) {
752 copyout_proc(bp->b_proc,
753 bp->b_data, bp->b_saveaddr, len);
754 }
755 rump_hyperfree(bp->b_data, len);
756 }
757
758 bp->b_data = bp->b_saveaddr;
759 bp->b_saveaddr = 0;
760 }
761
762 void
763 uvmspace_addref(struct vmspace *vm)
764 {
765
766 /*
767 * No dynamically allocated vmspaces exist.
768 */
769 }
770
771 void
772 uvmspace_free(struct vmspace *vm)
773 {
774
775 /* nothing for now */
776 }
777
778 /*
779 * page life cycle stuff. it really doesn't exist, so just stubs.
780 */
781
782 void
783 uvm_pageactivate(struct vm_page *pg)
784 {
785
786 /* nada */
787 }
788
789 void
790 uvm_pagedeactivate(struct vm_page *pg)
791 {
792
793 /* nada */
794 }
795
796 void
797 uvm_pagedequeue(struct vm_page *pg)
798 {
799
800 /* nada*/
801 }
802
803 void
804 uvm_pageenqueue(struct vm_page *pg)
805 {
806
807 /* nada */
808 }
809
810 void
811 uvmpdpol_anfree(struct vm_anon *an)
812 {
813
814 /* nada */
815 }
816
817 /*
818 * Physical address accessors.
819 */
820
821 struct vm_page *
822 uvm_phys_to_vm_page(paddr_t pa)
823 {
824
825 return NULL;
826 }
827
828 paddr_t
829 uvm_vm_page_to_phys(const struct vm_page *pg)
830 {
831
832 return 0;
833 }
834
835 /*
836 * Routines related to the Page Baroness.
837 */
838
839 void
840 uvm_wait(const char *msg)
841 {
842
843 if (__predict_false(curlwp == uvm.pagedaemon_lwp))
844 panic("pagedaemon out of memory");
845 if (__predict_false(rump_threads == 0))
846 panic("pagedaemon missing (RUMP_THREADS = 0)");
847
848 mutex_enter(&pdaemonmtx);
849 pdaemon_waiters++;
850 cv_signal(&pdaemoncv);
851 cv_wait(&oomwait, &pdaemonmtx);
852 mutex_exit(&pdaemonmtx);
853 }
854
855 void
856 uvm_pageout_start(int npages)
857 {
858
859 /* we don't have the heuristics */
860 }
861
862 void
863 uvm_pageout_done(int npages)
864 {
865
866 /* could wakeup waiters, but just let the pagedaemon do it */
867 }
868
869 static bool
870 processpage(struct vm_page *pg, bool *lockrunning)
871 {
872 struct uvm_object *uobj;
873
874 uobj = pg->uobject;
875 if (mutex_tryenter(&uobj->vmobjlock)) {
876 if ((pg->flags & PG_BUSY) == 0) {
877 mutex_exit(&uvm_pageqlock);
878 uobj->pgops->pgo_put(uobj, pg->offset,
879 pg->offset + PAGE_SIZE,
880 PGO_CLEANIT|PGO_FREE);
881 KASSERT(!mutex_owned(&uobj->vmobjlock));
882 return true;
883 } else {
884 mutex_exit(&uobj->vmobjlock);
885 }
886 } else if (*lockrunning == false && ncpu > 1) {
887 CPU_INFO_ITERATOR cii;
888 struct cpu_info *ci;
889 struct lwp *l;
890
891 l = mutex_owner(&uobj->vmobjlock);
892 for (CPU_INFO_FOREACH(cii, ci)) {
893 if (ci->ci_curlwp == l) {
894 *lockrunning = true;
895 break;
896 }
897 }
898 }
899
900 return false;
901 }
902
903 /*
904 * The Diabolical pageDaemon Director (DDD).
905 */
906 void
907 uvm_pageout(void *arg)
908 {
909 struct vm_page *pg;
910 struct pool *pp, *pp_first;
911 uint64_t where;
912 int timo = 0;
913 int cleaned, skip, skipped;
914 bool succ = false;
915 bool lockrunning;
916
917 mutex_enter(&pdaemonmtx);
918 for (;;) {
919 if (succ) {
920 kernel_map->flags &= ~VM_MAP_WANTVA;
921 kmem_map->flags &= ~VM_MAP_WANTVA;
922 timo = 0;
923 if (pdaemon_waiters) {
924 pdaemon_waiters = 0;
925 cv_broadcast(&oomwait);
926 }
927 }
928 succ = false;
929
930 if (pdaemon_waiters == 0) {
931 cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
932 uvmexp.pdwoke++;
933 }
934
935 /* tell the world that we are hungry */
936 kernel_map->flags |= VM_MAP_WANTVA;
937 kmem_map->flags |= VM_MAP_WANTVA;
938
939 if (pdaemon_waiters == 0 && !NEED_PAGEDAEMON())
940 continue;
941 mutex_exit(&pdaemonmtx);
942
943 /*
944 * step one: reclaim the page cache. this should give
945 * us the biggest earnings since whole pages are released
946 * into backing memory.
947 */
948 pool_cache_reclaim(&pagecache);
949 if (!NEED_PAGEDAEMON()) {
950 succ = true;
951 mutex_enter(&pdaemonmtx);
952 continue;
953 }
954
955 /*
956 * Ok, so that didn't help. Next, try to hunt memory
957 * by pushing out vnode pages. The pages might contain
958 * useful cached data, but we need the memory.
959 */
960 cleaned = 0;
961 skip = 0;
962 lockrunning = false;
963 again:
964 mutex_enter(&uvm_pageqlock);
965 while (cleaned < PAGEDAEMON_OBJCHUNK) {
966 skipped = 0;
967 TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
968
969 /*
970 * skip over pages we _might_ have tried
971 * to handle earlier. they might not be
972 * exactly the same ones, but I'm not too
973 * concerned.
974 */
975 while (skipped++ < skip)
976 continue;
977
978 if (processpage(pg, &lockrunning)) {
979 cleaned++;
980 goto again;
981 }
982
983 skip++;
984 }
985 break;
986 }
987 mutex_exit(&uvm_pageqlock);
988
989 /*
990 * Ok, someone is running with an object lock held.
991 * We want to yield the host CPU to make sure the
992 * thread is not parked on the host. Since sched_yield()
993 * doesn't appear to do anything on NetBSD, nanosleep
994 * for the smallest possible time and hope we're back in
995 * the game soon.
996 */
997 if (cleaned == 0 && lockrunning) {
998 uint64_t sec, nsec;
999
1000 sec = 0;
1001 nsec = 1;
1002 rumpuser_nanosleep(&sec, &nsec, NULL);
1003
1004 lockrunning = false;
1005 skip = 0;
1006
1007 /* and here we go again */
1008 goto again;
1009 }
1010
1011 /*
1012 * And of course we need to reclaim the page cache
1013 * again to actually release memory.
1014 */
1015 pool_cache_reclaim(&pagecache);
1016 if (!NEED_PAGEDAEMON()) {
1017 succ = true;
1018 mutex_enter(&pdaemonmtx);
1019 continue;
1020 }
1021
1022 /*
1023 * Still not there? sleeves come off right about now.
1024 * First: do reclaim on kernel/kmem map.
1025 */
1026 callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
1027 NULL);
1028 callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
1029 NULL);
1030
1031 /*
1032 * And then drain the pools. Wipe them out ... all of them.
1033 */
1034
1035 pool_drain_start(&pp_first, &where);
1036 pp = pp_first;
1037 for (;;) {
1038 rump_vfs_drainbufs(10 /* XXX: estimate better */);
1039 succ = pool_drain_end(pp, where);
1040 if (succ)
1041 break;
1042 pool_drain_start(&pp, &where);
1043 if (pp == pp_first) {
1044 succ = pool_drain_end(pp, where);
1045 break;
1046 }
1047 }
1048
1049 /*
1050 * Need to use PYEC on our bag of tricks.
1051 * Unfortunately, the wife just borrowed it.
1052 */
1053
1054 if (!succ && cleaned == 0) {
1055 rumpuser_dprintf("pagedaemoness: failed to reclaim "
1056 "memory ... sleeping (deadlock?)\n");
1057 timo = hz;
1058 }
1059
1060 mutex_enter(&pdaemonmtx);
1061 }
1062
1063 panic("you can swap out any time you like, but you can never leave");
1064 }
1065
1066 void
1067 uvm_kick_pdaemon()
1068 {
1069
1070 /*
1071 * Wake up the diabolical pagedaemon director if we are over
1072 * 90% of the memory limit. This is a complete and utter
1073 * stetson-harrison decision which you are allowed to finetune.
1074 * Don't bother locking. If we have some unflushed caches,
1075 * other waker-uppers will deal with the issue.
1076 */
1077 if (NEED_PAGEDAEMON()) {
1078 cv_signal(&pdaemoncv);
1079 }
1080 }
1081
1082 void *
1083 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1084 {
1085 unsigned long newmem;
1086 void *rv;
1087
1088 uvm_kick_pdaemon(); /* ouch */
1089
1090 /* first we must be within the limit */
1091 limitagain:
1092 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1093 newmem = atomic_add_long_nv(&curphysmem, howmuch);
1094 if (newmem > rump_physmemlimit) {
1095 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1096 if (!waitok) {
1097 return NULL;
1098 }
1099 uvm_wait(wmsg);
1100 goto limitagain;
1101 }
1102 }
1103
1104 /* second, we must get something from the backend */
1105 again:
1106 rv = rumpuser_malloc(howmuch, alignment);
1107 if (__predict_false(rv == NULL && waitok)) {
1108 uvm_wait(wmsg);
1109 goto again;
1110 }
1111
1112 return rv;
1113 }
1114
1115 void
1116 rump_hyperfree(void *what, size_t size)
1117 {
1118
1119 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1120 atomic_add_long(&curphysmem, -size);
1121 }
1122 rumpuser_free(what);
1123 }
1124