vm.c revision 1.120.2.1 1 /* $NetBSD: vm.c,v 1.120.2.1 2011/11/02 21:53:59 yamt Exp $ */
2
3 /*
4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.120.2.1 2011/11/02 21:53:59 yamt Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/mman.h>
52 #include <sys/null.h>
53 #include <sys/vnode.h>
54
55 #include <machine/pmap.h>
56
57 #include <rump/rumpuser.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_ddb.h>
61 #include <uvm/uvm_pdpolicy.h>
62 #include <uvm/uvm_prot.h>
63 #include <uvm/uvm_readahead.h>
64
65 #include "rump_private.h"
66 #include "rump_vfs_private.h"
67
68 kmutex_t uvm_pageqlock;
69 kmutex_t uvm_swap_data_lock;
70
71 struct uvmexp uvmexp;
72 struct uvm uvm;
73
74 #ifdef __uvmexp_pagesize
75 int *uvmexp_pagesize = &uvmexp.pagesize;
76 int *uvmexp_pagemask = &uvmexp.pagemask;
77 int *uvmexp_pageshift = &uvmexp.pageshift;
78 #endif
79
80 struct vm_map rump_vmmap;
81 static struct vm_map_kernel kmem_map_store;
82 struct vm_map *kmem_map = &kmem_map_store.vmk_map;
83
84 static struct vm_map_kernel kernel_map_store;
85 struct vm_map *kernel_map = &kernel_map_store.vmk_map;
86
87 static unsigned int pdaemon_waiters;
88 static kmutex_t pdaemonmtx;
89 static kcondvar_t pdaemoncv, oomwait;
90
91 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
92 static unsigned long curphysmem;
93 static unsigned long dddlim; /* 90% of memory limit used */
94 #define NEED_PAGEDAEMON() \
95 (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
96
97 /*
98 * Try to free two pages worth of pages from objects.
99 * If this succesfully frees a full page cache page, we'll
100 * free the released page plus PAGE_SIZE/sizeof(vm_page).
101 */
102 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
103
104 /*
105 * Keep a list of least recently used pages. Since the only way a
106 * rump kernel can "access" a page is via lookup, we put the page
107 * at the back of queue every time a lookup for it is done. If the
108 * page is in front of this global queue and we're short of memory,
109 * it's a candidate for pageout.
110 */
111 static struct pglist vmpage_lruqueue;
112 static unsigned vmpage_onqueue;
113
114 /*
115 * vm pages
116 */
117
118 static int
119 pgctor(void *arg, void *obj, int flags)
120 {
121 struct vm_page *pg = obj;
122
123 memset(pg, 0, sizeof(*pg));
124 pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
125 (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
126 return pg->uanon == NULL;
127 }
128
129 static void
130 pgdtor(void *arg, void *obj)
131 {
132 struct vm_page *pg = obj;
133
134 rump_hyperfree(pg->uanon, PAGE_SIZE);
135 }
136
137 static struct pool_cache pagecache;
138
139 /*
140 * Called with the object locked. We don't support anons.
141 */
142 struct vm_page *
143 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
144 int flags, int strat, int free_list)
145 {
146 struct vm_page *pg;
147 int error;
148
149 KASSERT(uobj && mutex_owned(uobj->vmobjlock));
150 KASSERT(anon == NULL);
151
152 pg = pool_cache_get(&pagecache, PR_NOWAIT);
153 if (__predict_false(pg == NULL)) {
154 return NULL;
155 }
156
157 pg->offset = off;
158 pg->uobject = uobj;
159
160 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
161 if (flags & UVM_PGA_ZERO) {
162 uvm_pagezero(pg);
163 }
164
165 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
166 error = radix_tree_insert_node(&uobj->uo_pages,
167 pg->offset >> PAGE_SHIFT, pg);
168 KASSERT(error == 0);
169
170 /*
171 * Don't put anons on the LRU page queue. We can't flush them
172 * (there's no concept of swap in a rump kernel), so no reason
173 * to bother with them.
174 */
175 if (!UVM_OBJ_IS_AOBJ(uobj)) {
176 atomic_inc_uint(&vmpage_onqueue);
177 mutex_enter(&uvm_pageqlock);
178 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
179 mutex_exit(&uvm_pageqlock);
180 }
181
182 uobj->uo_npages++;
183
184 return pg;
185 }
186
187 /*
188 * Release a page.
189 *
190 * Called with the vm object locked.
191 */
192 void
193 uvm_pagefree(struct vm_page *pg)
194 {
195 struct uvm_object *uobj = pg->uobject;
196 struct vm_page *opg;
197
198 KASSERT(mutex_owned(&uvm_pageqlock));
199 KASSERT(mutex_owned(uobj->vmobjlock));
200
201 if (pg->flags & PG_WANTED)
202 wakeup(pg);
203
204 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
205
206 uobj->uo_npages--;
207 opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
208 KASSERT(pg == opg);
209
210 if (!UVM_OBJ_IS_AOBJ(uobj)) {
211 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
212 atomic_dec_uint(&vmpage_onqueue);
213 }
214
215 pool_cache_put(&pagecache, pg);
216 }
217
218 void
219 uvm_pagezero(struct vm_page *pg)
220 {
221
222 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
223 memset((void *)pg->uanon, 0, PAGE_SIZE);
224 }
225
226 /*
227 * uvm_page_locked_p: return true if object associated with page is
228 * locked. this is a weak check for runtime assertions only.
229 */
230
231 bool
232 uvm_page_locked_p(struct vm_page *pg)
233 {
234
235 return mutex_owned(pg->uobject->vmobjlock);
236 }
237
238 /*
239 * Misc routines
240 */
241
242 static kmutex_t pagermtx;
243
244 void
245 uvm_init(void)
246 {
247 char buf[64];
248 int error;
249
250 if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
251 unsigned long tmp;
252 char *ep;
253 int mult;
254
255 tmp = strtoul(buf, &ep, 10);
256 if (strlen(ep) > 1)
257 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
258
259 /* mini-dehumanize-number */
260 mult = 1;
261 switch (*ep) {
262 case 'k':
263 mult = 1024;
264 break;
265 case 'm':
266 mult = 1024*1024;
267 break;
268 case 'g':
269 mult = 1024*1024*1024;
270 break;
271 case 0:
272 break;
273 default:
274 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
275 }
276 rump_physmemlimit = tmp * mult;
277
278 if (rump_physmemlimit / mult != tmp)
279 panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
280 /* it's not like we'd get far with, say, 1 byte, but ... */
281 if (rump_physmemlimit == 0)
282 panic("uvm_init: no memory");
283
284 #define HUMANIZE_BYTES 9
285 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
286 format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
287 #undef HUMANIZE_BYTES
288 dddlim = 9 * (rump_physmemlimit / 10);
289 } else {
290 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
291 }
292 aprint_verbose("total memory = %s\n", buf);
293
294 TAILQ_INIT(&vmpage_lruqueue);
295
296 uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
297
298 #ifndef __uvmexp_pagesize
299 uvmexp.pagesize = PAGE_SIZE;
300 uvmexp.pagemask = PAGE_MASK;
301 uvmexp.pageshift = PAGE_SHIFT;
302 #else
303 #define FAKE_PAGE_SHIFT 12
304 uvmexp.pageshift = FAKE_PAGE_SHIFT;
305 uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
306 uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
307 #undef FAKE_PAGE_SHIFT
308 #endif
309
310 mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
311 mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
312 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
313
314 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
315 cv_init(&pdaemoncv, "pdaemon");
316 cv_init(&oomwait, "oomwait");
317
318 kernel_map->pmap = pmap_kernel();
319 callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
320 kmem_map->pmap = pmap_kernel();
321 callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
322
323 pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
324 "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
325 }
326
327 void
328 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
329 {
330
331 vm->vm_map.pmap = pmap_kernel();
332 vm->vm_refcnt = 1;
333 }
334
335 void
336 uvm_pagewire(struct vm_page *pg)
337 {
338
339 /* nada */
340 }
341
342 void
343 uvm_pageunwire(struct vm_page *pg)
344 {
345
346 /* nada */
347 }
348
349 /*
350 * The uvm reclaim hook is not currently necessary because it is
351 * used only by ZFS and implements exactly the same functionality
352 * as the kva reclaim hook which we already run in the pagedaemon
353 * (rump vm does not have a concept of uvm_map(), so we cannot
354 * reclaim kva it when a mapping operation fails due to insufficient
355 * available kva).
356 */
357 void
358 uvm_reclaim_hook_add(struct uvm_reclaim_hook *hook_entry)
359 {
360
361 }
362 __strong_alias(uvm_reclaim_hook_del,uvm_reclaim_hook_add);
363
364 /* where's your schmonz now? */
365 #define PUNLIMIT(a) \
366 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
367 void
368 uvm_init_limits(struct proc *p)
369 {
370
371 PUNLIMIT(RLIMIT_STACK);
372 PUNLIMIT(RLIMIT_DATA);
373 PUNLIMIT(RLIMIT_RSS);
374 PUNLIMIT(RLIMIT_AS);
375 /* nice, cascade */
376 }
377 #undef PUNLIMIT
378
379 /*
380 * This satisfies the "disgusting mmap hack" used by proplib.
381 * We probably should grow some more assertables to make sure we're
382 * not satisfying anything we shouldn't be satisfying.
383 */
384 int
385 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
386 vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
387 {
388 void *uaddr;
389 int error;
390
391 if (prot != (VM_PROT_READ | VM_PROT_WRITE))
392 panic("uvm_mmap() variant unsupported");
393 if (flags != (MAP_PRIVATE | MAP_ANON))
394 panic("uvm_mmap() variant unsupported");
395
396 /* no reason in particular, but cf. uvm_default_mapaddr() */
397 if (*addr != 0)
398 panic("uvm_mmap() variant unsupported");
399
400 if (RUMP_LOCALPROC_P(curproc)) {
401 uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
402 } else {
403 error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
404 size, &uaddr);
405 }
406 if (uaddr == NULL)
407 return error;
408
409 *addr = (vaddr_t)uaddr;
410 return 0;
411 }
412
413 struct pagerinfo {
414 vaddr_t pgr_kva;
415 int pgr_npages;
416 struct vm_page **pgr_pgs;
417 bool pgr_read;
418
419 LIST_ENTRY(pagerinfo) pgr_entries;
420 };
421 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
422
423 /*
424 * Pager "map" in routine. Instead of mapping, we allocate memory
425 * and copy page contents there. Not optimal or even strictly
426 * correct (the caller might modify the page contents after mapping
427 * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
428 */
429 vaddr_t
430 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
431 {
432 struct pagerinfo *pgri;
433 vaddr_t curkva;
434 int i;
435
436 /* allocate structures */
437 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
438 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
439 pgri->pgr_npages = npages;
440 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
441 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
442
443 /* copy contents to "mapped" memory */
444 for (i = 0, curkva = pgri->pgr_kva;
445 i < npages;
446 i++, curkva += PAGE_SIZE) {
447 /*
448 * We need to copy the previous contents of the pages to
449 * the window even if we are reading from the
450 * device, since the device might not fill the contents of
451 * the full mapped range and we will end up corrupting
452 * data when we unmap the window.
453 */
454 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
455 pgri->pgr_pgs[i] = pgs[i];
456 }
457
458 mutex_enter(&pagermtx);
459 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
460 mutex_exit(&pagermtx);
461
462 return pgri->pgr_kva;
463 }
464
465 /*
466 * map out the pager window. return contents from VA to page storage
467 * and free structures.
468 *
469 * Note: does not currently support partial frees
470 */
471 void
472 uvm_pagermapout(vaddr_t kva, int npages)
473 {
474 struct pagerinfo *pgri;
475 vaddr_t curkva;
476 int i;
477
478 mutex_enter(&pagermtx);
479 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
480 if (pgri->pgr_kva == kva)
481 break;
482 }
483 KASSERT(pgri);
484 if (pgri->pgr_npages != npages)
485 panic("uvm_pagermapout: partial unmapping not supported");
486 LIST_REMOVE(pgri, pgr_entries);
487 mutex_exit(&pagermtx);
488
489 if (pgri->pgr_read) {
490 for (i = 0, curkva = pgri->pgr_kva;
491 i < pgri->pgr_npages;
492 i++, curkva += PAGE_SIZE) {
493 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
494 }
495 }
496
497 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
498 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
499 kmem_free(pgri, sizeof(*pgri));
500 }
501
502 /*
503 * convert va in pager window to page structure.
504 * XXX: how expensive is this (global lock, list traversal)?
505 */
506 struct vm_page *
507 uvm_pageratop(vaddr_t va)
508 {
509 struct pagerinfo *pgri;
510 struct vm_page *pg = NULL;
511 int i;
512
513 mutex_enter(&pagermtx);
514 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
515 if (pgri->pgr_kva <= va
516 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
517 break;
518 }
519 if (pgri) {
520 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
521 pg = pgri->pgr_pgs[i];
522 }
523 mutex_exit(&pagermtx);
524
525 return pg;
526 }
527
528 /*
529 * Called with the vm object locked.
530 *
531 * Put vnode object pages at the end of the access queue to indicate
532 * they have been recently accessed and should not be immediate
533 * candidates for pageout. Do not do this for lookups done by
534 * the pagedaemon to mimic pmap_kentered mappings which don't track
535 * access information.
536 */
537 struct vm_page *
538 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
539 {
540 struct vm_page *pg;
541 bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
542
543 pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
544 if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
545 mutex_enter(&uvm_pageqlock);
546 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
547 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
548 mutex_exit(&uvm_pageqlock);
549 }
550
551 return pg;
552 }
553
554 void
555 uvm_page_unbusy(struct vm_page **pgs, int npgs)
556 {
557 struct vm_page *pg;
558 int i;
559
560 KASSERT(npgs > 0);
561 KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
562
563 for (i = 0; i < npgs; i++) {
564 pg = pgs[i];
565 if (pg == NULL)
566 continue;
567
568 KASSERT(pg->flags & PG_BUSY);
569 if (pg->flags & PG_WANTED)
570 wakeup(pg);
571 if (pg->flags & PG_RELEASED)
572 uvm_pagefree(pg);
573 else
574 pg->flags &= ~(PG_WANTED|PG_BUSY);
575 }
576 }
577
578 void
579 uvm_estimatepageable(int *active, int *inactive)
580 {
581
582 /* XXX: guessing game */
583 *active = 1024;
584 *inactive = 1024;
585 }
586
587 struct vm_map_kernel *
588 vm_map_to_kernel(struct vm_map *map)
589 {
590
591 return (struct vm_map_kernel *)map;
592 }
593
594 bool
595 vm_map_starved_p(struct vm_map *map)
596 {
597
598 if (map->flags & VM_MAP_WANTVA)
599 return true;
600
601 return false;
602 }
603
604 int
605 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
606 {
607
608 panic("%s: unimplemented", __func__);
609 }
610
611 void
612 uvm_unloan(void *v, int npages, int flags)
613 {
614
615 panic("%s: unimplemented", __func__);
616 }
617
618 int
619 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
620 struct vm_page **opp)
621 {
622
623 return EBUSY;
624 }
625
626 struct vm_page *
627 uvm_loanbreak(struct vm_page *pg)
628 {
629
630 panic("%s: unimplemented", __func__);
631 }
632
633 void
634 ubc_purge(struct uvm_object *uobj)
635 {
636
637 }
638
639 #ifdef DEBUGPRINT
640 void
641 uvm_object_printit(struct uvm_object *uobj, bool full,
642 void (*pr)(const char *, ...))
643 {
644
645 pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
646 }
647 #endif
648
649 vaddr_t
650 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
651 {
652
653 return 0;
654 }
655
656 int
657 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
658 vm_prot_t prot, bool set_max)
659 {
660
661 return EOPNOTSUPP;
662 }
663
664 /*
665 * UVM km
666 */
667
668 vaddr_t
669 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
670 {
671 void *rv, *desired = NULL;
672 int alignbit, error;
673
674 #ifdef __x86_64__
675 /*
676 * On amd64, allocate all module memory from the lowest 2GB.
677 * This is because NetBSD kernel modules are compiled
678 * with -mcmodel=kernel and reserve only 4 bytes for
679 * offsets. If we load code compiled with -mcmodel=kernel
680 * anywhere except the lowest or highest 2GB, it will not
681 * work. Since userspace does not have access to the highest
682 * 2GB, use the lowest 2GB.
683 *
684 * Note: this assumes the rump kernel resides in
685 * the lowest 2GB as well.
686 *
687 * Note2: yes, it's a quick hack, but since this the only
688 * place where we care about the map we're allocating from,
689 * just use a simple "if" instead of coming up with a fancy
690 * generic solution.
691 */
692 extern struct vm_map *module_map;
693 if (map == module_map) {
694 desired = (void *)(0x80000000 - size);
695 }
696 #endif
697
698 alignbit = 0;
699 if (align) {
700 alignbit = ffs(align)-1;
701 }
702
703 rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
704 &error);
705 if (rv == NULL) {
706 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
707 return 0;
708 else
709 panic("uvm_km_alloc failed");
710 }
711
712 if (flags & UVM_KMF_ZERO)
713 memset(rv, 0, size);
714
715 return (vaddr_t)rv;
716 }
717
718 void
719 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
720 {
721
722 rumpuser_unmap((void *)vaddr, size);
723 }
724
725 struct vm_map *
726 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
727 vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
728 {
729
730 return (struct vm_map *)417416;
731 }
732
733 vaddr_t
734 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
735 {
736
737 return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
738 waitok, "kmalloc");
739 }
740
741 void
742 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
743 {
744
745 rump_hyperfree((void *)addr, PAGE_SIZE);
746 }
747
748 vaddr_t
749 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
750 {
751
752 return uvm_km_alloc_poolpage(map, waitok);
753 }
754
755 void
756 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
757 {
758
759 uvm_km_free_poolpage(map, vaddr);
760 }
761
762 void
763 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
764 {
765
766 /* we eventually maybe want some model for available memory */
767 }
768
769 /*
770 * VM space locking routines. We don't really have to do anything,
771 * since the pages are always "wired" (both local and remote processes).
772 */
773 int
774 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
775 {
776
777 return 0;
778 }
779
780 void
781 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
782 {
783
784 }
785
786 /*
787 * For the local case the buffer mappers don't need to do anything.
788 * For the remote case we need to reserve space and copy data in or
789 * out, depending on B_READ/B_WRITE.
790 */
791 int
792 vmapbuf(struct buf *bp, vsize_t len)
793 {
794 int error = 0;
795
796 bp->b_saveaddr = bp->b_data;
797
798 /* remote case */
799 if (!RUMP_LOCALPROC_P(curproc)) {
800 bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
801 if (BUF_ISWRITE(bp)) {
802 error = copyin(bp->b_saveaddr, bp->b_data, len);
803 if (error) {
804 rump_hyperfree(bp->b_data, len);
805 bp->b_data = bp->b_saveaddr;
806 bp->b_saveaddr = 0;
807 }
808 }
809 }
810
811 return error;
812 }
813
814 void
815 vunmapbuf(struct buf *bp, vsize_t len)
816 {
817
818 /* remote case */
819 if (!RUMP_LOCALPROC_P(bp->b_proc)) {
820 if (BUF_ISREAD(bp)) {
821 bp->b_error = copyout_proc(bp->b_proc,
822 bp->b_data, bp->b_saveaddr, len);
823 }
824 rump_hyperfree(bp->b_data, len);
825 }
826
827 bp->b_data = bp->b_saveaddr;
828 bp->b_saveaddr = 0;
829 }
830
831 void
832 uvmspace_addref(struct vmspace *vm)
833 {
834
835 /*
836 * No dynamically allocated vmspaces exist.
837 */
838 }
839
840 void
841 uvmspace_free(struct vmspace *vm)
842 {
843
844 /* nothing for now */
845 }
846
847 /*
848 * page life cycle stuff. it really doesn't exist, so just stubs.
849 */
850
851 void
852 uvm_pageactivate(struct vm_page *pg)
853 {
854
855 /* nada */
856 }
857
858 void
859 uvm_pagedeactivate(struct vm_page *pg)
860 {
861
862 /* nada */
863 }
864
865 void
866 uvm_pagedequeue(struct vm_page *pg)
867 {
868
869 /* nada*/
870 }
871
872 void
873 uvm_pageenqueue(struct vm_page *pg)
874 {
875
876 /* nada */
877 }
878
879 void
880 uvmpdpol_anfree(struct vm_anon *an)
881 {
882
883 /* nada */
884 }
885
886 /*
887 * Physical address accessors.
888 */
889
890 struct vm_page *
891 uvm_phys_to_vm_page(paddr_t pa)
892 {
893
894 return NULL;
895 }
896
897 paddr_t
898 uvm_vm_page_to_phys(const struct vm_page *pg)
899 {
900
901 return 0;
902 }
903
904 /*
905 * Routines related to the Page Baroness.
906 */
907
908 void
909 uvm_wait(const char *msg)
910 {
911
912 if (__predict_false(curlwp == uvm.pagedaemon_lwp))
913 panic("pagedaemon out of memory");
914 if (__predict_false(rump_threads == 0))
915 panic("pagedaemon missing (RUMP_THREADS = 0)");
916
917 mutex_enter(&pdaemonmtx);
918 pdaemon_waiters++;
919 cv_signal(&pdaemoncv);
920 cv_wait(&oomwait, &pdaemonmtx);
921 mutex_exit(&pdaemonmtx);
922 }
923
924 void
925 uvm_pageout_start(int npages)
926 {
927
928 mutex_enter(&pdaemonmtx);
929 uvmexp.paging += npages;
930 mutex_exit(&pdaemonmtx);
931 }
932
933 void
934 uvm_pageout_done(int npages)
935 {
936
937 if (!npages)
938 return;
939
940 mutex_enter(&pdaemonmtx);
941 KASSERT(uvmexp.paging >= npages);
942 uvmexp.paging -= npages;
943
944 if (pdaemon_waiters) {
945 pdaemon_waiters = 0;
946 cv_broadcast(&oomwait);
947 }
948 mutex_exit(&pdaemonmtx);
949 }
950
951 static bool
952 processpage(struct vm_page *pg, bool *lockrunning)
953 {
954 struct uvm_object *uobj;
955
956 uobj = pg->uobject;
957 if (mutex_tryenter(uobj->vmobjlock)) {
958 if ((pg->flags & PG_BUSY) == 0) {
959 mutex_exit(&uvm_pageqlock);
960 uobj->pgops->pgo_put(uobj, pg->offset,
961 pg->offset + PAGE_SIZE,
962 PGO_CLEANIT|PGO_FREE);
963 KASSERT(!mutex_owned(uobj->vmobjlock));
964 return true;
965 } else {
966 mutex_exit(uobj->vmobjlock);
967 }
968 } else if (*lockrunning == false && ncpu > 1) {
969 CPU_INFO_ITERATOR cii;
970 struct cpu_info *ci;
971 struct lwp *l;
972
973 l = mutex_owner(uobj->vmobjlock);
974 for (CPU_INFO_FOREACH(cii, ci)) {
975 if (ci->ci_curlwp == l) {
976 *lockrunning = true;
977 break;
978 }
979 }
980 }
981
982 return false;
983 }
984
985 /*
986 * The Diabolical pageDaemon Director (DDD).
987 *
988 * This routine can always use better heuristics.
989 */
990 void
991 uvm_pageout(void *arg)
992 {
993 struct vm_page *pg;
994 struct pool *pp, *pp_first;
995 uint64_t where;
996 int cleaned, skip, skipped;
997 int waspaging;
998 bool succ;
999 bool lockrunning;
1000
1001 mutex_enter(&pdaemonmtx);
1002 for (;;) {
1003 if (!NEED_PAGEDAEMON()) {
1004 kernel_map->flags &= ~VM_MAP_WANTVA;
1005 kmem_map->flags &= ~VM_MAP_WANTVA;
1006 }
1007
1008 if (pdaemon_waiters) {
1009 pdaemon_waiters = 0;
1010 cv_broadcast(&oomwait);
1011 }
1012
1013 cv_wait(&pdaemoncv, &pdaemonmtx);
1014 uvmexp.pdwoke++;
1015 waspaging = uvmexp.paging;
1016
1017 /* tell the world that we are hungry */
1018 kernel_map->flags |= VM_MAP_WANTVA;
1019 kmem_map->flags |= VM_MAP_WANTVA;
1020 mutex_exit(&pdaemonmtx);
1021
1022 /*
1023 * step one: reclaim the page cache. this should give
1024 * us the biggest earnings since whole pages are released
1025 * into backing memory.
1026 */
1027 pool_cache_reclaim(&pagecache);
1028 if (!NEED_PAGEDAEMON()) {
1029 mutex_enter(&pdaemonmtx);
1030 continue;
1031 }
1032
1033 /*
1034 * Ok, so that didn't help. Next, try to hunt memory
1035 * by pushing out vnode pages. The pages might contain
1036 * useful cached data, but we need the memory.
1037 */
1038 cleaned = 0;
1039 skip = 0;
1040 lockrunning = false;
1041 again:
1042 mutex_enter(&uvm_pageqlock);
1043 while (cleaned < PAGEDAEMON_OBJCHUNK) {
1044 skipped = 0;
1045 TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1046
1047 /*
1048 * skip over pages we _might_ have tried
1049 * to handle earlier. they might not be
1050 * exactly the same ones, but I'm not too
1051 * concerned.
1052 */
1053 while (skipped++ < skip)
1054 continue;
1055
1056 if (processpage(pg, &lockrunning)) {
1057 cleaned++;
1058 goto again;
1059 }
1060
1061 skip++;
1062 }
1063 break;
1064 }
1065 mutex_exit(&uvm_pageqlock);
1066
1067 /*
1068 * Ok, someone is running with an object lock held.
1069 * We want to yield the host CPU to make sure the
1070 * thread is not parked on the host. Since sched_yield()
1071 * doesn't appear to do anything on NetBSD, nanosleep
1072 * for the smallest possible time and hope we're back in
1073 * the game soon.
1074 */
1075 if (cleaned == 0 && lockrunning) {
1076 uint64_t sec, nsec;
1077
1078 sec = 0;
1079 nsec = 1;
1080 rumpuser_nanosleep(&sec, &nsec, NULL);
1081
1082 lockrunning = false;
1083 skip = 0;
1084
1085 /* and here we go again */
1086 goto again;
1087 }
1088
1089 /*
1090 * And of course we need to reclaim the page cache
1091 * again to actually release memory.
1092 */
1093 pool_cache_reclaim(&pagecache);
1094 if (!NEED_PAGEDAEMON()) {
1095 mutex_enter(&pdaemonmtx);
1096 continue;
1097 }
1098
1099 /*
1100 * Still not there? sleeves come off right about now.
1101 * First: do reclaim on kernel/kmem map.
1102 */
1103 callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
1104 NULL);
1105 callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
1106 NULL);
1107
1108 /*
1109 * And then drain the pools. Wipe them out ... all of them.
1110 */
1111
1112 pool_drain_start(&pp_first, &where);
1113 pp = pp_first;
1114 for (;;) {
1115 rump_vfs_drainbufs(10 /* XXX: estimate better */);
1116 succ = pool_drain_end(pp, where);
1117 if (succ)
1118 break;
1119 pool_drain_start(&pp, &where);
1120 if (pp == pp_first) {
1121 succ = pool_drain_end(pp, where);
1122 break;
1123 }
1124 }
1125
1126 /*
1127 * Need to use PYEC on our bag of tricks.
1128 * Unfortunately, the wife just borrowed it.
1129 */
1130
1131 mutex_enter(&pdaemonmtx);
1132 if (!succ && cleaned == 0 && pdaemon_waiters &&
1133 uvmexp.paging == 0) {
1134 rumpuser_dprintf("pagedaemoness: failed to reclaim "
1135 "memory ... sleeping (deadlock?)\n");
1136 cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
1137 mutex_enter(&pdaemonmtx);
1138 }
1139 }
1140
1141 panic("you can swap out any time you like, but you can never leave");
1142 }
1143
1144 void
1145 uvm_kick_pdaemon()
1146 {
1147
1148 /*
1149 * Wake up the diabolical pagedaemon director if we are over
1150 * 90% of the memory limit. This is a complete and utter
1151 * stetson-harrison decision which you are allowed to finetune.
1152 * Don't bother locking. If we have some unflushed caches,
1153 * other waker-uppers will deal with the issue.
1154 */
1155 if (NEED_PAGEDAEMON()) {
1156 cv_signal(&pdaemoncv);
1157 }
1158 }
1159
1160 void *
1161 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1162 {
1163 unsigned long newmem;
1164 void *rv;
1165
1166 uvm_kick_pdaemon(); /* ouch */
1167
1168 /* first we must be within the limit */
1169 limitagain:
1170 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1171 newmem = atomic_add_long_nv(&curphysmem, howmuch);
1172 if (newmem > rump_physmemlimit) {
1173 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1174 if (!waitok) {
1175 return NULL;
1176 }
1177 uvm_wait(wmsg);
1178 goto limitagain;
1179 }
1180 }
1181
1182 /* second, we must get something from the backend */
1183 again:
1184 rv = rumpuser_malloc(howmuch, alignment);
1185 if (__predict_false(rv == NULL && waitok)) {
1186 uvm_wait(wmsg);
1187 goto again;
1188 }
1189
1190 return rv;
1191 }
1192
1193 void
1194 rump_hyperfree(void *what, size_t size)
1195 {
1196
1197 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1198 atomic_add_long(&curphysmem, -size);
1199 }
1200 rumpuser_free(what);
1201 }
1202