Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.109
      1 /*	$NetBSD: vm.c,v 1.109 2011/02/05 17:25:45 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2010 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.109 2011/02/05 17:25:45 pooka Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/mman.h>
     52 #include <sys/null.h>
     53 #include <sys/vnode.h>
     54 
     55 #include <machine/pmap.h>
     56 
     57 #include <rump/rumpuser.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_ddb.h>
     61 #include <uvm/uvm_pdpolicy.h>
     62 #include <uvm/uvm_prot.h>
     63 #include <uvm/uvm_readahead.h>
     64 
     65 #include "rump_private.h"
     66 #include "rump_vfs_private.h"
     67 
     68 kmutex_t uvm_pageqlock;
     69 kmutex_t uvm_swap_data_lock;
     70 
     71 struct uvmexp uvmexp;
     72 int *uvmexp_pagesize;
     73 int *uvmexp_pagemask;
     74 int *uvmexp_pageshift;
     75 struct uvm uvm;
     76 
     77 struct vm_map rump_vmmap;
     78 static struct vm_map_kernel kmem_map_store;
     79 struct vm_map *kmem_map = &kmem_map_store.vmk_map;
     80 
     81 static struct vm_map_kernel kernel_map_store;
     82 struct vm_map *kernel_map = &kernel_map_store.vmk_map;
     83 
     84 static unsigned int pdaemon_waiters;
     85 static kmutex_t pdaemonmtx;
     86 static kcondvar_t pdaemoncv, oomwait;
     87 
     88 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     89 static unsigned long curphysmem;
     90 static unsigned long dddlim;		/* 90% of memory limit used */
     91 #define NEED_PAGEDAEMON() \
     92     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
     93 
     94 /*
     95  * Try to free two pages worth of pages from objects.
     96  * If this succesfully frees a full page cache page, we'll
     97  * free the released page plus PAGE_SIZE/sizeof(vm_page).
     98  */
     99 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    100 
    101 /*
    102  * Keep a list of least recently used pages.  Since the only way a
    103  * rump kernel can "access" a page is via lookup, we put the page
    104  * at the back of queue every time a lookup for it is done.  If the
    105  * page is in front of this global queue and we're short of memory,
    106  * it's a candidate for pageout.
    107  */
    108 static struct pglist vmpage_lruqueue;
    109 static unsigned vmpage_onqueue;
    110 
    111 static int
    112 pg_compare_key(void *ctx, const void *n, const void *key)
    113 {
    114 	voff_t a = ((const struct vm_page *)n)->offset;
    115 	voff_t b = *(const voff_t *)key;
    116 
    117 	if (a < b)
    118 		return -1;
    119 	else if (a > b)
    120 		return 1;
    121 	else
    122 		return 0;
    123 }
    124 
    125 static int
    126 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
    127 {
    128 
    129 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
    130 }
    131 
    132 const rb_tree_ops_t uvm_page_tree_ops = {
    133 	.rbto_compare_nodes = pg_compare_nodes,
    134 	.rbto_compare_key = pg_compare_key,
    135 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    136 	.rbto_context = NULL
    137 };
    138 
    139 /*
    140  * vm pages
    141  */
    142 
    143 static int
    144 pgctor(void *arg, void *obj, int flags)
    145 {
    146 	struct vm_page *pg = obj;
    147 
    148 	memset(pg, 0, sizeof(*pg));
    149 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    150 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    151 	return pg->uanon == NULL;
    152 }
    153 
    154 static void
    155 pgdtor(void *arg, void *obj)
    156 {
    157 	struct vm_page *pg = obj;
    158 
    159 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    160 }
    161 
    162 static struct pool_cache pagecache;
    163 
    164 /*
    165  * Called with the object locked.  We don't support anons.
    166  */
    167 struct vm_page *
    168 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    169 	int flags, int strat, int free_list)
    170 {
    171 	struct vm_page *pg;
    172 
    173 	KASSERT(uobj && mutex_owned(&uobj->vmobjlock));
    174 	KASSERT(anon == NULL);
    175 
    176 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    177 	if (__predict_false(pg == NULL)) {
    178 		return NULL;
    179 	}
    180 
    181 	pg->offset = off;
    182 	pg->uobject = uobj;
    183 
    184 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    185 	if (flags & UVM_PGA_ZERO) {
    186 		uvm_pagezero(pg);
    187 	}
    188 
    189 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    190 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
    191 
    192 	/*
    193 	 * Don't put anons on the LRU page queue.  We can't flush them
    194 	 * (there's no concept of swap in a rump kernel), so no reason
    195 	 * to bother with them.
    196 	 */
    197 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    198 		atomic_inc_uint(&vmpage_onqueue);
    199 		mutex_enter(&uvm_pageqlock);
    200 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    201 		mutex_exit(&uvm_pageqlock);
    202 	}
    203 
    204 	uobj->uo_npages++;
    205 
    206 	return pg;
    207 }
    208 
    209 /*
    210  * Release a page.
    211  *
    212  * Called with the vm object locked.
    213  */
    214 void
    215 uvm_pagefree(struct vm_page *pg)
    216 {
    217 	struct uvm_object *uobj = pg->uobject;
    218 
    219 	KASSERT(mutex_owned(&uvm_pageqlock));
    220 	KASSERT(mutex_owned(&uobj->vmobjlock));
    221 
    222 	if (pg->flags & PG_WANTED)
    223 		wakeup(pg);
    224 
    225 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    226 
    227 	uobj->uo_npages--;
    228 	rb_tree_remove_node(&uobj->rb_tree, pg);
    229 
    230 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    231 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    232 		atomic_dec_uint(&vmpage_onqueue);
    233 	}
    234 
    235 	pool_cache_put(&pagecache, pg);
    236 }
    237 
    238 void
    239 uvm_pagezero(struct vm_page *pg)
    240 {
    241 
    242 	pg->flags &= ~PG_CLEAN;
    243 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    244 }
    245 
    246 /*
    247  * Misc routines
    248  */
    249 
    250 static kmutex_t pagermtx;
    251 
    252 void
    253 uvm_init(void)
    254 {
    255 	char buf[64];
    256 	int error;
    257 
    258 	if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
    259 		unsigned long tmp;
    260 		char *ep;
    261 		int mult;
    262 
    263 		tmp = strtoul(buf, &ep, 10);
    264 		if (strlen(ep) > 1)
    265 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    266 
    267 		/* mini-dehumanize-number */
    268 		mult = 1;
    269 		switch (*ep) {
    270 		case 'k':
    271 			mult = 1024;
    272 			break;
    273 		case 'm':
    274 			mult = 1024*1024;
    275 			break;
    276 		case 'g':
    277 			mult = 1024*1024*1024;
    278 			break;
    279 		case 0:
    280 			break;
    281 		default:
    282 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    283 		}
    284 		rump_physmemlimit = tmp * mult;
    285 
    286 		if (rump_physmemlimit / mult != tmp)
    287 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    288 		/* it's not like we'd get far with, say, 1 byte, but ... */
    289 		if (rump_physmemlimit == 0)
    290 			panic("uvm_init: no memory");
    291 
    292 #define HUMANIZE_BYTES 9
    293 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    294 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    295 #undef HUMANIZE_BYTES
    296 		dddlim = 9 * (rump_physmemlimit / 10);
    297 	} else {
    298 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    299 	}
    300 	aprint_verbose("total memory = %s\n", buf);
    301 
    302 	TAILQ_INIT(&vmpage_lruqueue);
    303 
    304 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    305 
    306 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    307 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    308 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
    309 
    310 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    311 	cv_init(&pdaemoncv, "pdaemon");
    312 	cv_init(&oomwait, "oomwait");
    313 
    314 	kernel_map->pmap = pmap_kernel();
    315 	callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
    316 	kmem_map->pmap = pmap_kernel();
    317 	callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
    318 
    319 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    320 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    321 }
    322 
    323 void
    324 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    325 {
    326 
    327 	vm->vm_map.pmap = pmap_kernel();
    328 	vm->vm_refcnt = 1;
    329 }
    330 
    331 void
    332 uvm_pagewire(struct vm_page *pg)
    333 {
    334 
    335 	/* nada */
    336 }
    337 
    338 void
    339 uvm_pageunwire(struct vm_page *pg)
    340 {
    341 
    342 	/* nada */
    343 }
    344 
    345 /*
    346  * The uvm reclaim hook is not currently necessary because it is
    347  * used only by ZFS and implements exactly the same functionality
    348  * as the kva reclaim hook which we already run in the pagedaemon
    349  * (rump vm does not have a concept of uvm_map(), so we cannot
    350  * reclaim kva it when a mapping operation fails due to insufficient
    351  * available kva).
    352  */
    353 void
    354 uvm_reclaim_hook_add(struct uvm_reclaim_hook *hook_entry)
    355 {
    356 
    357 }
    358 __strong_alias(uvm_reclaim_hook_del,uvm_reclaim_hook_add);
    359 
    360 /* where's your schmonz now? */
    361 #define PUNLIMIT(a)	\
    362 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    363 void
    364 uvm_init_limits(struct proc *p)
    365 {
    366 
    367 	PUNLIMIT(RLIMIT_STACK);
    368 	PUNLIMIT(RLIMIT_DATA);
    369 	PUNLIMIT(RLIMIT_RSS);
    370 	PUNLIMIT(RLIMIT_AS);
    371 	/* nice, cascade */
    372 }
    373 #undef PUNLIMIT
    374 
    375 /*
    376  * This satisfies the "disgusting mmap hack" used by proplib.
    377  * We probably should grow some more assertables to make sure we're
    378  * not satisfying anything we shouldn't be satisfying.
    379  */
    380 int
    381 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    382 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    383 {
    384 	void *uaddr;
    385 	int error;
    386 
    387 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    388 		panic("uvm_mmap() variant unsupported");
    389 	if (flags != (MAP_PRIVATE | MAP_ANON))
    390 		panic("uvm_mmap() variant unsupported");
    391 
    392 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    393 	if (*addr != 0)
    394 		panic("uvm_mmap() variant unsupported");
    395 
    396 	if (RUMP_LOCALPROC_P(curproc)) {
    397 		uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    398 	} else {
    399 		error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
    400 		    size, &uaddr);
    401 	}
    402 	if (uaddr == NULL)
    403 		return error;
    404 
    405 	*addr = (vaddr_t)uaddr;
    406 	return 0;
    407 }
    408 
    409 struct pagerinfo {
    410 	vaddr_t pgr_kva;
    411 	int pgr_npages;
    412 	struct vm_page **pgr_pgs;
    413 	bool pgr_read;
    414 
    415 	LIST_ENTRY(pagerinfo) pgr_entries;
    416 };
    417 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    418 
    419 /*
    420  * Pager "map" in routine.  Instead of mapping, we allocate memory
    421  * and copy page contents there.  Not optimal or even strictly
    422  * correct (the caller might modify the page contents after mapping
    423  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    424  */
    425 vaddr_t
    426 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    427 {
    428 	struct pagerinfo *pgri;
    429 	vaddr_t curkva;
    430 	int i;
    431 
    432 	/* allocate structures */
    433 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    434 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    435 	pgri->pgr_npages = npages;
    436 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    437 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    438 
    439 	/* copy contents to "mapped" memory */
    440 	for (i = 0, curkva = pgri->pgr_kva;
    441 	    i < npages;
    442 	    i++, curkva += PAGE_SIZE) {
    443 		/*
    444 		 * We need to copy the previous contents of the pages to
    445 		 * the window even if we are reading from the
    446 		 * device, since the device might not fill the contents of
    447 		 * the full mapped range and we will end up corrupting
    448 		 * data when we unmap the window.
    449 		 */
    450 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    451 		pgri->pgr_pgs[i] = pgs[i];
    452 	}
    453 
    454 	mutex_enter(&pagermtx);
    455 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    456 	mutex_exit(&pagermtx);
    457 
    458 	return pgri->pgr_kva;
    459 }
    460 
    461 /*
    462  * map out the pager window.  return contents from VA to page storage
    463  * and free structures.
    464  *
    465  * Note: does not currently support partial frees
    466  */
    467 void
    468 uvm_pagermapout(vaddr_t kva, int npages)
    469 {
    470 	struct pagerinfo *pgri;
    471 	vaddr_t curkva;
    472 	int i;
    473 
    474 	mutex_enter(&pagermtx);
    475 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    476 		if (pgri->pgr_kva == kva)
    477 			break;
    478 	}
    479 	KASSERT(pgri);
    480 	if (pgri->pgr_npages != npages)
    481 		panic("uvm_pagermapout: partial unmapping not supported");
    482 	LIST_REMOVE(pgri, pgr_entries);
    483 	mutex_exit(&pagermtx);
    484 
    485 	if (pgri->pgr_read) {
    486 		for (i = 0, curkva = pgri->pgr_kva;
    487 		    i < pgri->pgr_npages;
    488 		    i++, curkva += PAGE_SIZE) {
    489 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    490 		}
    491 	}
    492 
    493 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    494 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    495 	kmem_free(pgri, sizeof(*pgri));
    496 }
    497 
    498 /*
    499  * convert va in pager window to page structure.
    500  * XXX: how expensive is this (global lock, list traversal)?
    501  */
    502 struct vm_page *
    503 uvm_pageratop(vaddr_t va)
    504 {
    505 	struct pagerinfo *pgri;
    506 	struct vm_page *pg = NULL;
    507 	int i;
    508 
    509 	mutex_enter(&pagermtx);
    510 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    511 		if (pgri->pgr_kva <= va
    512 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    513 			break;
    514 	}
    515 	if (pgri) {
    516 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    517 		pg = pgri->pgr_pgs[i];
    518 	}
    519 	mutex_exit(&pagermtx);
    520 
    521 	return pg;
    522 }
    523 
    524 /*
    525  * Called with the vm object locked.
    526  *
    527  * Put vnode object pages at the end of the access queue to indicate
    528  * they have been recently accessed and should not be immediate
    529  * candidates for pageout.  Do not do this for lookups done by
    530  * the pagedaemon to mimic pmap_kentered mappings which don't track
    531  * access information.
    532  */
    533 struct vm_page *
    534 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    535 {
    536 	struct vm_page *pg;
    537 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    538 
    539 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
    540 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    541 		mutex_enter(&uvm_pageqlock);
    542 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    543 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    544 		mutex_exit(&uvm_pageqlock);
    545 	}
    546 
    547 	return pg;
    548 }
    549 
    550 void
    551 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    552 {
    553 	struct vm_page *pg;
    554 	int i;
    555 
    556 	KASSERT(npgs > 0);
    557 	KASSERT(mutex_owned(&pgs[0]->uobject->vmobjlock));
    558 
    559 	for (i = 0; i < npgs; i++) {
    560 		pg = pgs[i];
    561 		if (pg == NULL)
    562 			continue;
    563 
    564 		KASSERT(pg->flags & PG_BUSY);
    565 		if (pg->flags & PG_WANTED)
    566 			wakeup(pg);
    567 		if (pg->flags & PG_RELEASED)
    568 			uvm_pagefree(pg);
    569 		else
    570 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    571 	}
    572 }
    573 
    574 void
    575 uvm_estimatepageable(int *active, int *inactive)
    576 {
    577 
    578 	/* XXX: guessing game */
    579 	*active = 1024;
    580 	*inactive = 1024;
    581 }
    582 
    583 struct vm_map_kernel *
    584 vm_map_to_kernel(struct vm_map *map)
    585 {
    586 
    587 	return (struct vm_map_kernel *)map;
    588 }
    589 
    590 bool
    591 vm_map_starved_p(struct vm_map *map)
    592 {
    593 
    594 	if (map->flags & VM_MAP_WANTVA)
    595 		return true;
    596 
    597 	return false;
    598 }
    599 
    600 int
    601 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    602 {
    603 
    604 	panic("%s: unimplemented", __func__);
    605 }
    606 
    607 void
    608 uvm_unloan(void *v, int npages, int flags)
    609 {
    610 
    611 	panic("%s: unimplemented", __func__);
    612 }
    613 
    614 int
    615 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    616 	struct vm_page **opp)
    617 {
    618 
    619 	return EBUSY;
    620 }
    621 
    622 #ifdef DEBUGPRINT
    623 void
    624 uvm_object_printit(struct uvm_object *uobj, bool full,
    625 	void (*pr)(const char *, ...))
    626 {
    627 
    628 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    629 }
    630 #endif
    631 
    632 vaddr_t
    633 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    634 {
    635 
    636 	return 0;
    637 }
    638 
    639 int
    640 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    641 	vm_prot_t prot, bool set_max)
    642 {
    643 
    644 	return EOPNOTSUPP;
    645 }
    646 
    647 /*
    648  * UVM km
    649  */
    650 
    651 vaddr_t
    652 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    653 {
    654 	void *rv, *desired = NULL;
    655 	int alignbit, error;
    656 
    657 #ifdef __x86_64__
    658 	/*
    659 	 * On amd64, allocate all module memory from the lowest 2GB.
    660 	 * This is because NetBSD kernel modules are compiled
    661 	 * with -mcmodel=kernel and reserve only 4 bytes for
    662 	 * offsets.  If we load code compiled with -mcmodel=kernel
    663 	 * anywhere except the lowest or highest 2GB, it will not
    664 	 * work.  Since userspace does not have access to the highest
    665 	 * 2GB, use the lowest 2GB.
    666 	 *
    667 	 * Note: this assumes the rump kernel resides in
    668 	 * the lowest 2GB as well.
    669 	 *
    670 	 * Note2: yes, it's a quick hack, but since this the only
    671 	 * place where we care about the map we're allocating from,
    672 	 * just use a simple "if" instead of coming up with a fancy
    673 	 * generic solution.
    674 	 */
    675 	extern struct vm_map *module_map;
    676 	if (map == module_map) {
    677 		desired = (void *)(0x80000000 - size);
    678 	}
    679 #endif
    680 
    681 	alignbit = 0;
    682 	if (align) {
    683 		alignbit = ffs(align)-1;
    684 	}
    685 
    686 	rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
    687 	    &error);
    688 	if (rv == NULL) {
    689 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    690 			return 0;
    691 		else
    692 			panic("uvm_km_alloc failed");
    693 	}
    694 
    695 	if (flags & UVM_KMF_ZERO)
    696 		memset(rv, 0, size);
    697 
    698 	return (vaddr_t)rv;
    699 }
    700 
    701 void
    702 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    703 {
    704 
    705 	rumpuser_unmap((void *)vaddr, size);
    706 }
    707 
    708 struct vm_map *
    709 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    710 	vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
    711 {
    712 
    713 	return (struct vm_map *)417416;
    714 }
    715 
    716 vaddr_t
    717 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    718 {
    719 
    720 	return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    721 	    waitok, "kmalloc");
    722 }
    723 
    724 void
    725 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    726 {
    727 
    728 	rump_hyperfree((void *)addr, PAGE_SIZE);
    729 }
    730 
    731 vaddr_t
    732 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    733 {
    734 
    735 	return uvm_km_alloc_poolpage(map, waitok);
    736 }
    737 
    738 void
    739 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
    740 {
    741 
    742 	uvm_km_free_poolpage(map, vaddr);
    743 }
    744 
    745 void
    746 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    747 {
    748 
    749 	/* we eventually maybe want some model for available memory */
    750 }
    751 
    752 /*
    753  * VM space locking routines.  We don't really have to do anything,
    754  * since the pages are always "wired" (both local and remote processes).
    755  */
    756 int
    757 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    758 {
    759 
    760 	return 0;
    761 }
    762 
    763 void
    764 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    765 {
    766 
    767 }
    768 
    769 /*
    770  * For the local case the buffer mappers don't need to do anything.
    771  * For the remote case we need to reserve space and copy data in or
    772  * out, depending on B_READ/B_WRITE.
    773  */
    774 void
    775 vmapbuf(struct buf *bp, vsize_t len)
    776 {
    777 
    778 	bp->b_saveaddr = bp->b_data;
    779 
    780 	/* remote case */
    781 	if (!RUMP_LOCALPROC_P(curproc)) {
    782 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    783 		if (BUF_ISWRITE(bp)) {
    784 			copyin(bp->b_saveaddr, bp->b_data, len);
    785 		}
    786 	}
    787 }
    788 
    789 void
    790 vunmapbuf(struct buf *bp, vsize_t len)
    791 {
    792 
    793 	/* remote case */
    794 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    795 		if (BUF_ISREAD(bp)) {
    796 			copyout_proc(bp->b_proc,
    797 			    bp->b_data, bp->b_saveaddr, len);
    798 		}
    799 		rump_hyperfree(bp->b_data, len);
    800 	}
    801 
    802 	bp->b_data = bp->b_saveaddr;
    803 	bp->b_saveaddr = 0;
    804 }
    805 
    806 void
    807 uvmspace_addref(struct vmspace *vm)
    808 {
    809 
    810 	/*
    811 	 * No dynamically allocated vmspaces exist.
    812 	 */
    813 }
    814 
    815 void
    816 uvmspace_free(struct vmspace *vm)
    817 {
    818 
    819 	/* nothing for now */
    820 }
    821 
    822 /*
    823  * page life cycle stuff.  it really doesn't exist, so just stubs.
    824  */
    825 
    826 void
    827 uvm_pageactivate(struct vm_page *pg)
    828 {
    829 
    830 	/* nada */
    831 }
    832 
    833 void
    834 uvm_pagedeactivate(struct vm_page *pg)
    835 {
    836 
    837 	/* nada */
    838 }
    839 
    840 void
    841 uvm_pagedequeue(struct vm_page *pg)
    842 {
    843 
    844 	/* nada*/
    845 }
    846 
    847 void
    848 uvm_pageenqueue(struct vm_page *pg)
    849 {
    850 
    851 	/* nada */
    852 }
    853 
    854 void
    855 uvmpdpol_anfree(struct vm_anon *an)
    856 {
    857 
    858 	/* nada */
    859 }
    860 
    861 /*
    862  * Physical address accessors.
    863  */
    864 
    865 struct vm_page *
    866 uvm_phys_to_vm_page(paddr_t pa)
    867 {
    868 
    869 	return NULL;
    870 }
    871 
    872 paddr_t
    873 uvm_vm_page_to_phys(const struct vm_page *pg)
    874 {
    875 
    876 	return 0;
    877 }
    878 
    879 /*
    880  * Routines related to the Page Baroness.
    881  */
    882 
    883 void
    884 uvm_wait(const char *msg)
    885 {
    886 
    887 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    888 		panic("pagedaemon out of memory");
    889 	if (__predict_false(rump_threads == 0))
    890 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    891 
    892 	mutex_enter(&pdaemonmtx);
    893 	pdaemon_waiters++;
    894 	cv_signal(&pdaemoncv);
    895 	cv_wait(&oomwait, &pdaemonmtx);
    896 	mutex_exit(&pdaemonmtx);
    897 }
    898 
    899 void
    900 uvm_pageout_start(int npages)
    901 {
    902 
    903 	/* we don't have the heuristics */
    904 }
    905 
    906 void
    907 uvm_pageout_done(int npages)
    908 {
    909 
    910 	/* could wakeup waiters, but just let the pagedaemon do it */
    911 }
    912 
    913 static bool
    914 processpage(struct vm_page *pg, bool *lockrunning)
    915 {
    916 	struct uvm_object *uobj;
    917 
    918 	uobj = pg->uobject;
    919 	if (mutex_tryenter(&uobj->vmobjlock)) {
    920 		if ((pg->flags & PG_BUSY) == 0) {
    921 			mutex_exit(&uvm_pageqlock);
    922 			uobj->pgops->pgo_put(uobj, pg->offset,
    923 			    pg->offset + PAGE_SIZE,
    924 			    PGO_CLEANIT|PGO_FREE);
    925 			KASSERT(!mutex_owned(&uobj->vmobjlock));
    926 			return true;
    927 		} else {
    928 			mutex_exit(&uobj->vmobjlock);
    929 		}
    930 	} else if (*lockrunning == false && ncpu > 1) {
    931 		CPU_INFO_ITERATOR cii;
    932 		struct cpu_info *ci;
    933 		struct lwp *l;
    934 
    935 		l = mutex_owner(&uobj->vmobjlock);
    936 		for (CPU_INFO_FOREACH(cii, ci)) {
    937 			if (ci->ci_curlwp == l) {
    938 				*lockrunning = true;
    939 				break;
    940 			}
    941 		}
    942 	}
    943 
    944 	return false;
    945 }
    946 
    947 /*
    948  * The Diabolical pageDaemon Director (DDD).
    949  */
    950 void
    951 uvm_pageout(void *arg)
    952 {
    953 	struct vm_page *pg;
    954 	struct pool *pp, *pp_first;
    955 	uint64_t where;
    956 	int timo = 0;
    957 	int cleaned, skip, skipped;
    958 	bool succ = false;
    959 	bool lockrunning;
    960 
    961 	mutex_enter(&pdaemonmtx);
    962 	for (;;) {
    963 		if (succ) {
    964 			kernel_map->flags &= ~VM_MAP_WANTVA;
    965 			kmem_map->flags &= ~VM_MAP_WANTVA;
    966 			timo = 0;
    967 			if (pdaemon_waiters) {
    968 				pdaemon_waiters = 0;
    969 				cv_broadcast(&oomwait);
    970 			}
    971 		}
    972 		succ = false;
    973 
    974 		if (pdaemon_waiters == 0) {
    975 			cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
    976 			uvmexp.pdwoke++;
    977 		}
    978 
    979 		/* tell the world that we are hungry */
    980 		kernel_map->flags |= VM_MAP_WANTVA;
    981 		kmem_map->flags |= VM_MAP_WANTVA;
    982 
    983 		if (pdaemon_waiters == 0 && !NEED_PAGEDAEMON())
    984 			continue;
    985 		mutex_exit(&pdaemonmtx);
    986 
    987 		/*
    988 		 * step one: reclaim the page cache.  this should give
    989 		 * us the biggest earnings since whole pages are released
    990 		 * into backing memory.
    991 		 */
    992 		pool_cache_reclaim(&pagecache);
    993 		if (!NEED_PAGEDAEMON()) {
    994 			succ = true;
    995 			mutex_enter(&pdaemonmtx);
    996 			continue;
    997 		}
    998 
    999 		/*
   1000 		 * Ok, so that didn't help.  Next, try to hunt memory
   1001 		 * by pushing out vnode pages.  The pages might contain
   1002 		 * useful cached data, but we need the memory.
   1003 		 */
   1004 		cleaned = 0;
   1005 		skip = 0;
   1006 		lockrunning = false;
   1007  again:
   1008 		mutex_enter(&uvm_pageqlock);
   1009 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1010 			skipped = 0;
   1011 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1012 
   1013 				/*
   1014 				 * skip over pages we _might_ have tried
   1015 				 * to handle earlier.  they might not be
   1016 				 * exactly the same ones, but I'm not too
   1017 				 * concerned.
   1018 				 */
   1019 				while (skipped++ < skip)
   1020 					continue;
   1021 
   1022 				if (processpage(pg, &lockrunning)) {
   1023 					cleaned++;
   1024 					goto again;
   1025 				}
   1026 
   1027 				skip++;
   1028 			}
   1029 			break;
   1030 		}
   1031 		mutex_exit(&uvm_pageqlock);
   1032 
   1033 		/*
   1034 		 * Ok, someone is running with an object lock held.
   1035 		 * We want to yield the host CPU to make sure the
   1036 		 * thread is not parked on the host.  Since sched_yield()
   1037 		 * doesn't appear to do anything on NetBSD, nanosleep
   1038 		 * for the smallest possible time and hope we're back in
   1039 		 * the game soon.
   1040 		 */
   1041 		if (cleaned == 0 && lockrunning) {
   1042 			uint64_t sec, nsec;
   1043 
   1044 			sec = 0;
   1045 			nsec = 1;
   1046 			rumpuser_nanosleep(&sec, &nsec, NULL);
   1047 
   1048 			lockrunning = false;
   1049 			skip = 0;
   1050 
   1051 			/* and here we go again */
   1052 			goto again;
   1053 		}
   1054 
   1055 		/*
   1056 		 * And of course we need to reclaim the page cache
   1057 		 * again to actually release memory.
   1058 		 */
   1059 		pool_cache_reclaim(&pagecache);
   1060 		if (!NEED_PAGEDAEMON()) {
   1061 			succ = true;
   1062 			mutex_enter(&pdaemonmtx);
   1063 			continue;
   1064 		}
   1065 
   1066 		/*
   1067 		 * Still not there?  sleeves come off right about now.
   1068 		 * First: do reclaim on kernel/kmem map.
   1069 		 */
   1070 		callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
   1071 		    NULL);
   1072 		callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
   1073 		    NULL);
   1074 
   1075 		/*
   1076 		 * And then drain the pools.  Wipe them out ... all of them.
   1077 		 */
   1078 
   1079 		pool_drain_start(&pp_first, &where);
   1080 		pp = pp_first;
   1081 		for (;;) {
   1082 			rump_vfs_drainbufs(10 /* XXX: estimate better */);
   1083 			succ = pool_drain_end(pp, where);
   1084 			if (succ)
   1085 				break;
   1086 			pool_drain_start(&pp, &where);
   1087 			if (pp == pp_first) {
   1088 				succ = pool_drain_end(pp, where);
   1089 				break;
   1090 			}
   1091 		}
   1092 
   1093 		/*
   1094 		 * Need to use PYEC on our bag of tricks.
   1095 		 * Unfortunately, the wife just borrowed it.
   1096 		 */
   1097 
   1098 		if (!succ && cleaned == 0) {
   1099 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1100 			    "memory ... sleeping (deadlock?)\n");
   1101 			timo = hz;
   1102 		}
   1103 
   1104 		mutex_enter(&pdaemonmtx);
   1105 	}
   1106 
   1107 	panic("you can swap out any time you like, but you can never leave");
   1108 }
   1109 
   1110 void
   1111 uvm_kick_pdaemon()
   1112 {
   1113 
   1114 	/*
   1115 	 * Wake up the diabolical pagedaemon director if we are over
   1116 	 * 90% of the memory limit.  This is a complete and utter
   1117 	 * stetson-harrison decision which you are allowed to finetune.
   1118 	 * Don't bother locking.  If we have some unflushed caches,
   1119 	 * other waker-uppers will deal with the issue.
   1120 	 */
   1121 	if (NEED_PAGEDAEMON()) {
   1122 		cv_signal(&pdaemoncv);
   1123 	}
   1124 }
   1125 
   1126 void *
   1127 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1128 {
   1129 	unsigned long newmem;
   1130 	void *rv;
   1131 
   1132 	uvm_kick_pdaemon(); /* ouch */
   1133 
   1134 	/* first we must be within the limit */
   1135  limitagain:
   1136 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1137 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1138 		if (newmem > rump_physmemlimit) {
   1139 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1140 			if (!waitok) {
   1141 				return NULL;
   1142 			}
   1143 			uvm_wait(wmsg);
   1144 			goto limitagain;
   1145 		}
   1146 	}
   1147 
   1148 	/* second, we must get something from the backend */
   1149  again:
   1150 	rv = rumpuser_malloc(howmuch, alignment);
   1151 	if (__predict_false(rv == NULL && waitok)) {
   1152 		uvm_wait(wmsg);
   1153 		goto again;
   1154 	}
   1155 
   1156 	return rv;
   1157 }
   1158 
   1159 void
   1160 rump_hyperfree(void *what, size_t size)
   1161 {
   1162 
   1163 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1164 		atomic_add_long(&curphysmem, -size);
   1165 	}
   1166 	rumpuser_free(what);
   1167 }
   1168