vm.c revision 1.116 1 /* $NetBSD: vm.c,v 1.116 2011/06/12 06:36:38 mrg Exp $ */
2
3 /*
4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.116 2011/06/12 06:36:38 mrg Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/mman.h>
52 #include <sys/null.h>
53 #include <sys/vnode.h>
54
55 #include <machine/pmap.h>
56
57 #include <rump/rumpuser.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_ddb.h>
61 #include <uvm/uvm_pdpolicy.h>
62 #include <uvm/uvm_prot.h>
63 #include <uvm/uvm_readahead.h>
64
65 #include "rump_private.h"
66 #include "rump_vfs_private.h"
67
68 kmutex_t uvm_pageqlock;
69 kmutex_t uvm_swap_data_lock;
70
71 struct uvmexp uvmexp;
72 struct uvm uvm;
73
74 #ifdef __uvmexp_pagesize
75 int *uvmexp_pagesize = &uvmexp.pagesize;
76 int *uvmexp_pagemask = &uvmexp.pagemask;
77 int *uvmexp_pageshift = &uvmexp.pageshift;
78 #endif
79
80 struct vm_map rump_vmmap;
81 static struct vm_map_kernel kmem_map_store;
82 struct vm_map *kmem_map = &kmem_map_store.vmk_map;
83
84 static struct vm_map_kernel kernel_map_store;
85 struct vm_map *kernel_map = &kernel_map_store.vmk_map;
86
87 static unsigned int pdaemon_waiters;
88 static kmutex_t pdaemonmtx;
89 static kcondvar_t pdaemoncv, oomwait;
90
91 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
92 static unsigned long curphysmem;
93 static unsigned long dddlim; /* 90% of memory limit used */
94 #define NEED_PAGEDAEMON() \
95 (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
96
97 /*
98 * Try to free two pages worth of pages from objects.
99 * If this succesfully frees a full page cache page, we'll
100 * free the released page plus PAGE_SIZE/sizeof(vm_page).
101 */
102 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
103
104 /*
105 * Keep a list of least recently used pages. Since the only way a
106 * rump kernel can "access" a page is via lookup, we put the page
107 * at the back of queue every time a lookup for it is done. If the
108 * page is in front of this global queue and we're short of memory,
109 * it's a candidate for pageout.
110 */
111 static struct pglist vmpage_lruqueue;
112 static unsigned vmpage_onqueue;
113
114 static int
115 pg_compare_key(void *ctx, const void *n, const void *key)
116 {
117 voff_t a = ((const struct vm_page *)n)->offset;
118 voff_t b = *(const voff_t *)key;
119
120 if (a < b)
121 return -1;
122 else if (a > b)
123 return 1;
124 else
125 return 0;
126 }
127
128 static int
129 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
130 {
131
132 return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
133 }
134
135 const rb_tree_ops_t uvm_page_tree_ops = {
136 .rbto_compare_nodes = pg_compare_nodes,
137 .rbto_compare_key = pg_compare_key,
138 .rbto_node_offset = offsetof(struct vm_page, rb_node),
139 .rbto_context = NULL
140 };
141
142 /*
143 * vm pages
144 */
145
146 static int
147 pgctor(void *arg, void *obj, int flags)
148 {
149 struct vm_page *pg = obj;
150
151 memset(pg, 0, sizeof(*pg));
152 pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
153 (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
154 return pg->uanon == NULL;
155 }
156
157 static void
158 pgdtor(void *arg, void *obj)
159 {
160 struct vm_page *pg = obj;
161
162 rump_hyperfree(pg->uanon, PAGE_SIZE);
163 }
164
165 static struct pool_cache pagecache;
166
167 /*
168 * Called with the object locked. We don't support anons.
169 */
170 struct vm_page *
171 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
172 int flags, int strat, int free_list)
173 {
174 struct vm_page *pg;
175
176 KASSERT(uobj && mutex_owned(uobj->vmobjlock));
177 KASSERT(anon == NULL);
178
179 pg = pool_cache_get(&pagecache, PR_NOWAIT);
180 if (__predict_false(pg == NULL)) {
181 return NULL;
182 }
183
184 pg->offset = off;
185 pg->uobject = uobj;
186
187 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
188 if (flags & UVM_PGA_ZERO) {
189 uvm_pagezero(pg);
190 }
191
192 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
193 (void)rb_tree_insert_node(&uobj->rb_tree, pg);
194
195 /*
196 * Don't put anons on the LRU page queue. We can't flush them
197 * (there's no concept of swap in a rump kernel), so no reason
198 * to bother with them.
199 */
200 if (!UVM_OBJ_IS_AOBJ(uobj)) {
201 atomic_inc_uint(&vmpage_onqueue);
202 mutex_enter(&uvm_pageqlock);
203 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
204 mutex_exit(&uvm_pageqlock);
205 }
206
207 uobj->uo_npages++;
208
209 return pg;
210 }
211
212 /*
213 * Release a page.
214 *
215 * Called with the vm object locked.
216 */
217 void
218 uvm_pagefree(struct vm_page *pg)
219 {
220 struct uvm_object *uobj = pg->uobject;
221
222 KASSERT(mutex_owned(&uvm_pageqlock));
223 KASSERT(mutex_owned(uobj->vmobjlock));
224
225 if (pg->flags & PG_WANTED)
226 wakeup(pg);
227
228 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
229
230 uobj->uo_npages--;
231 rb_tree_remove_node(&uobj->rb_tree, pg);
232
233 if (!UVM_OBJ_IS_AOBJ(uobj)) {
234 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
235 atomic_dec_uint(&vmpage_onqueue);
236 }
237
238 pool_cache_put(&pagecache, pg);
239 }
240
241 void
242 uvm_pagezero(struct vm_page *pg)
243 {
244
245 pg->flags &= ~PG_CLEAN;
246 memset((void *)pg->uanon, 0, PAGE_SIZE);
247 }
248
249 /*
250 * Misc routines
251 */
252
253 static kmutex_t pagermtx;
254
255 void
256 uvm_init(void)
257 {
258 char buf[64];
259 int error;
260
261 if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
262 unsigned long tmp;
263 char *ep;
264 int mult;
265
266 tmp = strtoul(buf, &ep, 10);
267 if (strlen(ep) > 1)
268 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
269
270 /* mini-dehumanize-number */
271 mult = 1;
272 switch (*ep) {
273 case 'k':
274 mult = 1024;
275 break;
276 case 'm':
277 mult = 1024*1024;
278 break;
279 case 'g':
280 mult = 1024*1024*1024;
281 break;
282 case 0:
283 break;
284 default:
285 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
286 }
287 rump_physmemlimit = tmp * mult;
288
289 if (rump_physmemlimit / mult != tmp)
290 panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
291 /* it's not like we'd get far with, say, 1 byte, but ... */
292 if (rump_physmemlimit == 0)
293 panic("uvm_init: no memory");
294
295 #define HUMANIZE_BYTES 9
296 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
297 format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
298 #undef HUMANIZE_BYTES
299 dddlim = 9 * (rump_physmemlimit / 10);
300 } else {
301 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
302 }
303 aprint_verbose("total memory = %s\n", buf);
304
305 TAILQ_INIT(&vmpage_lruqueue);
306
307 uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
308
309 #ifndef __uvmexp_pagesize
310 uvmexp.pagesize = PAGE_SIZE;
311 uvmexp.pagemask = PAGE_MASK;
312 uvmexp.pageshift = PAGE_SHIFT;
313 #else
314 #define FAKE_PAGE_SHIFT 12
315 uvmexp.pageshift = FAKE_PAGE_SHIFT;
316 uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
317 uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
318 #undef FAKE_PAGE_SHIFT
319 #endif
320
321 mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
322 mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
323 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
324
325 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
326 cv_init(&pdaemoncv, "pdaemon");
327 cv_init(&oomwait, "oomwait");
328
329 kernel_map->pmap = pmap_kernel();
330 callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
331 kmem_map->pmap = pmap_kernel();
332 callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
333
334 pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
335 "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
336 }
337
338 void
339 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
340 {
341
342 vm->vm_map.pmap = pmap_kernel();
343 vm->vm_refcnt = 1;
344 }
345
346 void
347 uvm_pagewire(struct vm_page *pg)
348 {
349
350 /* nada */
351 }
352
353 void
354 uvm_pageunwire(struct vm_page *pg)
355 {
356
357 /* nada */
358 }
359
360 /*
361 * The uvm reclaim hook is not currently necessary because it is
362 * used only by ZFS and implements exactly the same functionality
363 * as the kva reclaim hook which we already run in the pagedaemon
364 * (rump vm does not have a concept of uvm_map(), so we cannot
365 * reclaim kva it when a mapping operation fails due to insufficient
366 * available kva).
367 */
368 void
369 uvm_reclaim_hook_add(struct uvm_reclaim_hook *hook_entry)
370 {
371
372 }
373 __strong_alias(uvm_reclaim_hook_del,uvm_reclaim_hook_add);
374
375 /* where's your schmonz now? */
376 #define PUNLIMIT(a) \
377 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
378 void
379 uvm_init_limits(struct proc *p)
380 {
381
382 PUNLIMIT(RLIMIT_STACK);
383 PUNLIMIT(RLIMIT_DATA);
384 PUNLIMIT(RLIMIT_RSS);
385 PUNLIMIT(RLIMIT_AS);
386 /* nice, cascade */
387 }
388 #undef PUNLIMIT
389
390 /*
391 * This satisfies the "disgusting mmap hack" used by proplib.
392 * We probably should grow some more assertables to make sure we're
393 * not satisfying anything we shouldn't be satisfying.
394 */
395 int
396 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
397 vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
398 {
399 void *uaddr;
400 int error;
401
402 if (prot != (VM_PROT_READ | VM_PROT_WRITE))
403 panic("uvm_mmap() variant unsupported");
404 if (flags != (MAP_PRIVATE | MAP_ANON))
405 panic("uvm_mmap() variant unsupported");
406
407 /* no reason in particular, but cf. uvm_default_mapaddr() */
408 if (*addr != 0)
409 panic("uvm_mmap() variant unsupported");
410
411 if (RUMP_LOCALPROC_P(curproc)) {
412 uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
413 } else {
414 error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
415 size, &uaddr);
416 }
417 if (uaddr == NULL)
418 return error;
419
420 *addr = (vaddr_t)uaddr;
421 return 0;
422 }
423
424 struct pagerinfo {
425 vaddr_t pgr_kva;
426 int pgr_npages;
427 struct vm_page **pgr_pgs;
428 bool pgr_read;
429
430 LIST_ENTRY(pagerinfo) pgr_entries;
431 };
432 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
433
434 /*
435 * Pager "map" in routine. Instead of mapping, we allocate memory
436 * and copy page contents there. Not optimal or even strictly
437 * correct (the caller might modify the page contents after mapping
438 * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
439 */
440 vaddr_t
441 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
442 {
443 struct pagerinfo *pgri;
444 vaddr_t curkva;
445 int i;
446
447 /* allocate structures */
448 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
449 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
450 pgri->pgr_npages = npages;
451 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
452 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
453
454 /* copy contents to "mapped" memory */
455 for (i = 0, curkva = pgri->pgr_kva;
456 i < npages;
457 i++, curkva += PAGE_SIZE) {
458 /*
459 * We need to copy the previous contents of the pages to
460 * the window even if we are reading from the
461 * device, since the device might not fill the contents of
462 * the full mapped range and we will end up corrupting
463 * data when we unmap the window.
464 */
465 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
466 pgri->pgr_pgs[i] = pgs[i];
467 }
468
469 mutex_enter(&pagermtx);
470 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
471 mutex_exit(&pagermtx);
472
473 return pgri->pgr_kva;
474 }
475
476 /*
477 * map out the pager window. return contents from VA to page storage
478 * and free structures.
479 *
480 * Note: does not currently support partial frees
481 */
482 void
483 uvm_pagermapout(vaddr_t kva, int npages)
484 {
485 struct pagerinfo *pgri;
486 vaddr_t curkva;
487 int i;
488
489 mutex_enter(&pagermtx);
490 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
491 if (pgri->pgr_kva == kva)
492 break;
493 }
494 KASSERT(pgri);
495 if (pgri->pgr_npages != npages)
496 panic("uvm_pagermapout: partial unmapping not supported");
497 LIST_REMOVE(pgri, pgr_entries);
498 mutex_exit(&pagermtx);
499
500 if (pgri->pgr_read) {
501 for (i = 0, curkva = pgri->pgr_kva;
502 i < pgri->pgr_npages;
503 i++, curkva += PAGE_SIZE) {
504 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
505 }
506 }
507
508 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
509 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
510 kmem_free(pgri, sizeof(*pgri));
511 }
512
513 /*
514 * convert va in pager window to page structure.
515 * XXX: how expensive is this (global lock, list traversal)?
516 */
517 struct vm_page *
518 uvm_pageratop(vaddr_t va)
519 {
520 struct pagerinfo *pgri;
521 struct vm_page *pg = NULL;
522 int i;
523
524 mutex_enter(&pagermtx);
525 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
526 if (pgri->pgr_kva <= va
527 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
528 break;
529 }
530 if (pgri) {
531 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
532 pg = pgri->pgr_pgs[i];
533 }
534 mutex_exit(&pagermtx);
535
536 return pg;
537 }
538
539 /*
540 * Called with the vm object locked.
541 *
542 * Put vnode object pages at the end of the access queue to indicate
543 * they have been recently accessed and should not be immediate
544 * candidates for pageout. Do not do this for lookups done by
545 * the pagedaemon to mimic pmap_kentered mappings which don't track
546 * access information.
547 */
548 struct vm_page *
549 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
550 {
551 struct vm_page *pg;
552 bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
553
554 pg = rb_tree_find_node(&uobj->rb_tree, &off);
555 if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
556 mutex_enter(&uvm_pageqlock);
557 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
558 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
559 mutex_exit(&uvm_pageqlock);
560 }
561
562 return pg;
563 }
564
565 void
566 uvm_page_unbusy(struct vm_page **pgs, int npgs)
567 {
568 struct vm_page *pg;
569 int i;
570
571 KASSERT(npgs > 0);
572 KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
573
574 for (i = 0; i < npgs; i++) {
575 pg = pgs[i];
576 if (pg == NULL)
577 continue;
578
579 KASSERT(pg->flags & PG_BUSY);
580 if (pg->flags & PG_WANTED)
581 wakeup(pg);
582 if (pg->flags & PG_RELEASED)
583 uvm_pagefree(pg);
584 else
585 pg->flags &= ~(PG_WANTED|PG_BUSY);
586 }
587 }
588
589 void
590 uvm_estimatepageable(int *active, int *inactive)
591 {
592
593 /* XXX: guessing game */
594 *active = 1024;
595 *inactive = 1024;
596 }
597
598 struct vm_map_kernel *
599 vm_map_to_kernel(struct vm_map *map)
600 {
601
602 return (struct vm_map_kernel *)map;
603 }
604
605 bool
606 vm_map_starved_p(struct vm_map *map)
607 {
608
609 if (map->flags & VM_MAP_WANTVA)
610 return true;
611
612 return false;
613 }
614
615 int
616 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
617 {
618
619 panic("%s: unimplemented", __func__);
620 }
621
622 void
623 uvm_unloan(void *v, int npages, int flags)
624 {
625
626 panic("%s: unimplemented", __func__);
627 }
628
629 int
630 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
631 struct vm_page **opp)
632 {
633
634 return EBUSY;
635 }
636
637 struct vm_page *
638 uvm_loanbreak(struct vm_page *pg)
639 {
640
641 panic("%s: unimplemented", __func__);
642 }
643
644 void
645 ubc_purge(struct uvm_object *uobj)
646 {
647
648 panic("%s: unimplemented", __func__);
649 }
650
651 #ifdef DEBUGPRINT
652 void
653 uvm_object_printit(struct uvm_object *uobj, bool full,
654 void (*pr)(const char *, ...))
655 {
656
657 pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
658 }
659 #endif
660
661 vaddr_t
662 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
663 {
664
665 return 0;
666 }
667
668 int
669 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
670 vm_prot_t prot, bool set_max)
671 {
672
673 return EOPNOTSUPP;
674 }
675
676 /*
677 * UVM km
678 */
679
680 vaddr_t
681 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
682 {
683 void *rv, *desired = NULL;
684 int alignbit, error;
685
686 #ifdef __x86_64__
687 /*
688 * On amd64, allocate all module memory from the lowest 2GB.
689 * This is because NetBSD kernel modules are compiled
690 * with -mcmodel=kernel and reserve only 4 bytes for
691 * offsets. If we load code compiled with -mcmodel=kernel
692 * anywhere except the lowest or highest 2GB, it will not
693 * work. Since userspace does not have access to the highest
694 * 2GB, use the lowest 2GB.
695 *
696 * Note: this assumes the rump kernel resides in
697 * the lowest 2GB as well.
698 *
699 * Note2: yes, it's a quick hack, but since this the only
700 * place where we care about the map we're allocating from,
701 * just use a simple "if" instead of coming up with a fancy
702 * generic solution.
703 */
704 extern struct vm_map *module_map;
705 if (map == module_map) {
706 desired = (void *)(0x80000000 - size);
707 }
708 #endif
709
710 alignbit = 0;
711 if (align) {
712 alignbit = ffs(align)-1;
713 }
714
715 rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
716 &error);
717 if (rv == NULL) {
718 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
719 return 0;
720 else
721 panic("uvm_km_alloc failed");
722 }
723
724 if (flags & UVM_KMF_ZERO)
725 memset(rv, 0, size);
726
727 return (vaddr_t)rv;
728 }
729
730 void
731 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
732 {
733
734 rumpuser_unmap((void *)vaddr, size);
735 }
736
737 struct vm_map *
738 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
739 vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
740 {
741
742 return (struct vm_map *)417416;
743 }
744
745 vaddr_t
746 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
747 {
748
749 return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
750 waitok, "kmalloc");
751 }
752
753 void
754 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
755 {
756
757 rump_hyperfree((void *)addr, PAGE_SIZE);
758 }
759
760 vaddr_t
761 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
762 {
763
764 return uvm_km_alloc_poolpage(map, waitok);
765 }
766
767 void
768 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
769 {
770
771 uvm_km_free_poolpage(map, vaddr);
772 }
773
774 void
775 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
776 {
777
778 /* we eventually maybe want some model for available memory */
779 }
780
781 /*
782 * VM space locking routines. We don't really have to do anything,
783 * since the pages are always "wired" (both local and remote processes).
784 */
785 int
786 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
787 {
788
789 return 0;
790 }
791
792 void
793 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
794 {
795
796 }
797
798 /*
799 * For the local case the buffer mappers don't need to do anything.
800 * For the remote case we need to reserve space and copy data in or
801 * out, depending on B_READ/B_WRITE.
802 */
803 int
804 vmapbuf(struct buf *bp, vsize_t len)
805 {
806 int error = 0;
807
808 bp->b_saveaddr = bp->b_data;
809
810 /* remote case */
811 if (!RUMP_LOCALPROC_P(curproc)) {
812 bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
813 if (BUF_ISWRITE(bp)) {
814 error = copyin(bp->b_saveaddr, bp->b_data, len);
815 if (error) {
816 rump_hyperfree(bp->b_data, len);
817 bp->b_data = bp->b_saveaddr;
818 bp->b_saveaddr = 0;
819 }
820 }
821 }
822
823 return error;
824 }
825
826 void
827 vunmapbuf(struct buf *bp, vsize_t len)
828 {
829
830 /* remote case */
831 if (!RUMP_LOCALPROC_P(bp->b_proc)) {
832 if (BUF_ISREAD(bp)) {
833 bp->b_error = copyout_proc(bp->b_proc,
834 bp->b_data, bp->b_saveaddr, len);
835 }
836 rump_hyperfree(bp->b_data, len);
837 }
838
839 bp->b_data = bp->b_saveaddr;
840 bp->b_saveaddr = 0;
841 }
842
843 void
844 uvmspace_addref(struct vmspace *vm)
845 {
846
847 /*
848 * No dynamically allocated vmspaces exist.
849 */
850 }
851
852 void
853 uvmspace_free(struct vmspace *vm)
854 {
855
856 /* nothing for now */
857 }
858
859 /*
860 * page life cycle stuff. it really doesn't exist, so just stubs.
861 */
862
863 void
864 uvm_pageactivate(struct vm_page *pg)
865 {
866
867 /* nada */
868 }
869
870 void
871 uvm_pagedeactivate(struct vm_page *pg)
872 {
873
874 /* nada */
875 }
876
877 void
878 uvm_pagedequeue(struct vm_page *pg)
879 {
880
881 /* nada*/
882 }
883
884 void
885 uvm_pageenqueue(struct vm_page *pg)
886 {
887
888 /* nada */
889 }
890
891 void
892 uvmpdpol_anfree(struct vm_anon *an)
893 {
894
895 /* nada */
896 }
897
898 /*
899 * Physical address accessors.
900 */
901
902 struct vm_page *
903 uvm_phys_to_vm_page(paddr_t pa)
904 {
905
906 return NULL;
907 }
908
909 paddr_t
910 uvm_vm_page_to_phys(const struct vm_page *pg)
911 {
912
913 return 0;
914 }
915
916 /*
917 * Routines related to the Page Baroness.
918 */
919
920 void
921 uvm_wait(const char *msg)
922 {
923
924 if (__predict_false(curlwp == uvm.pagedaemon_lwp))
925 panic("pagedaemon out of memory");
926 if (__predict_false(rump_threads == 0))
927 panic("pagedaemon missing (RUMP_THREADS = 0)");
928
929 mutex_enter(&pdaemonmtx);
930 pdaemon_waiters++;
931 cv_signal(&pdaemoncv);
932 cv_wait(&oomwait, &pdaemonmtx);
933 mutex_exit(&pdaemonmtx);
934 }
935
936 void
937 uvm_pageout_start(int npages)
938 {
939
940 mutex_enter(&pdaemonmtx);
941 uvmexp.paging += npages;
942 mutex_exit(&pdaemonmtx);
943 }
944
945 void
946 uvm_pageout_done(int npages)
947 {
948
949 if (!npages)
950 return;
951
952 mutex_enter(&pdaemonmtx);
953 KASSERT(uvmexp.paging >= npages);
954 uvmexp.paging -= npages;
955
956 if (pdaemon_waiters) {
957 pdaemon_waiters = 0;
958 cv_broadcast(&oomwait);
959 }
960 mutex_exit(&pdaemonmtx);
961 }
962
963 static bool
964 processpage(struct vm_page *pg, bool *lockrunning)
965 {
966 struct uvm_object *uobj;
967
968 uobj = pg->uobject;
969 if (mutex_tryenter(uobj->vmobjlock)) {
970 if ((pg->flags & PG_BUSY) == 0) {
971 mutex_exit(&uvm_pageqlock);
972 uobj->pgops->pgo_put(uobj, pg->offset,
973 pg->offset + PAGE_SIZE,
974 PGO_CLEANIT|PGO_FREE);
975 KASSERT(!mutex_owned(uobj->vmobjlock));
976 return true;
977 } else {
978 mutex_exit(uobj->vmobjlock);
979 }
980 } else if (*lockrunning == false && ncpu > 1) {
981 CPU_INFO_ITERATOR cii;
982 struct cpu_info *ci;
983 struct lwp *l;
984
985 l = mutex_owner(uobj->vmobjlock);
986 for (CPU_INFO_FOREACH(cii, ci)) {
987 if (ci->ci_curlwp == l) {
988 *lockrunning = true;
989 break;
990 }
991 }
992 }
993
994 return false;
995 }
996
997 /*
998 * The Diabolical pageDaemon Director (DDD).
999 *
1000 * This routine can always use better heuristics.
1001 */
1002 void
1003 uvm_pageout(void *arg)
1004 {
1005 struct vm_page *pg;
1006 struct pool *pp, *pp_first;
1007 uint64_t where;
1008 int cleaned, skip, skipped;
1009 int waspaging;
1010 bool succ;
1011 bool lockrunning;
1012
1013 mutex_enter(&pdaemonmtx);
1014 for (;;) {
1015 if (!NEED_PAGEDAEMON()) {
1016 kernel_map->flags &= ~VM_MAP_WANTVA;
1017 kmem_map->flags &= ~VM_MAP_WANTVA;
1018 }
1019
1020 if (pdaemon_waiters) {
1021 pdaemon_waiters = 0;
1022 cv_broadcast(&oomwait);
1023 }
1024
1025 cv_wait(&pdaemoncv, &pdaemonmtx);
1026 uvmexp.pdwoke++;
1027 waspaging = uvmexp.paging;
1028
1029 /* tell the world that we are hungry */
1030 kernel_map->flags |= VM_MAP_WANTVA;
1031 kmem_map->flags |= VM_MAP_WANTVA;
1032 mutex_exit(&pdaemonmtx);
1033
1034 /*
1035 * step one: reclaim the page cache. this should give
1036 * us the biggest earnings since whole pages are released
1037 * into backing memory.
1038 */
1039 pool_cache_reclaim(&pagecache);
1040 if (!NEED_PAGEDAEMON()) {
1041 mutex_enter(&pdaemonmtx);
1042 continue;
1043 }
1044
1045 /*
1046 * Ok, so that didn't help. Next, try to hunt memory
1047 * by pushing out vnode pages. The pages might contain
1048 * useful cached data, but we need the memory.
1049 */
1050 cleaned = 0;
1051 skip = 0;
1052 lockrunning = false;
1053 again:
1054 mutex_enter(&uvm_pageqlock);
1055 while (cleaned < PAGEDAEMON_OBJCHUNK) {
1056 skipped = 0;
1057 TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1058
1059 /*
1060 * skip over pages we _might_ have tried
1061 * to handle earlier. they might not be
1062 * exactly the same ones, but I'm not too
1063 * concerned.
1064 */
1065 while (skipped++ < skip)
1066 continue;
1067
1068 if (processpage(pg, &lockrunning)) {
1069 cleaned++;
1070 goto again;
1071 }
1072
1073 skip++;
1074 }
1075 break;
1076 }
1077 mutex_exit(&uvm_pageqlock);
1078
1079 /*
1080 * Ok, someone is running with an object lock held.
1081 * We want to yield the host CPU to make sure the
1082 * thread is not parked on the host. Since sched_yield()
1083 * doesn't appear to do anything on NetBSD, nanosleep
1084 * for the smallest possible time and hope we're back in
1085 * the game soon.
1086 */
1087 if (cleaned == 0 && lockrunning) {
1088 uint64_t sec, nsec;
1089
1090 sec = 0;
1091 nsec = 1;
1092 rumpuser_nanosleep(&sec, &nsec, NULL);
1093
1094 lockrunning = false;
1095 skip = 0;
1096
1097 /* and here we go again */
1098 goto again;
1099 }
1100
1101 /*
1102 * And of course we need to reclaim the page cache
1103 * again to actually release memory.
1104 */
1105 pool_cache_reclaim(&pagecache);
1106 if (!NEED_PAGEDAEMON()) {
1107 mutex_enter(&pdaemonmtx);
1108 continue;
1109 }
1110
1111 /*
1112 * Still not there? sleeves come off right about now.
1113 * First: do reclaim on kernel/kmem map.
1114 */
1115 callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
1116 NULL);
1117 callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
1118 NULL);
1119
1120 /*
1121 * And then drain the pools. Wipe them out ... all of them.
1122 */
1123
1124 pool_drain_start(&pp_first, &where);
1125 pp = pp_first;
1126 for (;;) {
1127 rump_vfs_drainbufs(10 /* XXX: estimate better */);
1128 succ = pool_drain_end(pp, where);
1129 if (succ)
1130 break;
1131 pool_drain_start(&pp, &where);
1132 if (pp == pp_first) {
1133 succ = pool_drain_end(pp, where);
1134 break;
1135 }
1136 }
1137
1138 /*
1139 * Need to use PYEC on our bag of tricks.
1140 * Unfortunately, the wife just borrowed it.
1141 */
1142
1143 mutex_enter(&pdaemonmtx);
1144 if (!succ && cleaned == 0 && pdaemon_waiters &&
1145 uvmexp.paging == 0) {
1146 rumpuser_dprintf("pagedaemoness: failed to reclaim "
1147 "memory ... sleeping (deadlock?)\n");
1148 cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
1149 mutex_enter(&pdaemonmtx);
1150 }
1151 }
1152
1153 panic("you can swap out any time you like, but you can never leave");
1154 }
1155
1156 void
1157 uvm_kick_pdaemon()
1158 {
1159
1160 /*
1161 * Wake up the diabolical pagedaemon director if we are over
1162 * 90% of the memory limit. This is a complete and utter
1163 * stetson-harrison decision which you are allowed to finetune.
1164 * Don't bother locking. If we have some unflushed caches,
1165 * other waker-uppers will deal with the issue.
1166 */
1167 if (NEED_PAGEDAEMON()) {
1168 cv_signal(&pdaemoncv);
1169 }
1170 }
1171
1172 void *
1173 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1174 {
1175 unsigned long newmem;
1176 void *rv;
1177
1178 uvm_kick_pdaemon(); /* ouch */
1179
1180 /* first we must be within the limit */
1181 limitagain:
1182 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1183 newmem = atomic_add_long_nv(&curphysmem, howmuch);
1184 if (newmem > rump_physmemlimit) {
1185 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1186 if (!waitok) {
1187 return NULL;
1188 }
1189 uvm_wait(wmsg);
1190 goto limitagain;
1191 }
1192 }
1193
1194 /* second, we must get something from the backend */
1195 again:
1196 rv = rumpuser_malloc(howmuch, alignment);
1197 if (__predict_false(rv == NULL && waitok)) {
1198 uvm_wait(wmsg);
1199 goto again;
1200 }
1201
1202 return rv;
1203 }
1204
1205 void
1206 rump_hyperfree(void *what, size_t size)
1207 {
1208
1209 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1210 atomic_add_long(&curphysmem, -size);
1211 }
1212 rumpuser_free(what);
1213 }
1214