Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.120.2.2
      1 /*	$NetBSD: vm.c,v 1.120.2.2 2011/11/10 14:33:18 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.120.2.2 2011/11/10 14:33:18 yamt Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/mman.h>
     52 #include <sys/null.h>
     53 #include <sys/vnode.h>
     54 
     55 #include <machine/pmap.h>
     56 
     57 #include <rump/rumpuser.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_ddb.h>
     61 #include <uvm/uvm_pdpolicy.h>
     62 #include <uvm/uvm_prot.h>
     63 #include <uvm/uvm_readahead.h>
     64 
     65 #include "rump_private.h"
     66 #include "rump_vfs_private.h"
     67 
     68 kmutex_t uvm_pageqlock;
     69 kmutex_t uvm_swap_data_lock;
     70 
     71 struct uvmexp uvmexp;
     72 struct uvm uvm;
     73 
     74 #ifdef __uvmexp_pagesize
     75 int *uvmexp_pagesize = &uvmexp.pagesize;
     76 int *uvmexp_pagemask = &uvmexp.pagemask;
     77 int *uvmexp_pageshift = &uvmexp.pageshift;
     78 #endif
     79 
     80 struct vm_map rump_vmmap;
     81 static struct vm_map_kernel kmem_map_store;
     82 struct vm_map *kmem_map = &kmem_map_store.vmk_map;
     83 
     84 static struct vm_map_kernel kernel_map_store;
     85 struct vm_map *kernel_map = &kernel_map_store.vmk_map;
     86 
     87 static unsigned int pdaemon_waiters;
     88 static kmutex_t pdaemonmtx;
     89 static kcondvar_t pdaemoncv, oomwait;
     90 
     91 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     92 static unsigned long curphysmem;
     93 static unsigned long dddlim;		/* 90% of memory limit used */
     94 #define NEED_PAGEDAEMON() \
     95     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
     96 
     97 /*
     98  * Try to free two pages worth of pages from objects.
     99  * If this succesfully frees a full page cache page, we'll
    100  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    101  */
    102 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    103 
    104 /*
    105  * Keep a list of least recently used pages.  Since the only way a
    106  * rump kernel can "access" a page is via lookup, we put the page
    107  * at the back of queue every time a lookup for it is done.  If the
    108  * page is in front of this global queue and we're short of memory,
    109  * it's a candidate for pageout.
    110  */
    111 static struct pglist vmpage_lruqueue;
    112 static unsigned vmpage_onqueue;
    113 
    114 /*
    115  * vm pages
    116  */
    117 
    118 static int
    119 pgctor(void *arg, void *obj, int flags)
    120 {
    121 	struct vm_page *pg = obj;
    122 
    123 	memset(pg, 0, sizeof(*pg));
    124 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    125 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    126 	return pg->uanon == NULL;
    127 }
    128 
    129 static void
    130 pgdtor(void *arg, void *obj)
    131 {
    132 	struct vm_page *pg = obj;
    133 
    134 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    135 }
    136 
    137 static struct pool_cache pagecache;
    138 
    139 /*
    140  * Called with the object locked.  We don't support anons.
    141  */
    142 struct vm_page *
    143 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    144 	int flags, int strat, int free_list)
    145 {
    146 	struct vm_page *pg;
    147 	int error;
    148 
    149 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
    150 	KASSERT(anon == NULL);
    151 
    152 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    153 	if (__predict_false(pg == NULL)) {
    154 		return NULL;
    155 	}
    156 
    157 	pg->offset = off;
    158 	pg->uobject = uobj;
    159 
    160 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    161 	if (flags & UVM_PGA_ZERO) {
    162 		uvm_pagezero(pg);
    163 	}
    164 
    165 	error = radix_tree_insert_node(&uobj->uo_pages,
    166 	    pg->offset >> PAGE_SHIFT, pg);
    167 	KASSERT(error == 0);
    168 
    169 	/*
    170 	 * Don't put anons on the LRU page queue.  We can't flush them
    171 	 * (there's no concept of swap in a rump kernel), so no reason
    172 	 * to bother with them.
    173 	 */
    174 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    175 		atomic_inc_uint(&vmpage_onqueue);
    176 		mutex_enter(&uvm_pageqlock);
    177 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    178 		mutex_exit(&uvm_pageqlock);
    179 	}
    180 
    181 	uobj->uo_npages++;
    182 
    183 	return pg;
    184 }
    185 
    186 /*
    187  * Release a page.
    188  *
    189  * Called with the vm object locked.
    190  */
    191 void
    192 uvm_pagefree(struct vm_page *pg)
    193 {
    194 	struct uvm_object *uobj = pg->uobject;
    195 	struct vm_page *opg;
    196 
    197 	KASSERT(mutex_owned(&uvm_pageqlock));
    198 	KASSERT(mutex_owned(uobj->vmobjlock));
    199 
    200 	if (pg->flags & PG_WANTED)
    201 		wakeup(pg);
    202 
    203 	uobj->uo_npages--;
    204 	opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    205 	KASSERT(pg == opg);
    206 
    207 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    208 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    209 		atomic_dec_uint(&vmpage_onqueue);
    210 	}
    211 
    212 	pool_cache_put(&pagecache, pg);
    213 }
    214 
    215 void
    216 uvm_pagezero(struct vm_page *pg)
    217 {
    218 
    219 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    220 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    221 }
    222 
    223 /*
    224  * uvm_page_locked_p: return true if object associated with page is
    225  * locked.  this is a weak check for runtime assertions only.
    226  */
    227 
    228 bool
    229 uvm_page_locked_p(struct vm_page *pg)
    230 {
    231 
    232 	return mutex_owned(pg->uobject->vmobjlock);
    233 }
    234 
    235 /*
    236  * Misc routines
    237  */
    238 
    239 static kmutex_t pagermtx;
    240 
    241 void
    242 uvm_init(void)
    243 {
    244 	char buf[64];
    245 	int error;
    246 
    247 	if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
    248 		unsigned long tmp;
    249 		char *ep;
    250 		int mult;
    251 
    252 		tmp = strtoul(buf, &ep, 10);
    253 		if (strlen(ep) > 1)
    254 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    255 
    256 		/* mini-dehumanize-number */
    257 		mult = 1;
    258 		switch (*ep) {
    259 		case 'k':
    260 			mult = 1024;
    261 			break;
    262 		case 'm':
    263 			mult = 1024*1024;
    264 			break;
    265 		case 'g':
    266 			mult = 1024*1024*1024;
    267 			break;
    268 		case 0:
    269 			break;
    270 		default:
    271 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    272 		}
    273 		rump_physmemlimit = tmp * mult;
    274 
    275 		if (rump_physmemlimit / mult != tmp)
    276 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    277 		/* it's not like we'd get far with, say, 1 byte, but ... */
    278 		if (rump_physmemlimit == 0)
    279 			panic("uvm_init: no memory");
    280 
    281 #define HUMANIZE_BYTES 9
    282 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    283 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    284 #undef HUMANIZE_BYTES
    285 		dddlim = 9 * (rump_physmemlimit / 10);
    286 	} else {
    287 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    288 	}
    289 	aprint_verbose("total memory = %s\n", buf);
    290 
    291 	TAILQ_INIT(&vmpage_lruqueue);
    292 
    293 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    294 
    295 #ifndef __uvmexp_pagesize
    296 	uvmexp.pagesize = PAGE_SIZE;
    297 	uvmexp.pagemask = PAGE_MASK;
    298 	uvmexp.pageshift = PAGE_SHIFT;
    299 #else
    300 #define FAKE_PAGE_SHIFT 12
    301 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    302 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    303 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    304 #undef FAKE_PAGE_SHIFT
    305 #endif
    306 
    307 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    308 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    309 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
    310 
    311 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    312 	cv_init(&pdaemoncv, "pdaemon");
    313 	cv_init(&oomwait, "oomwait");
    314 
    315 	kernel_map->pmap = pmap_kernel();
    316 	callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
    317 	kmem_map->pmap = pmap_kernel();
    318 	callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
    319 
    320 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    321 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    322 }
    323 
    324 void
    325 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    326 {
    327 
    328 	vm->vm_map.pmap = pmap_kernel();
    329 	vm->vm_refcnt = 1;
    330 }
    331 
    332 void
    333 uvm_pagewire(struct vm_page *pg)
    334 {
    335 
    336 	/* nada */
    337 }
    338 
    339 void
    340 uvm_pageunwire(struct vm_page *pg)
    341 {
    342 
    343 	/* nada */
    344 }
    345 
    346 /*
    347  * The uvm reclaim hook is not currently necessary because it is
    348  * used only by ZFS and implements exactly the same functionality
    349  * as the kva reclaim hook which we already run in the pagedaemon
    350  * (rump vm does not have a concept of uvm_map(), so we cannot
    351  * reclaim kva it when a mapping operation fails due to insufficient
    352  * available kva).
    353  */
    354 void
    355 uvm_reclaim_hook_add(struct uvm_reclaim_hook *hook_entry)
    356 {
    357 
    358 }
    359 __strong_alias(uvm_reclaim_hook_del,uvm_reclaim_hook_add);
    360 
    361 /* where's your schmonz now? */
    362 #define PUNLIMIT(a)	\
    363 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    364 void
    365 uvm_init_limits(struct proc *p)
    366 {
    367 
    368 	PUNLIMIT(RLIMIT_STACK);
    369 	PUNLIMIT(RLIMIT_DATA);
    370 	PUNLIMIT(RLIMIT_RSS);
    371 	PUNLIMIT(RLIMIT_AS);
    372 	/* nice, cascade */
    373 }
    374 #undef PUNLIMIT
    375 
    376 /*
    377  * This satisfies the "disgusting mmap hack" used by proplib.
    378  * We probably should grow some more assertables to make sure we're
    379  * not satisfying anything we shouldn't be satisfying.
    380  */
    381 int
    382 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    383 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    384 {
    385 	void *uaddr;
    386 	int error;
    387 
    388 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    389 		panic("uvm_mmap() variant unsupported");
    390 	if (flags != (MAP_PRIVATE | MAP_ANON))
    391 		panic("uvm_mmap() variant unsupported");
    392 
    393 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    394 	if (*addr != 0)
    395 		panic("uvm_mmap() variant unsupported");
    396 
    397 	if (RUMP_LOCALPROC_P(curproc)) {
    398 		uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    399 	} else {
    400 		error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
    401 		    size, &uaddr);
    402 	}
    403 	if (uaddr == NULL)
    404 		return error;
    405 
    406 	*addr = (vaddr_t)uaddr;
    407 	return 0;
    408 }
    409 
    410 struct pagerinfo {
    411 	vaddr_t pgr_kva;
    412 	int pgr_npages;
    413 	struct vm_page **pgr_pgs;
    414 	bool pgr_read;
    415 
    416 	LIST_ENTRY(pagerinfo) pgr_entries;
    417 };
    418 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    419 
    420 /*
    421  * Pager "map" in routine.  Instead of mapping, we allocate memory
    422  * and copy page contents there.  Not optimal or even strictly
    423  * correct (the caller might modify the page contents after mapping
    424  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    425  */
    426 vaddr_t
    427 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    428 {
    429 	struct pagerinfo *pgri;
    430 	vaddr_t curkva;
    431 	int i;
    432 
    433 	/* allocate structures */
    434 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    435 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    436 	pgri->pgr_npages = npages;
    437 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    438 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    439 
    440 	/* copy contents to "mapped" memory */
    441 	for (i = 0, curkva = pgri->pgr_kva;
    442 	    i < npages;
    443 	    i++, curkva += PAGE_SIZE) {
    444 		/*
    445 		 * We need to copy the previous contents of the pages to
    446 		 * the window even if we are reading from the
    447 		 * device, since the device might not fill the contents of
    448 		 * the full mapped range and we will end up corrupting
    449 		 * data when we unmap the window.
    450 		 */
    451 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    452 		pgri->pgr_pgs[i] = pgs[i];
    453 	}
    454 
    455 	mutex_enter(&pagermtx);
    456 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    457 	mutex_exit(&pagermtx);
    458 
    459 	return pgri->pgr_kva;
    460 }
    461 
    462 /*
    463  * map out the pager window.  return contents from VA to page storage
    464  * and free structures.
    465  *
    466  * Note: does not currently support partial frees
    467  */
    468 void
    469 uvm_pagermapout(vaddr_t kva, int npages)
    470 {
    471 	struct pagerinfo *pgri;
    472 	vaddr_t curkva;
    473 	int i;
    474 
    475 	mutex_enter(&pagermtx);
    476 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    477 		if (pgri->pgr_kva == kva)
    478 			break;
    479 	}
    480 	KASSERT(pgri);
    481 	if (pgri->pgr_npages != npages)
    482 		panic("uvm_pagermapout: partial unmapping not supported");
    483 	LIST_REMOVE(pgri, pgr_entries);
    484 	mutex_exit(&pagermtx);
    485 
    486 	if (pgri->pgr_read) {
    487 		for (i = 0, curkva = pgri->pgr_kva;
    488 		    i < pgri->pgr_npages;
    489 		    i++, curkva += PAGE_SIZE) {
    490 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    491 		}
    492 	}
    493 
    494 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    495 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    496 	kmem_free(pgri, sizeof(*pgri));
    497 }
    498 
    499 /*
    500  * convert va in pager window to page structure.
    501  * XXX: how expensive is this (global lock, list traversal)?
    502  */
    503 struct vm_page *
    504 uvm_pageratop(vaddr_t va)
    505 {
    506 	struct pagerinfo *pgri;
    507 	struct vm_page *pg = NULL;
    508 	int i;
    509 
    510 	mutex_enter(&pagermtx);
    511 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    512 		if (pgri->pgr_kva <= va
    513 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    514 			break;
    515 	}
    516 	if (pgri) {
    517 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    518 		pg = pgri->pgr_pgs[i];
    519 	}
    520 	mutex_exit(&pagermtx);
    521 
    522 	return pg;
    523 }
    524 
    525 /*
    526  * Called with the vm object locked.
    527  *
    528  * Put vnode object pages at the end of the access queue to indicate
    529  * they have been recently accessed and should not be immediate
    530  * candidates for pageout.  Do not do this for lookups done by
    531  * the pagedaemon to mimic pmap_kentered mappings which don't track
    532  * access information.
    533  */
    534 struct vm_page *
    535 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    536 {
    537 	struct vm_page *pg;
    538 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    539 
    540 	pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
    541 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    542 		mutex_enter(&uvm_pageqlock);
    543 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    544 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    545 		mutex_exit(&uvm_pageqlock);
    546 	}
    547 
    548 	return pg;
    549 }
    550 
    551 void
    552 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    553 {
    554 	struct vm_page *pg;
    555 	int i;
    556 
    557 	KASSERT(npgs > 0);
    558 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
    559 
    560 	for (i = 0; i < npgs; i++) {
    561 		pg = pgs[i];
    562 		if (pg == NULL)
    563 			continue;
    564 
    565 		KASSERT(pg->flags & PG_BUSY);
    566 		if (pg->flags & PG_WANTED)
    567 			wakeup(pg);
    568 		if (pg->flags & PG_RELEASED)
    569 			uvm_pagefree(pg);
    570 		else
    571 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    572 	}
    573 }
    574 
    575 void
    576 uvm_estimatepageable(int *active, int *inactive)
    577 {
    578 
    579 	/* XXX: guessing game */
    580 	*active = 1024;
    581 	*inactive = 1024;
    582 }
    583 
    584 struct vm_map_kernel *
    585 vm_map_to_kernel(struct vm_map *map)
    586 {
    587 
    588 	return (struct vm_map_kernel *)map;
    589 }
    590 
    591 bool
    592 vm_map_starved_p(struct vm_map *map)
    593 {
    594 
    595 	if (map->flags & VM_MAP_WANTVA)
    596 		return true;
    597 
    598 	return false;
    599 }
    600 
    601 int
    602 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    603 {
    604 
    605 	panic("%s: unimplemented", __func__);
    606 }
    607 
    608 void
    609 uvm_unloan(void *v, int npages, int flags)
    610 {
    611 
    612 	panic("%s: unimplemented", __func__);
    613 }
    614 
    615 int
    616 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    617 	struct vm_page **opp)
    618 {
    619 
    620 	return EBUSY;
    621 }
    622 
    623 struct vm_page *
    624 uvm_loanbreak(struct vm_page *pg)
    625 {
    626 
    627 	panic("%s: unimplemented", __func__);
    628 }
    629 
    630 void
    631 ubc_purge(struct uvm_object *uobj)
    632 {
    633 
    634 }
    635 
    636 #ifdef DEBUGPRINT
    637 void
    638 uvm_object_printit(struct uvm_object *uobj, bool full,
    639 	void (*pr)(const char *, ...))
    640 {
    641 
    642 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    643 }
    644 #endif
    645 
    646 vaddr_t
    647 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    648 {
    649 
    650 	return 0;
    651 }
    652 
    653 int
    654 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    655 	vm_prot_t prot, bool set_max)
    656 {
    657 
    658 	return EOPNOTSUPP;
    659 }
    660 
    661 /*
    662  * UVM km
    663  */
    664 
    665 vaddr_t
    666 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    667 {
    668 	void *rv, *desired = NULL;
    669 	int alignbit, error;
    670 
    671 #ifdef __x86_64__
    672 	/*
    673 	 * On amd64, allocate all module memory from the lowest 2GB.
    674 	 * This is because NetBSD kernel modules are compiled
    675 	 * with -mcmodel=kernel and reserve only 4 bytes for
    676 	 * offsets.  If we load code compiled with -mcmodel=kernel
    677 	 * anywhere except the lowest or highest 2GB, it will not
    678 	 * work.  Since userspace does not have access to the highest
    679 	 * 2GB, use the lowest 2GB.
    680 	 *
    681 	 * Note: this assumes the rump kernel resides in
    682 	 * the lowest 2GB as well.
    683 	 *
    684 	 * Note2: yes, it's a quick hack, but since this the only
    685 	 * place where we care about the map we're allocating from,
    686 	 * just use a simple "if" instead of coming up with a fancy
    687 	 * generic solution.
    688 	 */
    689 	extern struct vm_map *module_map;
    690 	if (map == module_map) {
    691 		desired = (void *)(0x80000000 - size);
    692 	}
    693 #endif
    694 
    695 	alignbit = 0;
    696 	if (align) {
    697 		alignbit = ffs(align)-1;
    698 	}
    699 
    700 	rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
    701 	    &error);
    702 	if (rv == NULL) {
    703 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    704 			return 0;
    705 		else
    706 			panic("uvm_km_alloc failed");
    707 	}
    708 
    709 	if (flags & UVM_KMF_ZERO)
    710 		memset(rv, 0, size);
    711 
    712 	return (vaddr_t)rv;
    713 }
    714 
    715 void
    716 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    717 {
    718 
    719 	rumpuser_unmap((void *)vaddr, size);
    720 }
    721 
    722 struct vm_map *
    723 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    724 	vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
    725 {
    726 
    727 	return (struct vm_map *)417416;
    728 }
    729 
    730 vaddr_t
    731 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    732 {
    733 
    734 	return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    735 	    waitok, "kmalloc");
    736 }
    737 
    738 void
    739 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    740 {
    741 
    742 	rump_hyperfree((void *)addr, PAGE_SIZE);
    743 }
    744 
    745 vaddr_t
    746 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    747 {
    748 
    749 	return uvm_km_alloc_poolpage(map, waitok);
    750 }
    751 
    752 void
    753 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
    754 {
    755 
    756 	uvm_km_free_poolpage(map, vaddr);
    757 }
    758 
    759 void
    760 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    761 {
    762 
    763 	/* we eventually maybe want some model for available memory */
    764 }
    765 
    766 /*
    767  * VM space locking routines.  We don't really have to do anything,
    768  * since the pages are always "wired" (both local and remote processes).
    769  */
    770 int
    771 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    772 {
    773 
    774 	return 0;
    775 }
    776 
    777 void
    778 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    779 {
    780 
    781 }
    782 
    783 /*
    784  * For the local case the buffer mappers don't need to do anything.
    785  * For the remote case we need to reserve space and copy data in or
    786  * out, depending on B_READ/B_WRITE.
    787  */
    788 int
    789 vmapbuf(struct buf *bp, vsize_t len)
    790 {
    791 	int error = 0;
    792 
    793 	bp->b_saveaddr = bp->b_data;
    794 
    795 	/* remote case */
    796 	if (!RUMP_LOCALPROC_P(curproc)) {
    797 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    798 		if (BUF_ISWRITE(bp)) {
    799 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    800 			if (error) {
    801 				rump_hyperfree(bp->b_data, len);
    802 				bp->b_data = bp->b_saveaddr;
    803 				bp->b_saveaddr = 0;
    804 			}
    805 		}
    806 	}
    807 
    808 	return error;
    809 }
    810 
    811 void
    812 vunmapbuf(struct buf *bp, vsize_t len)
    813 {
    814 
    815 	/* remote case */
    816 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    817 		if (BUF_ISREAD(bp)) {
    818 			bp->b_error = copyout_proc(bp->b_proc,
    819 			    bp->b_data, bp->b_saveaddr, len);
    820 		}
    821 		rump_hyperfree(bp->b_data, len);
    822 	}
    823 
    824 	bp->b_data = bp->b_saveaddr;
    825 	bp->b_saveaddr = 0;
    826 }
    827 
    828 void
    829 uvmspace_addref(struct vmspace *vm)
    830 {
    831 
    832 	/*
    833 	 * No dynamically allocated vmspaces exist.
    834 	 */
    835 }
    836 
    837 void
    838 uvmspace_free(struct vmspace *vm)
    839 {
    840 
    841 	/* nothing for now */
    842 }
    843 
    844 /*
    845  * page life cycle stuff.  it really doesn't exist, so just stubs.
    846  */
    847 
    848 void
    849 uvm_pageactivate(struct vm_page *pg)
    850 {
    851 
    852 	/* nada */
    853 }
    854 
    855 void
    856 uvm_pagedeactivate(struct vm_page *pg)
    857 {
    858 
    859 	/* nada */
    860 }
    861 
    862 void
    863 uvm_pagedequeue(struct vm_page *pg)
    864 {
    865 
    866 	/* nada*/
    867 }
    868 
    869 void
    870 uvm_pageenqueue(struct vm_page *pg)
    871 {
    872 
    873 	/* nada */
    874 }
    875 
    876 void
    877 uvmpdpol_anfree(struct vm_anon *an)
    878 {
    879 
    880 	/* nada */
    881 }
    882 
    883 /*
    884  * Physical address accessors.
    885  */
    886 
    887 struct vm_page *
    888 uvm_phys_to_vm_page(paddr_t pa)
    889 {
    890 
    891 	return NULL;
    892 }
    893 
    894 paddr_t
    895 uvm_vm_page_to_phys(const struct vm_page *pg)
    896 {
    897 
    898 	return 0;
    899 }
    900 
    901 /*
    902  * Routines related to the Page Baroness.
    903  */
    904 
    905 void
    906 uvm_wait(const char *msg)
    907 {
    908 
    909 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    910 		panic("pagedaemon out of memory");
    911 	if (__predict_false(rump_threads == 0))
    912 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    913 
    914 	mutex_enter(&pdaemonmtx);
    915 	pdaemon_waiters++;
    916 	cv_signal(&pdaemoncv);
    917 	cv_wait(&oomwait, &pdaemonmtx);
    918 	mutex_exit(&pdaemonmtx);
    919 }
    920 
    921 void
    922 uvm_pageout_start(int npages)
    923 {
    924 
    925 	mutex_enter(&pdaemonmtx);
    926 	uvmexp.paging += npages;
    927 	mutex_exit(&pdaemonmtx);
    928 }
    929 
    930 void
    931 uvm_pageout_done(int npages)
    932 {
    933 
    934 	if (!npages)
    935 		return;
    936 
    937 	mutex_enter(&pdaemonmtx);
    938 	KASSERT(uvmexp.paging >= npages);
    939 	uvmexp.paging -= npages;
    940 
    941 	if (pdaemon_waiters) {
    942 		pdaemon_waiters = 0;
    943 		cv_broadcast(&oomwait);
    944 	}
    945 	mutex_exit(&pdaemonmtx);
    946 }
    947 
    948 static bool
    949 processpage(struct vm_page *pg, bool *lockrunning)
    950 {
    951 	struct uvm_object *uobj;
    952 
    953 	uobj = pg->uobject;
    954 	if (mutex_tryenter(uobj->vmobjlock)) {
    955 		if ((pg->flags & PG_BUSY) == 0) {
    956 			mutex_exit(&uvm_pageqlock);
    957 			uobj->pgops->pgo_put(uobj, pg->offset,
    958 			    pg->offset + PAGE_SIZE,
    959 			    PGO_CLEANIT|PGO_FREE);
    960 			KASSERT(!mutex_owned(uobj->vmobjlock));
    961 			return true;
    962 		} else {
    963 			mutex_exit(uobj->vmobjlock);
    964 		}
    965 	} else if (*lockrunning == false && ncpu > 1) {
    966 		CPU_INFO_ITERATOR cii;
    967 		struct cpu_info *ci;
    968 		struct lwp *l;
    969 
    970 		l = mutex_owner(uobj->vmobjlock);
    971 		for (CPU_INFO_FOREACH(cii, ci)) {
    972 			if (ci->ci_curlwp == l) {
    973 				*lockrunning = true;
    974 				break;
    975 			}
    976 		}
    977 	}
    978 
    979 	return false;
    980 }
    981 
    982 /*
    983  * The Diabolical pageDaemon Director (DDD).
    984  *
    985  * This routine can always use better heuristics.
    986  */
    987 void
    988 uvm_pageout(void *arg)
    989 {
    990 	struct vm_page *pg;
    991 	struct pool *pp, *pp_first;
    992 	uint64_t where;
    993 	int cleaned, skip, skipped;
    994 	int waspaging;
    995 	bool succ;
    996 	bool lockrunning;
    997 
    998 	mutex_enter(&pdaemonmtx);
    999 	for (;;) {
   1000 		if (!NEED_PAGEDAEMON()) {
   1001 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1002 			kmem_map->flags &= ~VM_MAP_WANTVA;
   1003 		}
   1004 
   1005 		if (pdaemon_waiters) {
   1006 			pdaemon_waiters = 0;
   1007 			cv_broadcast(&oomwait);
   1008 		}
   1009 
   1010 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1011 		uvmexp.pdwoke++;
   1012 		waspaging = uvmexp.paging;
   1013 
   1014 		/* tell the world that we are hungry */
   1015 		kernel_map->flags |= VM_MAP_WANTVA;
   1016 		kmem_map->flags |= VM_MAP_WANTVA;
   1017 		mutex_exit(&pdaemonmtx);
   1018 
   1019 		/*
   1020 		 * step one: reclaim the page cache.  this should give
   1021 		 * us the biggest earnings since whole pages are released
   1022 		 * into backing memory.
   1023 		 */
   1024 		pool_cache_reclaim(&pagecache);
   1025 		if (!NEED_PAGEDAEMON()) {
   1026 			mutex_enter(&pdaemonmtx);
   1027 			continue;
   1028 		}
   1029 
   1030 		/*
   1031 		 * Ok, so that didn't help.  Next, try to hunt memory
   1032 		 * by pushing out vnode pages.  The pages might contain
   1033 		 * useful cached data, but we need the memory.
   1034 		 */
   1035 		cleaned = 0;
   1036 		skip = 0;
   1037 		lockrunning = false;
   1038  again:
   1039 		mutex_enter(&uvm_pageqlock);
   1040 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1041 			skipped = 0;
   1042 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1043 
   1044 				/*
   1045 				 * skip over pages we _might_ have tried
   1046 				 * to handle earlier.  they might not be
   1047 				 * exactly the same ones, but I'm not too
   1048 				 * concerned.
   1049 				 */
   1050 				while (skipped++ < skip)
   1051 					continue;
   1052 
   1053 				if (processpage(pg, &lockrunning)) {
   1054 					cleaned++;
   1055 					goto again;
   1056 				}
   1057 
   1058 				skip++;
   1059 			}
   1060 			break;
   1061 		}
   1062 		mutex_exit(&uvm_pageqlock);
   1063 
   1064 		/*
   1065 		 * Ok, someone is running with an object lock held.
   1066 		 * We want to yield the host CPU to make sure the
   1067 		 * thread is not parked on the host.  Since sched_yield()
   1068 		 * doesn't appear to do anything on NetBSD, nanosleep
   1069 		 * for the smallest possible time and hope we're back in
   1070 		 * the game soon.
   1071 		 */
   1072 		if (cleaned == 0 && lockrunning) {
   1073 			uint64_t sec, nsec;
   1074 
   1075 			sec = 0;
   1076 			nsec = 1;
   1077 			rumpuser_nanosleep(&sec, &nsec, NULL);
   1078 
   1079 			lockrunning = false;
   1080 			skip = 0;
   1081 
   1082 			/* and here we go again */
   1083 			goto again;
   1084 		}
   1085 
   1086 		/*
   1087 		 * And of course we need to reclaim the page cache
   1088 		 * again to actually release memory.
   1089 		 */
   1090 		pool_cache_reclaim(&pagecache);
   1091 		if (!NEED_PAGEDAEMON()) {
   1092 			mutex_enter(&pdaemonmtx);
   1093 			continue;
   1094 		}
   1095 
   1096 		/*
   1097 		 * Still not there?  sleeves come off right about now.
   1098 		 * First: do reclaim on kernel/kmem map.
   1099 		 */
   1100 		callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
   1101 		    NULL);
   1102 		callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
   1103 		    NULL);
   1104 
   1105 		/*
   1106 		 * And then drain the pools.  Wipe them out ... all of them.
   1107 		 */
   1108 
   1109 		pool_drain_start(&pp_first, &where);
   1110 		pp = pp_first;
   1111 		for (;;) {
   1112 			rump_vfs_drainbufs(10 /* XXX: estimate better */);
   1113 			succ = pool_drain_end(pp, where);
   1114 			if (succ)
   1115 				break;
   1116 			pool_drain_start(&pp, &where);
   1117 			if (pp == pp_first) {
   1118 				succ = pool_drain_end(pp, where);
   1119 				break;
   1120 			}
   1121 		}
   1122 
   1123 		/*
   1124 		 * Need to use PYEC on our bag of tricks.
   1125 		 * Unfortunately, the wife just borrowed it.
   1126 		 */
   1127 
   1128 		mutex_enter(&pdaemonmtx);
   1129 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1130 		    uvmexp.paging == 0) {
   1131 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1132 			    "memory ... sleeping (deadlock?)\n");
   1133 			cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
   1134 			mutex_enter(&pdaemonmtx);
   1135 		}
   1136 	}
   1137 
   1138 	panic("you can swap out any time you like, but you can never leave");
   1139 }
   1140 
   1141 void
   1142 uvm_kick_pdaemon()
   1143 {
   1144 
   1145 	/*
   1146 	 * Wake up the diabolical pagedaemon director if we are over
   1147 	 * 90% of the memory limit.  This is a complete and utter
   1148 	 * stetson-harrison decision which you are allowed to finetune.
   1149 	 * Don't bother locking.  If we have some unflushed caches,
   1150 	 * other waker-uppers will deal with the issue.
   1151 	 */
   1152 	if (NEED_PAGEDAEMON()) {
   1153 		cv_signal(&pdaemoncv);
   1154 	}
   1155 }
   1156 
   1157 void *
   1158 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1159 {
   1160 	unsigned long newmem;
   1161 	void *rv;
   1162 
   1163 	uvm_kick_pdaemon(); /* ouch */
   1164 
   1165 	/* first we must be within the limit */
   1166  limitagain:
   1167 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1168 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1169 		if (newmem > rump_physmemlimit) {
   1170 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1171 			if (!waitok) {
   1172 				return NULL;
   1173 			}
   1174 			uvm_wait(wmsg);
   1175 			goto limitagain;
   1176 		}
   1177 	}
   1178 
   1179 	/* second, we must get something from the backend */
   1180  again:
   1181 	rv = rumpuser_malloc(howmuch, alignment);
   1182 	if (__predict_false(rv == NULL && waitok)) {
   1183 		uvm_wait(wmsg);
   1184 		goto again;
   1185 	}
   1186 
   1187 	return rv;
   1188 }
   1189 
   1190 void
   1191 rump_hyperfree(void *what, size_t size)
   1192 {
   1193 
   1194 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1195 		atomic_add_long(&curphysmem, -size);
   1196 	}
   1197 	rumpuser_free(what);
   1198 }
   1199