vm.c revision 1.118 1 /* $NetBSD: vm.c,v 1.118 2011/09/01 21:09:07 christos Exp $ */
2
3 /*
4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.118 2011/09/01 21:09:07 christos Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/mman.h>
52 #include <sys/null.h>
53 #include <sys/vnode.h>
54
55 #include <machine/pmap.h>
56
57 #include <rump/rumpuser.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_ddb.h>
61 #include <uvm/uvm_pdpolicy.h>
62 #include <uvm/uvm_prot.h>
63 #include <uvm/uvm_readahead.h>
64
65 #include "rump_private.h"
66 #include "rump_vfs_private.h"
67
68 kmutex_t uvm_pageqlock;
69 kmutex_t uvm_swap_data_lock;
70
71 struct uvmexp uvmexp;
72 struct uvm uvm;
73
74 #ifdef __uvmexp_pagesize
75 int *uvmexp_pagesize = &uvmexp.pagesize;
76 int *uvmexp_pagemask = &uvmexp.pagemask;
77 int *uvmexp_pageshift = &uvmexp.pageshift;
78 #endif
79
80 struct vm_map rump_vmmap;
81 static struct vm_map_kernel kmem_map_store;
82 struct vm_map *kmem_map = &kmem_map_store.vmk_map;
83
84 static struct vm_map_kernel kernel_map_store;
85 struct vm_map *kernel_map = &kernel_map_store.vmk_map;
86
87 static unsigned int pdaemon_waiters;
88 static kmutex_t pdaemonmtx;
89 static kcondvar_t pdaemoncv, oomwait;
90
91 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
92 static unsigned long curphysmem;
93 static unsigned long dddlim; /* 90% of memory limit used */
94 #define NEED_PAGEDAEMON() \
95 (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
96
97 /*
98 * Try to free two pages worth of pages from objects.
99 * If this succesfully frees a full page cache page, we'll
100 * free the released page plus PAGE_SIZE/sizeof(vm_page).
101 */
102 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
103
104 /*
105 * Keep a list of least recently used pages. Since the only way a
106 * rump kernel can "access" a page is via lookup, we put the page
107 * at the back of queue every time a lookup for it is done. If the
108 * page is in front of this global queue and we're short of memory,
109 * it's a candidate for pageout.
110 */
111 static struct pglist vmpage_lruqueue;
112 static unsigned vmpage_onqueue;
113
114 static int
115 pg_compare_key(void *ctx, const void *n, const void *key)
116 {
117 voff_t a = ((const struct vm_page *)n)->offset;
118 voff_t b = *(const voff_t *)key;
119
120 if (a < b)
121 return -1;
122 else if (a > b)
123 return 1;
124 else
125 return 0;
126 }
127
128 static int
129 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
130 {
131
132 return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
133 }
134
135 const rb_tree_ops_t uvm_page_tree_ops = {
136 .rbto_compare_nodes = pg_compare_nodes,
137 .rbto_compare_key = pg_compare_key,
138 .rbto_node_offset = offsetof(struct vm_page, rb_node),
139 .rbto_context = NULL
140 };
141
142 /*
143 * vm pages
144 */
145
146 static int
147 pgctor(void *arg, void *obj, int flags)
148 {
149 struct vm_page *pg = obj;
150
151 memset(pg, 0, sizeof(*pg));
152 pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
153 (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
154 return pg->uanon == NULL;
155 }
156
157 static void
158 pgdtor(void *arg, void *obj)
159 {
160 struct vm_page *pg = obj;
161
162 rump_hyperfree(pg->uanon, PAGE_SIZE);
163 }
164
165 static struct pool_cache pagecache;
166
167 /*
168 * Called with the object locked. We don't support anons.
169 */
170 struct vm_page *
171 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
172 int flags, int strat, int free_list)
173 {
174 struct vm_page *pg;
175
176 KASSERT(uobj && mutex_owned(uobj->vmobjlock));
177 KASSERT(anon == NULL);
178
179 pg = pool_cache_get(&pagecache, PR_NOWAIT);
180 if (__predict_false(pg == NULL)) {
181 return NULL;
182 }
183
184 pg->offset = off;
185 pg->uobject = uobj;
186
187 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
188 if (flags & UVM_PGA_ZERO) {
189 uvm_pagezero(pg);
190 }
191
192 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
193 (void)rb_tree_insert_node(&uobj->rb_tree, pg);
194
195 /*
196 * Don't put anons on the LRU page queue. We can't flush them
197 * (there's no concept of swap in a rump kernel), so no reason
198 * to bother with them.
199 */
200 if (!UVM_OBJ_IS_AOBJ(uobj)) {
201 atomic_inc_uint(&vmpage_onqueue);
202 mutex_enter(&uvm_pageqlock);
203 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
204 mutex_exit(&uvm_pageqlock);
205 }
206
207 uobj->uo_npages++;
208
209 return pg;
210 }
211
212 /*
213 * Release a page.
214 *
215 * Called with the vm object locked.
216 */
217 void
218 uvm_pagefree(struct vm_page *pg)
219 {
220 struct uvm_object *uobj = pg->uobject;
221
222 KASSERT(mutex_owned(&uvm_pageqlock));
223 KASSERT(mutex_owned(uobj->vmobjlock));
224
225 if (pg->flags & PG_WANTED)
226 wakeup(pg);
227
228 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
229
230 uobj->uo_npages--;
231 rb_tree_remove_node(&uobj->rb_tree, pg);
232
233 if (!UVM_OBJ_IS_AOBJ(uobj)) {
234 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
235 atomic_dec_uint(&vmpage_onqueue);
236 }
237
238 pool_cache_put(&pagecache, pg);
239 }
240
241 void
242 uvm_pagezero(struct vm_page *pg)
243 {
244
245 pg->flags &= ~PG_CLEAN;
246 memset((void *)pg->uanon, 0, PAGE_SIZE);
247 }
248
249 /*
250 * Misc routines
251 */
252
253 static kmutex_t pagermtx;
254
255 void
256 uvm_init(void)
257 {
258 char buf[64];
259 int error;
260
261 if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
262 unsigned long tmp;
263 char *ep;
264 int mult;
265
266 tmp = strtoul(buf, &ep, 10);
267 if (strlen(ep) > 1)
268 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
269
270 /* mini-dehumanize-number */
271 mult = 1;
272 switch (*ep) {
273 case 'k':
274 mult = 1024;
275 break;
276 case 'm':
277 mult = 1024*1024;
278 break;
279 case 'g':
280 mult = 1024*1024*1024;
281 break;
282 case 0:
283 break;
284 default:
285 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
286 }
287 rump_physmemlimit = tmp * mult;
288
289 if (rump_physmemlimit / mult != tmp)
290 panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
291 /* it's not like we'd get far with, say, 1 byte, but ... */
292 if (rump_physmemlimit == 0)
293 panic("uvm_init: no memory");
294
295 #define HUMANIZE_BYTES 9
296 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
297 format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
298 #undef HUMANIZE_BYTES
299 dddlim = 9 * (rump_physmemlimit / 10);
300 } else {
301 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
302 }
303 aprint_verbose("total memory = %s\n", buf);
304
305 TAILQ_INIT(&vmpage_lruqueue);
306
307 uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
308
309 #ifndef __uvmexp_pagesize
310 uvmexp.pagesize = PAGE_SIZE;
311 uvmexp.pagemask = PAGE_MASK;
312 uvmexp.pageshift = PAGE_SHIFT;
313 #else
314 #define FAKE_PAGE_SHIFT 12
315 uvmexp.pageshift = FAKE_PAGE_SHIFT;
316 uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
317 uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
318 #undef FAKE_PAGE_SHIFT
319 #endif
320
321 mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
322 mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
323 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
324
325 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
326 cv_init(&pdaemoncv, "pdaemon");
327 cv_init(&oomwait, "oomwait");
328
329 kernel_map->pmap = pmap_kernel();
330 callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
331 kmem_map->pmap = pmap_kernel();
332 callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
333
334 pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
335 "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
336 }
337
338 void
339 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
340 {
341
342 vm->vm_map.pmap = pmap_kernel();
343 vm->vm_refcnt = 1;
344 }
345
346 void
347 uvm_pagewire(struct vm_page *pg)
348 {
349
350 /* nada */
351 }
352
353 void
354 uvm_pageunwire(struct vm_page *pg)
355 {
356
357 /* nada */
358 }
359
360 /*
361 * The uvm reclaim hook is not currently necessary because it is
362 * used only by ZFS and implements exactly the same functionality
363 * as the kva reclaim hook which we already run in the pagedaemon
364 * (rump vm does not have a concept of uvm_map(), so we cannot
365 * reclaim kva it when a mapping operation fails due to insufficient
366 * available kva).
367 */
368 void
369 uvm_reclaim_hook_add(struct uvm_reclaim_hook *hook_entry)
370 {
371
372 }
373 __strong_alias(uvm_reclaim_hook_del,uvm_reclaim_hook_add);
374
375 /* where's your schmonz now? */
376 #define PUNLIMIT(a) \
377 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
378 void
379 uvm_init_limits(struct proc *p)
380 {
381
382 PUNLIMIT(RLIMIT_STACK);
383 PUNLIMIT(RLIMIT_DATA);
384 PUNLIMIT(RLIMIT_RSS);
385 PUNLIMIT(RLIMIT_AS);
386 /* nice, cascade */
387 }
388 #undef PUNLIMIT
389
390 /*
391 * This satisfies the "disgusting mmap hack" used by proplib.
392 * We probably should grow some more assertables to make sure we're
393 * not satisfying anything we shouldn't be satisfying.
394 */
395 int
396 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
397 vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
398 {
399 void *uaddr;
400 int error;
401
402 if (prot != (VM_PROT_READ | VM_PROT_WRITE))
403 panic("uvm_mmap() variant unsupported");
404 if (flags != (MAP_PRIVATE | MAP_ANON))
405 panic("uvm_mmap() variant unsupported");
406
407 /* no reason in particular, but cf. uvm_default_mapaddr() */
408 if (*addr != 0)
409 panic("uvm_mmap() variant unsupported");
410
411 if (RUMP_LOCALPROC_P(curproc)) {
412 uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
413 } else {
414 error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
415 size, &uaddr);
416 }
417 if (uaddr == NULL)
418 return error;
419
420 *addr = (vaddr_t)uaddr;
421 return 0;
422 }
423
424 struct pagerinfo {
425 vaddr_t pgr_kva;
426 int pgr_npages;
427 struct vm_page **pgr_pgs;
428 bool pgr_read;
429
430 LIST_ENTRY(pagerinfo) pgr_entries;
431 };
432 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
433
434 /*
435 * Pager "map" in routine. Instead of mapping, we allocate memory
436 * and copy page contents there. Not optimal or even strictly
437 * correct (the caller might modify the page contents after mapping
438 * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
439 */
440 vaddr_t
441 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
442 {
443 struct pagerinfo *pgri;
444 vaddr_t curkva;
445 int i;
446
447 /* allocate structures */
448 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
449 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
450 pgri->pgr_npages = npages;
451 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
452 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
453
454 /* copy contents to "mapped" memory */
455 for (i = 0, curkva = pgri->pgr_kva;
456 i < npages;
457 i++, curkva += PAGE_SIZE) {
458 /*
459 * We need to copy the previous contents of the pages to
460 * the window even if we are reading from the
461 * device, since the device might not fill the contents of
462 * the full mapped range and we will end up corrupting
463 * data when we unmap the window.
464 */
465 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
466 pgri->pgr_pgs[i] = pgs[i];
467 }
468
469 mutex_enter(&pagermtx);
470 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
471 mutex_exit(&pagermtx);
472
473 return pgri->pgr_kva;
474 }
475
476 /*
477 * map out the pager window. return contents from VA to page storage
478 * and free structures.
479 *
480 * Note: does not currently support partial frees
481 */
482 void
483 uvm_pagermapout(vaddr_t kva, int npages)
484 {
485 struct pagerinfo *pgri;
486 vaddr_t curkva;
487 int i;
488
489 mutex_enter(&pagermtx);
490 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
491 if (pgri->pgr_kva == kva)
492 break;
493 }
494 KASSERT(pgri);
495 if (pgri->pgr_npages != npages)
496 panic("uvm_pagermapout: partial unmapping not supported");
497 LIST_REMOVE(pgri, pgr_entries);
498 mutex_exit(&pagermtx);
499
500 if (pgri->pgr_read) {
501 for (i = 0, curkva = pgri->pgr_kva;
502 i < pgri->pgr_npages;
503 i++, curkva += PAGE_SIZE) {
504 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
505 }
506 }
507
508 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
509 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
510 kmem_free(pgri, sizeof(*pgri));
511 }
512
513 /*
514 * convert va in pager window to page structure.
515 * XXX: how expensive is this (global lock, list traversal)?
516 */
517 struct vm_page *
518 uvm_pageratop(vaddr_t va)
519 {
520 struct pagerinfo *pgri;
521 struct vm_page *pg = NULL;
522 int i;
523
524 mutex_enter(&pagermtx);
525 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
526 if (pgri->pgr_kva <= va
527 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
528 break;
529 }
530 if (pgri) {
531 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
532 pg = pgri->pgr_pgs[i];
533 }
534 mutex_exit(&pagermtx);
535
536 return pg;
537 }
538
539 /*
540 * Called with the vm object locked.
541 *
542 * Put vnode object pages at the end of the access queue to indicate
543 * they have been recently accessed and should not be immediate
544 * candidates for pageout. Do not do this for lookups done by
545 * the pagedaemon to mimic pmap_kentered mappings which don't track
546 * access information.
547 */
548 struct vm_page *
549 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
550 {
551 struct vm_page *pg;
552 bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
553
554 pg = rb_tree_find_node(&uobj->rb_tree, &off);
555 if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
556 mutex_enter(&uvm_pageqlock);
557 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
558 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
559 mutex_exit(&uvm_pageqlock);
560 }
561
562 return pg;
563 }
564
565 void
566 uvm_page_unbusy(struct vm_page **pgs, int npgs)
567 {
568 struct vm_page *pg;
569 int i;
570
571 KASSERT(npgs > 0);
572 KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
573
574 for (i = 0; i < npgs; i++) {
575 pg = pgs[i];
576 if (pg == NULL)
577 continue;
578
579 KASSERT(pg->flags & PG_BUSY);
580 if (pg->flags & PG_WANTED)
581 wakeup(pg);
582 if (pg->flags & PG_RELEASED)
583 uvm_pagefree(pg);
584 else
585 pg->flags &= ~(PG_WANTED|PG_BUSY);
586 }
587 }
588
589 void
590 uvm_estimatepageable(int *active, int *inactive)
591 {
592
593 /* XXX: guessing game */
594 *active = 1024;
595 *inactive = 1024;
596 }
597
598 struct vm_map_kernel *
599 vm_map_to_kernel(struct vm_map *map)
600 {
601
602 return (struct vm_map_kernel *)map;
603 }
604
605 bool
606 vm_map_starved_p(struct vm_map *map)
607 {
608
609 if (map->flags & VM_MAP_WANTVA)
610 return true;
611
612 return false;
613 }
614
615 int
616 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
617 {
618
619 panic("%s: unimplemented", __func__);
620 }
621
622 void
623 uvm_unloan(void *v, int npages, int flags)
624 {
625
626 panic("%s: unimplemented", __func__);
627 }
628
629 int
630 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
631 struct vm_page **opp)
632 {
633
634 return EBUSY;
635 }
636
637 struct vm_page *
638 uvm_loanbreak(struct vm_page *pg)
639 {
640
641 panic("%s: unimplemented", __func__);
642 }
643
644 void
645 ubc_purge(struct uvm_object *uobj)
646 {
647
648 }
649
650 #ifdef DEBUGPRINT
651 void
652 uvm_object_printit(struct uvm_object *uobj, bool full,
653 void (*pr)(const char *, ...))
654 {
655
656 pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
657 }
658 #endif
659
660 vaddr_t
661 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
662 {
663
664 return 0;
665 }
666
667 int
668 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
669 vm_prot_t prot, bool set_max)
670 {
671
672 return EOPNOTSUPP;
673 }
674
675 /*
676 * UVM km
677 */
678
679 vaddr_t
680 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
681 {
682 void *rv, *desired = NULL;
683 int alignbit, error;
684
685 #ifdef __x86_64__
686 /*
687 * On amd64, allocate all module memory from the lowest 2GB.
688 * This is because NetBSD kernel modules are compiled
689 * with -mcmodel=kernel and reserve only 4 bytes for
690 * offsets. If we load code compiled with -mcmodel=kernel
691 * anywhere except the lowest or highest 2GB, it will not
692 * work. Since userspace does not have access to the highest
693 * 2GB, use the lowest 2GB.
694 *
695 * Note: this assumes the rump kernel resides in
696 * the lowest 2GB as well.
697 *
698 * Note2: yes, it's a quick hack, but since this the only
699 * place where we care about the map we're allocating from,
700 * just use a simple "if" instead of coming up with a fancy
701 * generic solution.
702 */
703 extern struct vm_map *module_map;
704 if (map == module_map) {
705 desired = (void *)(0x80000000 - size);
706 }
707 #endif
708
709 alignbit = 0;
710 if (align) {
711 alignbit = ffs(align)-1;
712 }
713
714 rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
715 &error);
716 if (rv == NULL) {
717 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
718 return 0;
719 else
720 panic("uvm_km_alloc failed");
721 }
722
723 if (flags & UVM_KMF_ZERO)
724 memset(rv, 0, size);
725
726 return (vaddr_t)rv;
727 }
728
729 void
730 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
731 {
732
733 rumpuser_unmap((void *)vaddr, size);
734 }
735
736 struct vm_map *
737 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
738 vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
739 {
740
741 return (struct vm_map *)417416;
742 }
743
744 vaddr_t
745 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
746 {
747
748 return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
749 waitok, "kmalloc");
750 }
751
752 void
753 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
754 {
755
756 rump_hyperfree((void *)addr, PAGE_SIZE);
757 }
758
759 vaddr_t
760 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
761 {
762
763 return uvm_km_alloc_poolpage(map, waitok);
764 }
765
766 void
767 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
768 {
769
770 uvm_km_free_poolpage(map, vaddr);
771 }
772
773 void
774 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
775 {
776
777 /* we eventually maybe want some model for available memory */
778 }
779
780 /*
781 * VM space locking routines. We don't really have to do anything,
782 * since the pages are always "wired" (both local and remote processes).
783 */
784 int
785 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
786 {
787
788 return 0;
789 }
790
791 void
792 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
793 {
794
795 }
796
797 /*
798 * For the local case the buffer mappers don't need to do anything.
799 * For the remote case we need to reserve space and copy data in or
800 * out, depending on B_READ/B_WRITE.
801 */
802 int
803 vmapbuf(struct buf *bp, vsize_t len)
804 {
805 int error = 0;
806
807 bp->b_saveaddr = bp->b_data;
808
809 /* remote case */
810 if (!RUMP_LOCALPROC_P(curproc)) {
811 bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
812 if (BUF_ISWRITE(bp)) {
813 error = copyin(bp->b_saveaddr, bp->b_data, len);
814 if (error) {
815 rump_hyperfree(bp->b_data, len);
816 bp->b_data = bp->b_saveaddr;
817 bp->b_saveaddr = 0;
818 }
819 }
820 }
821
822 return error;
823 }
824
825 void
826 vunmapbuf(struct buf *bp, vsize_t len)
827 {
828
829 /* remote case */
830 if (!RUMP_LOCALPROC_P(bp->b_proc)) {
831 if (BUF_ISREAD(bp)) {
832 bp->b_error = copyout_proc(bp->b_proc,
833 bp->b_data, bp->b_saveaddr, len);
834 }
835 rump_hyperfree(bp->b_data, len);
836 }
837
838 bp->b_data = bp->b_saveaddr;
839 bp->b_saveaddr = 0;
840 }
841
842 void
843 uvmspace_addref(struct vmspace *vm)
844 {
845
846 /*
847 * No dynamically allocated vmspaces exist.
848 */
849 }
850
851 void
852 uvmspace_free(struct vmspace *vm)
853 {
854
855 /* nothing for now */
856 }
857
858 /*
859 * page life cycle stuff. it really doesn't exist, so just stubs.
860 */
861
862 void
863 uvm_pageactivate(struct vm_page *pg)
864 {
865
866 /* nada */
867 }
868
869 void
870 uvm_pagedeactivate(struct vm_page *pg)
871 {
872
873 /* nada */
874 }
875
876 void
877 uvm_pagedequeue(struct vm_page *pg)
878 {
879
880 /* nada*/
881 }
882
883 void
884 uvm_pageenqueue(struct vm_page *pg)
885 {
886
887 /* nada */
888 }
889
890 void
891 uvmpdpol_anfree(struct vm_anon *an)
892 {
893
894 /* nada */
895 }
896
897 kmutex_t *
898 uvmpd_trylockowner(struct vm_page *pg)
899 {
900 return NULL;
901 }
902
903 /*
904 * Physical address accessors.
905 */
906
907 struct vm_page *
908 uvm_phys_to_vm_page(paddr_t pa)
909 {
910
911 return NULL;
912 }
913
914 paddr_t
915 uvm_vm_page_to_phys(const struct vm_page *pg)
916 {
917
918 return 0;
919 }
920
921 /*
922 * Routines related to the Page Baroness.
923 */
924
925 void
926 uvm_wait(const char *msg)
927 {
928
929 if (__predict_false(curlwp == uvm.pagedaemon_lwp))
930 panic("pagedaemon out of memory");
931 if (__predict_false(rump_threads == 0))
932 panic("pagedaemon missing (RUMP_THREADS = 0)");
933
934 mutex_enter(&pdaemonmtx);
935 pdaemon_waiters++;
936 cv_signal(&pdaemoncv);
937 cv_wait(&oomwait, &pdaemonmtx);
938 mutex_exit(&pdaemonmtx);
939 }
940
941 void
942 uvm_pageout_start(int npages)
943 {
944
945 mutex_enter(&pdaemonmtx);
946 uvmexp.paging += npages;
947 mutex_exit(&pdaemonmtx);
948 }
949
950 void
951 uvm_pageout_done(int npages)
952 {
953
954 if (!npages)
955 return;
956
957 mutex_enter(&pdaemonmtx);
958 KASSERT(uvmexp.paging >= npages);
959 uvmexp.paging -= npages;
960
961 if (pdaemon_waiters) {
962 pdaemon_waiters = 0;
963 cv_broadcast(&oomwait);
964 }
965 mutex_exit(&pdaemonmtx);
966 }
967
968 static bool
969 processpage(struct vm_page *pg, bool *lockrunning)
970 {
971 struct uvm_object *uobj;
972
973 uobj = pg->uobject;
974 if (mutex_tryenter(uobj->vmobjlock)) {
975 if ((pg->flags & PG_BUSY) == 0) {
976 mutex_exit(&uvm_pageqlock);
977 uobj->pgops->pgo_put(uobj, pg->offset,
978 pg->offset + PAGE_SIZE,
979 PGO_CLEANIT|PGO_FREE);
980 KASSERT(!mutex_owned(uobj->vmobjlock));
981 return true;
982 } else {
983 mutex_exit(uobj->vmobjlock);
984 }
985 } else if (*lockrunning == false && ncpu > 1) {
986 CPU_INFO_ITERATOR cii;
987 struct cpu_info *ci;
988 struct lwp *l;
989
990 l = mutex_owner(uobj->vmobjlock);
991 for (CPU_INFO_FOREACH(cii, ci)) {
992 if (ci->ci_curlwp == l) {
993 *lockrunning = true;
994 break;
995 }
996 }
997 }
998
999 return false;
1000 }
1001
1002 /*
1003 * The Diabolical pageDaemon Director (DDD).
1004 *
1005 * This routine can always use better heuristics.
1006 */
1007 void
1008 uvm_pageout(void *arg)
1009 {
1010 struct vm_page *pg;
1011 struct pool *pp, *pp_first;
1012 uint64_t where;
1013 int cleaned, skip, skipped;
1014 int waspaging;
1015 bool succ;
1016 bool lockrunning;
1017
1018 mutex_enter(&pdaemonmtx);
1019 for (;;) {
1020 if (!NEED_PAGEDAEMON()) {
1021 kernel_map->flags &= ~VM_MAP_WANTVA;
1022 kmem_map->flags &= ~VM_MAP_WANTVA;
1023 }
1024
1025 if (pdaemon_waiters) {
1026 pdaemon_waiters = 0;
1027 cv_broadcast(&oomwait);
1028 }
1029
1030 cv_wait(&pdaemoncv, &pdaemonmtx);
1031 uvmexp.pdwoke++;
1032 waspaging = uvmexp.paging;
1033
1034 /* tell the world that we are hungry */
1035 kernel_map->flags |= VM_MAP_WANTVA;
1036 kmem_map->flags |= VM_MAP_WANTVA;
1037 mutex_exit(&pdaemonmtx);
1038
1039 /*
1040 * step one: reclaim the page cache. this should give
1041 * us the biggest earnings since whole pages are released
1042 * into backing memory.
1043 */
1044 pool_cache_reclaim(&pagecache);
1045 if (!NEED_PAGEDAEMON()) {
1046 mutex_enter(&pdaemonmtx);
1047 continue;
1048 }
1049
1050 /*
1051 * Ok, so that didn't help. Next, try to hunt memory
1052 * by pushing out vnode pages. The pages might contain
1053 * useful cached data, but we need the memory.
1054 */
1055 cleaned = 0;
1056 skip = 0;
1057 lockrunning = false;
1058 again:
1059 mutex_enter(&uvm_pageqlock);
1060 while (cleaned < PAGEDAEMON_OBJCHUNK) {
1061 skipped = 0;
1062 TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1063
1064 /*
1065 * skip over pages we _might_ have tried
1066 * to handle earlier. they might not be
1067 * exactly the same ones, but I'm not too
1068 * concerned.
1069 */
1070 while (skipped++ < skip)
1071 continue;
1072
1073 if (processpage(pg, &lockrunning)) {
1074 cleaned++;
1075 goto again;
1076 }
1077
1078 skip++;
1079 }
1080 break;
1081 }
1082 mutex_exit(&uvm_pageqlock);
1083
1084 /*
1085 * Ok, someone is running with an object lock held.
1086 * We want to yield the host CPU to make sure the
1087 * thread is not parked on the host. Since sched_yield()
1088 * doesn't appear to do anything on NetBSD, nanosleep
1089 * for the smallest possible time and hope we're back in
1090 * the game soon.
1091 */
1092 if (cleaned == 0 && lockrunning) {
1093 uint64_t sec, nsec;
1094
1095 sec = 0;
1096 nsec = 1;
1097 rumpuser_nanosleep(&sec, &nsec, NULL);
1098
1099 lockrunning = false;
1100 skip = 0;
1101
1102 /* and here we go again */
1103 goto again;
1104 }
1105
1106 /*
1107 * And of course we need to reclaim the page cache
1108 * again to actually release memory.
1109 */
1110 pool_cache_reclaim(&pagecache);
1111 if (!NEED_PAGEDAEMON()) {
1112 mutex_enter(&pdaemonmtx);
1113 continue;
1114 }
1115
1116 /*
1117 * Still not there? sleeves come off right about now.
1118 * First: do reclaim on kernel/kmem map.
1119 */
1120 callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
1121 NULL);
1122 callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
1123 NULL);
1124
1125 /*
1126 * And then drain the pools. Wipe them out ... all of them.
1127 */
1128
1129 pool_drain_start(&pp_first, &where);
1130 pp = pp_first;
1131 for (;;) {
1132 rump_vfs_drainbufs(10 /* XXX: estimate better */);
1133 succ = pool_drain_end(pp, where);
1134 if (succ)
1135 break;
1136 pool_drain_start(&pp, &where);
1137 if (pp == pp_first) {
1138 succ = pool_drain_end(pp, where);
1139 break;
1140 }
1141 }
1142
1143 /*
1144 * Need to use PYEC on our bag of tricks.
1145 * Unfortunately, the wife just borrowed it.
1146 */
1147
1148 mutex_enter(&pdaemonmtx);
1149 if (!succ && cleaned == 0 && pdaemon_waiters &&
1150 uvmexp.paging == 0) {
1151 rumpuser_dprintf("pagedaemoness: failed to reclaim "
1152 "memory ... sleeping (deadlock?)\n");
1153 cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
1154 mutex_enter(&pdaemonmtx);
1155 }
1156 }
1157
1158 panic("you can swap out any time you like, but you can never leave");
1159 }
1160
1161 void
1162 uvm_kick_pdaemon()
1163 {
1164
1165 /*
1166 * Wake up the diabolical pagedaemon director if we are over
1167 * 90% of the memory limit. This is a complete and utter
1168 * stetson-harrison decision which you are allowed to finetune.
1169 * Don't bother locking. If we have some unflushed caches,
1170 * other waker-uppers will deal with the issue.
1171 */
1172 if (NEED_PAGEDAEMON()) {
1173 cv_signal(&pdaemoncv);
1174 }
1175 }
1176
1177 void *
1178 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1179 {
1180 unsigned long newmem;
1181 void *rv;
1182
1183 uvm_kick_pdaemon(); /* ouch */
1184
1185 /* first we must be within the limit */
1186 limitagain:
1187 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1188 newmem = atomic_add_long_nv(&curphysmem, howmuch);
1189 if (newmem > rump_physmemlimit) {
1190 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1191 if (!waitok) {
1192 return NULL;
1193 }
1194 uvm_wait(wmsg);
1195 goto limitagain;
1196 }
1197 }
1198
1199 /* second, we must get something from the backend */
1200 again:
1201 rv = rumpuser_malloc(howmuch, alignment);
1202 if (__predict_false(rv == NULL && waitok)) {
1203 uvm_wait(wmsg);
1204 goto again;
1205 }
1206
1207 return rv;
1208 }
1209
1210 void
1211 rump_hyperfree(void *what, size_t size)
1212 {
1213
1214 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1215 atomic_add_long(&curphysmem, -size);
1216 }
1217 rumpuser_free(what);
1218 }
1219