vm.c revision 1.120.2.5 1 /* $NetBSD: vm.c,v 1.120.2.5 2012/04/17 00:08:49 yamt Exp $ */
2
3 /*
4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.120.2.5 2012/04/17 00:08:49 yamt Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/vmem.h>
52 #include <sys/mman.h>
53 #include <sys/null.h>
54 #include <sys/vnode.h>
55
56 #include <machine/pmap.h>
57
58 #include <rump/rumpuser.h>
59
60 #include <uvm/uvm.h>
61 #include <uvm/uvm_ddb.h>
62 #include <uvm/uvm_pdpolicy.h>
63 #include <uvm/uvm_prot.h>
64 #include <uvm/uvm_readahead.h>
65
66 #include "rump_private.h"
67 #include "rump_vfs_private.h"
68
69 kmutex_t uvm_pageqlock;
70 kmutex_t uvm_swap_data_lock;
71
72 struct uvmexp uvmexp;
73 struct uvm uvm;
74
75 #ifdef __uvmexp_pagesize
76 const int * const uvmexp_pagesize = &uvmexp.pagesize;
77 const int * const uvmexp_pagemask = &uvmexp.pagemask;
78 const int * const uvmexp_pageshift = &uvmexp.pageshift;
79 #endif
80
81 struct vm_map rump_vmmap;
82
83 static struct vm_map kernel_map_store;
84 struct vm_map *kernel_map = &kernel_map_store;
85
86 vmem_t *kmem_arena;
87 vmem_t *kmem_va_arena;
88
89 static unsigned int pdaemon_waiters;
90 static kmutex_t pdaemonmtx;
91 static kcondvar_t pdaemoncv, oomwait;
92
93 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
94 static unsigned long curphysmem;
95 static unsigned long dddlim; /* 90% of memory limit used */
96 #define NEED_PAGEDAEMON() \
97 (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
98
99 /*
100 * Try to free two pages worth of pages from objects.
101 * If this succesfully frees a full page cache page, we'll
102 * free the released page plus PAGE_SIZE/sizeof(vm_page).
103 */
104 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
105
106 /*
107 * Keep a list of least recently used pages. Since the only way a
108 * rump kernel can "access" a page is via lookup, we put the page
109 * at the back of queue every time a lookup for it is done. If the
110 * page is in front of this global queue and we're short of memory,
111 * it's a candidate for pageout.
112 */
113 static struct pglist vmpage_lruqueue;
114 static unsigned vmpage_onqueue;
115
116 /*
117 * vm pages
118 */
119
120 static int
121 pgctor(void *arg, void *obj, int flags)
122 {
123 struct vm_page *pg = obj;
124
125 memset(pg, 0, sizeof(*pg));
126 pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
127 (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
128 return pg->uanon == NULL;
129 }
130
131 static void
132 pgdtor(void *arg, void *obj)
133 {
134 struct vm_page *pg = obj;
135
136 rump_hyperfree(pg->uanon, PAGE_SIZE);
137 }
138
139 static struct pool_cache pagecache;
140
141 /*
142 * Called with the object locked. We don't support anons.
143 */
144 struct vm_page *
145 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
146 int flags, int strat, int free_list)
147 {
148 struct vm_page *pg;
149 int error;
150
151 KASSERT(uobj && mutex_owned(uobj->vmobjlock));
152 KASSERT(anon == NULL);
153
154 pg = pool_cache_get(&pagecache, PR_NOWAIT);
155 if (__predict_false(pg == NULL)) {
156 return NULL;
157 }
158
159 pg->offset = off;
160 pg->uobject = uobj;
161
162 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
163 if (flags & UVM_PGA_ZERO) {
164 uvm_pagezero(pg);
165 }
166
167 error = radix_tree_insert_node(&uobj->uo_pages,
168 pg->offset >> PAGE_SHIFT, pg);
169 KASSERT(error == 0);
170
171 /*
172 * Don't put anons on the LRU page queue. We can't flush them
173 * (there's no concept of swap in a rump kernel), so no reason
174 * to bother with them.
175 */
176 if (!UVM_OBJ_IS_AOBJ(uobj)) {
177 atomic_inc_uint(&vmpage_onqueue);
178 mutex_enter(&uvm_pageqlock);
179 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
180 mutex_exit(&uvm_pageqlock);
181 }
182
183 uobj->uo_npages++;
184
185 return pg;
186 }
187
188 /*
189 * Release a page.
190 *
191 * Called with the vm object locked.
192 */
193 void
194 uvm_pagefree(struct vm_page *pg)
195 {
196 struct uvm_object *uobj = pg->uobject;
197 struct vm_page *opg;
198
199 KASSERT(mutex_owned(&uvm_pageqlock));
200 KASSERT(mutex_owned(uobj->vmobjlock));
201
202 if (pg->flags & PG_WANTED)
203 wakeup(pg);
204
205 uobj->uo_npages--;
206 opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
207 KASSERT(pg == opg);
208
209 if (!UVM_OBJ_IS_AOBJ(uobj)) {
210 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
211 atomic_dec_uint(&vmpage_onqueue);
212 }
213
214 pool_cache_put(&pagecache, pg);
215 }
216
217 void
218 uvm_pagezero(struct vm_page *pg)
219 {
220
221 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
222 memset((void *)pg->uanon, 0, PAGE_SIZE);
223 }
224
225 /*
226 * uvm_page_locked_p: return true if object associated with page is
227 * locked. this is a weak check for runtime assertions only.
228 */
229
230 bool
231 uvm_page_locked_p(struct vm_page *pg)
232 {
233
234 return mutex_owned(pg->uobject->vmobjlock);
235 }
236
237 /*
238 * Misc routines
239 */
240
241 static kmutex_t pagermtx;
242
243 void
244 uvm_init(void)
245 {
246 char buf[64];
247 int error;
248
249 if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
250 unsigned long tmp;
251 char *ep;
252 int mult;
253
254 tmp = strtoul(buf, &ep, 10);
255 if (strlen(ep) > 1)
256 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
257
258 /* mini-dehumanize-number */
259 mult = 1;
260 switch (*ep) {
261 case 'k':
262 mult = 1024;
263 break;
264 case 'm':
265 mult = 1024*1024;
266 break;
267 case 'g':
268 mult = 1024*1024*1024;
269 break;
270 case 0:
271 break;
272 default:
273 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
274 }
275 rump_physmemlimit = tmp * mult;
276
277 if (rump_physmemlimit / mult != tmp)
278 panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
279 /* it's not like we'd get far with, say, 1 byte, but ... */
280 if (rump_physmemlimit == 0)
281 panic("uvm_init: no memory");
282
283 #define HUMANIZE_BYTES 9
284 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
285 format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
286 #undef HUMANIZE_BYTES
287 dddlim = 9 * (rump_physmemlimit / 10);
288 } else {
289 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
290 }
291 aprint_verbose("total memory = %s\n", buf);
292
293 TAILQ_INIT(&vmpage_lruqueue);
294
295 uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
296
297 #ifndef __uvmexp_pagesize
298 uvmexp.pagesize = PAGE_SIZE;
299 uvmexp.pagemask = PAGE_MASK;
300 uvmexp.pageshift = PAGE_SHIFT;
301 #else
302 #define FAKE_PAGE_SHIFT 12
303 uvmexp.pageshift = FAKE_PAGE_SHIFT;
304 uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
305 uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
306 #undef FAKE_PAGE_SHIFT
307 #endif
308
309 mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
310 mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
311 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
312
313 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
314 cv_init(&pdaemoncv, "pdaemon");
315 cv_init(&oomwait, "oomwait");
316
317 kernel_map->pmap = pmap_kernel();
318
319 pool_subsystem_init();
320 vmem_bootstrap();
321 kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
322 NULL, NULL, NULL,
323 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
324
325 vmem_init(kmem_arena);
326
327 kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
328 vmem_alloc, vmem_free, kmem_arena,
329 8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
330
331 pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
332 "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
333 }
334
335 void
336 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
337 {
338
339 vm->vm_map.pmap = pmap_kernel();
340 vm->vm_refcnt = 1;
341 }
342
343 void
344 uvm_pagewire(struct vm_page *pg)
345 {
346
347 /* nada */
348 }
349
350 void
351 uvm_pageunwire(struct vm_page *pg)
352 {
353
354 /* nada */
355 }
356
357 /* where's your schmonz now? */
358 #define PUNLIMIT(a) \
359 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
360 void
361 uvm_init_limits(struct proc *p)
362 {
363
364 PUNLIMIT(RLIMIT_STACK);
365 PUNLIMIT(RLIMIT_DATA);
366 PUNLIMIT(RLIMIT_RSS);
367 PUNLIMIT(RLIMIT_AS);
368 /* nice, cascade */
369 }
370 #undef PUNLIMIT
371
372 /*
373 * This satisfies the "disgusting mmap hack" used by proplib.
374 * We probably should grow some more assertables to make sure we're
375 * not satisfying anything we shouldn't be satisfying.
376 */
377 int
378 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
379 vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
380 {
381 void *uaddr;
382 int error;
383
384 if (prot != (VM_PROT_READ | VM_PROT_WRITE))
385 panic("uvm_mmap() variant unsupported");
386 if (flags != (MAP_PRIVATE | MAP_ANON))
387 panic("uvm_mmap() variant unsupported");
388
389 /* no reason in particular, but cf. uvm_default_mapaddr() */
390 if (*addr != 0)
391 panic("uvm_mmap() variant unsupported");
392
393 if (RUMP_LOCALPROC_P(curproc)) {
394 uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
395 } else {
396 error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
397 size, &uaddr);
398 }
399 if (uaddr == NULL)
400 return error;
401
402 *addr = (vaddr_t)uaddr;
403 return 0;
404 }
405
406 struct pagerinfo {
407 vaddr_t pgr_kva;
408 int pgr_npages;
409 struct vm_page **pgr_pgs;
410 bool pgr_read;
411
412 LIST_ENTRY(pagerinfo) pgr_entries;
413 };
414 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
415
416 /*
417 * Pager "map" in routine. Instead of mapping, we allocate memory
418 * and copy page contents there. Not optimal or even strictly
419 * correct (the caller might modify the page contents after mapping
420 * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
421 */
422 vaddr_t
423 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
424 {
425 struct pagerinfo *pgri;
426 vaddr_t curkva;
427 int i;
428
429 /* allocate structures */
430 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
431 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
432 pgri->pgr_npages = npages;
433 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
434 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
435
436 /* copy contents to "mapped" memory */
437 for (i = 0, curkva = pgri->pgr_kva;
438 i < npages;
439 i++, curkva += PAGE_SIZE) {
440 /*
441 * We need to copy the previous contents of the pages to
442 * the window even if we are reading from the
443 * device, since the device might not fill the contents of
444 * the full mapped range and we will end up corrupting
445 * data when we unmap the window.
446 */
447 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
448 pgri->pgr_pgs[i] = pgs[i];
449 }
450
451 mutex_enter(&pagermtx);
452 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
453 mutex_exit(&pagermtx);
454
455 return pgri->pgr_kva;
456 }
457
458 /*
459 * map out the pager window. return contents from VA to page storage
460 * and free structures.
461 *
462 * Note: does not currently support partial frees
463 */
464 void
465 uvm_pagermapout(vaddr_t kva, int npages)
466 {
467 struct pagerinfo *pgri;
468 vaddr_t curkva;
469 int i;
470
471 mutex_enter(&pagermtx);
472 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
473 if (pgri->pgr_kva == kva)
474 break;
475 }
476 KASSERT(pgri);
477 if (pgri->pgr_npages != npages)
478 panic("uvm_pagermapout: partial unmapping not supported");
479 LIST_REMOVE(pgri, pgr_entries);
480 mutex_exit(&pagermtx);
481
482 if (pgri->pgr_read) {
483 for (i = 0, curkva = pgri->pgr_kva;
484 i < pgri->pgr_npages;
485 i++, curkva += PAGE_SIZE) {
486 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
487 }
488 }
489
490 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
491 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
492 kmem_free(pgri, sizeof(*pgri));
493 }
494
495 /*
496 * convert va in pager window to page structure.
497 * XXX: how expensive is this (global lock, list traversal)?
498 */
499 struct vm_page *
500 uvm_pageratop(vaddr_t va)
501 {
502 struct pagerinfo *pgri;
503 struct vm_page *pg = NULL;
504 int i;
505
506 mutex_enter(&pagermtx);
507 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
508 if (pgri->pgr_kva <= va
509 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
510 break;
511 }
512 if (pgri) {
513 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
514 pg = pgri->pgr_pgs[i];
515 }
516 mutex_exit(&pagermtx);
517
518 return pg;
519 }
520
521 /*
522 * Called with the vm object locked.
523 *
524 * Put vnode object pages at the end of the access queue to indicate
525 * they have been recently accessed and should not be immediate
526 * candidates for pageout. Do not do this for lookups done by
527 * the pagedaemon to mimic pmap_kentered mappings which don't track
528 * access information.
529 */
530 struct vm_page *
531 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
532 {
533 struct vm_page *pg;
534 bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
535
536 pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
537 if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
538 mutex_enter(&uvm_pageqlock);
539 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
540 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
541 mutex_exit(&uvm_pageqlock);
542 }
543
544 return pg;
545 }
546
547 void
548 uvm_page_unbusy(struct vm_page **pgs, int npgs)
549 {
550 struct vm_page *pg;
551 int i;
552
553 KASSERT(npgs > 0);
554 KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
555
556 for (i = 0; i < npgs; i++) {
557 pg = pgs[i];
558 if (pg == NULL)
559 continue;
560
561 KASSERT(pg->flags & PG_BUSY);
562 if (pg->flags & PG_WANTED)
563 wakeup(pg);
564 if (pg->flags & PG_RELEASED)
565 uvm_pagefree(pg);
566 else
567 pg->flags &= ~(PG_WANTED|PG_BUSY);
568 }
569 }
570
571 void
572 uvm_estimatepageable(int *active, int *inactive)
573 {
574
575 /* XXX: guessing game */
576 *active = 1024;
577 *inactive = 1024;
578 }
579
580 bool
581 vm_map_starved_p(struct vm_map *map)
582 {
583
584 if (map->flags & VM_MAP_WANTVA)
585 return true;
586
587 return false;
588 }
589
590 int
591 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
592 {
593
594 panic("%s: unimplemented", __func__);
595 }
596
597 void
598 uvm_unloan(void *v, int npages, int flags)
599 {
600
601 panic("%s: unimplemented", __func__);
602 }
603
604 int
605 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
606 struct vm_page **opp)
607 {
608
609 return EBUSY;
610 }
611
612 struct vm_page *
613 uvm_loanbreak(struct vm_page *pg)
614 {
615
616 panic("%s: unimplemented", __func__);
617 }
618
619 int
620 uvm_loanobj(struct uvm_object *uobj, struct uio *uio, int advice)
621 {
622
623 return ENOTSUP;
624 }
625
626 void
627 ubc_purge(struct uvm_object *uobj)
628 {
629
630 }
631
632 #ifdef DEBUGPRINT
633 void
634 uvm_object_printit(struct uvm_object *uobj, bool full,
635 void (*pr)(const char *, ...))
636 {
637
638 pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
639 }
640 #endif
641
642 vaddr_t
643 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
644 {
645
646 return 0;
647 }
648
649 int
650 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
651 vm_prot_t prot, bool set_max)
652 {
653
654 return EOPNOTSUPP;
655 }
656
657 /*
658 * UVM km
659 */
660
661 vaddr_t
662 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
663 {
664 void *rv, *desired = NULL;
665 int alignbit, error;
666
667 #ifdef __x86_64__
668 /*
669 * On amd64, allocate all module memory from the lowest 2GB.
670 * This is because NetBSD kernel modules are compiled
671 * with -mcmodel=kernel and reserve only 4 bytes for
672 * offsets. If we load code compiled with -mcmodel=kernel
673 * anywhere except the lowest or highest 2GB, it will not
674 * work. Since userspace does not have access to the highest
675 * 2GB, use the lowest 2GB.
676 *
677 * Note: this assumes the rump kernel resides in
678 * the lowest 2GB as well.
679 *
680 * Note2: yes, it's a quick hack, but since this the only
681 * place where we care about the map we're allocating from,
682 * just use a simple "if" instead of coming up with a fancy
683 * generic solution.
684 */
685 extern struct vm_map *module_map;
686 if (map == module_map) {
687 desired = (void *)(0x80000000 - size);
688 }
689 #endif
690
691 alignbit = 0;
692 if (align) {
693 alignbit = ffs(align)-1;
694 }
695
696 rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
697 &error);
698 if (rv == NULL) {
699 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
700 return 0;
701 else
702 panic("uvm_km_alloc failed");
703 }
704
705 if (flags & UVM_KMF_ZERO)
706 memset(rv, 0, size);
707
708 return (vaddr_t)rv;
709 }
710
711 void
712 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
713 {
714
715 rumpuser_unmap((void *)vaddr, size);
716 }
717
718 struct vm_map *
719 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
720 vsize_t size, int pageable, bool fixed, struct vm_map *submap)
721 {
722
723 return (struct vm_map *)417416;
724 }
725
726 int
727 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
728 vmem_addr_t *addr)
729 {
730 vaddr_t va;
731 va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
732 (flags & VM_SLEEP), "kmalloc");
733
734 if (va) {
735 *addr = va;
736 return 0;
737 } else {
738 return ENOMEM;
739 }
740 }
741
742 void
743 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
744 {
745
746 rump_hyperfree((void *)addr, size);
747 }
748
749 /*
750 * VM space locking routines. We don't really have to do anything,
751 * since the pages are always "wired" (both local and remote processes).
752 */
753 int
754 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
755 {
756
757 return 0;
758 }
759
760 void
761 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
762 {
763
764 }
765
766 /*
767 * For the local case the buffer mappers don't need to do anything.
768 * For the remote case we need to reserve space and copy data in or
769 * out, depending on B_READ/B_WRITE.
770 */
771 int
772 vmapbuf(struct buf *bp, vsize_t len)
773 {
774 int error = 0;
775
776 bp->b_saveaddr = bp->b_data;
777
778 /* remote case */
779 if (!RUMP_LOCALPROC_P(curproc)) {
780 bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
781 if (BUF_ISWRITE(bp)) {
782 error = copyin(bp->b_saveaddr, bp->b_data, len);
783 if (error) {
784 rump_hyperfree(bp->b_data, len);
785 bp->b_data = bp->b_saveaddr;
786 bp->b_saveaddr = 0;
787 }
788 }
789 }
790
791 return error;
792 }
793
794 void
795 vunmapbuf(struct buf *bp, vsize_t len)
796 {
797
798 /* remote case */
799 if (!RUMP_LOCALPROC_P(bp->b_proc)) {
800 if (BUF_ISREAD(bp)) {
801 bp->b_error = copyout_proc(bp->b_proc,
802 bp->b_data, bp->b_saveaddr, len);
803 }
804 rump_hyperfree(bp->b_data, len);
805 }
806
807 bp->b_data = bp->b_saveaddr;
808 bp->b_saveaddr = 0;
809 }
810
811 void
812 uvmspace_addref(struct vmspace *vm)
813 {
814
815 /*
816 * No dynamically allocated vmspaces exist.
817 */
818 }
819
820 void
821 uvmspace_free(struct vmspace *vm)
822 {
823
824 /* nothing for now */
825 }
826
827 /*
828 * page life cycle stuff. it really doesn't exist, so just stubs.
829 */
830
831 void
832 uvm_pageactivate(struct vm_page *pg)
833 {
834
835 /* nada */
836 }
837
838 void
839 uvm_pagedeactivate(struct vm_page *pg)
840 {
841
842 /* nada */
843 }
844
845 void
846 uvm_pagedequeue(struct vm_page *pg)
847 {
848
849 /* nada*/
850 }
851
852 void
853 uvm_pageenqueue(struct vm_page *pg)
854 {
855
856 /* nada */
857 }
858
859 void
860 uvmpdpol_anfree(struct vm_anon *an)
861 {
862
863 /* nada */
864 }
865
866 /*
867 * Physical address accessors.
868 */
869
870 struct vm_page *
871 uvm_phys_to_vm_page(paddr_t pa)
872 {
873
874 return NULL;
875 }
876
877 paddr_t
878 uvm_vm_page_to_phys(const struct vm_page *pg)
879 {
880
881 return 0;
882 }
883
884 /*
885 * Routines related to the Page Baroness.
886 */
887
888 void
889 uvm_wait(const char *msg)
890 {
891
892 if (__predict_false(curlwp == uvm.pagedaemon_lwp))
893 panic("pagedaemon out of memory");
894 if (__predict_false(rump_threads == 0))
895 panic("pagedaemon missing (RUMP_THREADS = 0)");
896
897 mutex_enter(&pdaemonmtx);
898 pdaemon_waiters++;
899 cv_signal(&pdaemoncv);
900 cv_wait(&oomwait, &pdaemonmtx);
901 mutex_exit(&pdaemonmtx);
902 }
903
904 void
905 uvm_pageout_start(int npages)
906 {
907
908 mutex_enter(&pdaemonmtx);
909 uvmexp.paging += npages;
910 mutex_exit(&pdaemonmtx);
911 }
912
913 void
914 uvm_pageout_done(int npages)
915 {
916
917 if (!npages)
918 return;
919
920 mutex_enter(&pdaemonmtx);
921 KASSERT(uvmexp.paging >= npages);
922 uvmexp.paging -= npages;
923
924 if (pdaemon_waiters) {
925 pdaemon_waiters = 0;
926 cv_broadcast(&oomwait);
927 }
928 mutex_exit(&pdaemonmtx);
929 }
930
931 static bool
932 processpage(struct vm_page *pg, bool *lockrunning)
933 {
934 struct uvm_object *uobj;
935
936 uobj = pg->uobject;
937 if (mutex_tryenter(uobj->vmobjlock)) {
938 if ((pg->flags & PG_BUSY) == 0) {
939 mutex_exit(&uvm_pageqlock);
940 uobj->pgops->pgo_put(uobj, pg->offset,
941 pg->offset + PAGE_SIZE,
942 PGO_CLEANIT|PGO_FREE);
943 KASSERT(!mutex_owned(uobj->vmobjlock));
944 return true;
945 } else {
946 mutex_exit(uobj->vmobjlock);
947 }
948 } else if (*lockrunning == false && ncpu > 1) {
949 CPU_INFO_ITERATOR cii;
950 struct cpu_info *ci;
951 struct lwp *l;
952
953 l = mutex_owner(uobj->vmobjlock);
954 for (CPU_INFO_FOREACH(cii, ci)) {
955 if (ci->ci_curlwp == l) {
956 *lockrunning = true;
957 break;
958 }
959 }
960 }
961
962 return false;
963 }
964
965 /*
966 * The Diabolical pageDaemon Director (DDD).
967 *
968 * This routine can always use better heuristics.
969 */
970 void
971 uvm_pageout(void *arg)
972 {
973 struct vm_page *pg;
974 struct pool *pp, *pp_first;
975 uint64_t where;
976 int cleaned, skip, skipped;
977 int waspaging;
978 bool succ;
979 bool lockrunning;
980
981 mutex_enter(&pdaemonmtx);
982 for (;;) {
983 if (!NEED_PAGEDAEMON()) {
984 kernel_map->flags &= ~VM_MAP_WANTVA;
985 }
986
987 if (pdaemon_waiters) {
988 pdaemon_waiters = 0;
989 cv_broadcast(&oomwait);
990 }
991
992 cv_wait(&pdaemoncv, &pdaemonmtx);
993 uvmexp.pdwoke++;
994 waspaging = uvmexp.paging;
995
996 /* tell the world that we are hungry */
997 kernel_map->flags |= VM_MAP_WANTVA;
998 mutex_exit(&pdaemonmtx);
999
1000 /*
1001 * step one: reclaim the page cache. this should give
1002 * us the biggest earnings since whole pages are released
1003 * into backing memory.
1004 */
1005 pool_cache_reclaim(&pagecache);
1006 if (!NEED_PAGEDAEMON()) {
1007 mutex_enter(&pdaemonmtx);
1008 continue;
1009 }
1010
1011 /*
1012 * Ok, so that didn't help. Next, try to hunt memory
1013 * by pushing out vnode pages. The pages might contain
1014 * useful cached data, but we need the memory.
1015 */
1016 cleaned = 0;
1017 skip = 0;
1018 lockrunning = false;
1019 again:
1020 mutex_enter(&uvm_pageqlock);
1021 while (cleaned < PAGEDAEMON_OBJCHUNK) {
1022 skipped = 0;
1023 TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1024
1025 /*
1026 * skip over pages we _might_ have tried
1027 * to handle earlier. they might not be
1028 * exactly the same ones, but I'm not too
1029 * concerned.
1030 */
1031 while (skipped++ < skip)
1032 continue;
1033
1034 if (processpage(pg, &lockrunning)) {
1035 cleaned++;
1036 goto again;
1037 }
1038
1039 skip++;
1040 }
1041 break;
1042 }
1043 mutex_exit(&uvm_pageqlock);
1044
1045 /*
1046 * Ok, someone is running with an object lock held.
1047 * We want to yield the host CPU to make sure the
1048 * thread is not parked on the host. Since sched_yield()
1049 * doesn't appear to do anything on NetBSD, nanosleep
1050 * for the smallest possible time and hope we're back in
1051 * the game soon.
1052 */
1053 if (cleaned == 0 && lockrunning) {
1054 uint64_t sec, nsec;
1055
1056 sec = 0;
1057 nsec = 1;
1058 rumpuser_nanosleep(&sec, &nsec, NULL);
1059
1060 lockrunning = false;
1061 skip = 0;
1062
1063 /* and here we go again */
1064 goto again;
1065 }
1066
1067 /*
1068 * And of course we need to reclaim the page cache
1069 * again to actually release memory.
1070 */
1071 pool_cache_reclaim(&pagecache);
1072 if (!NEED_PAGEDAEMON()) {
1073 mutex_enter(&pdaemonmtx);
1074 continue;
1075 }
1076
1077 /*
1078 * And then drain the pools. Wipe them out ... all of them.
1079 */
1080
1081 pool_drain_start(&pp_first, &where);
1082 pp = pp_first;
1083 for (;;) {
1084 rump_vfs_drainbufs(10 /* XXX: estimate better */);
1085 succ = pool_drain_end(pp, where);
1086 if (succ)
1087 break;
1088 pool_drain_start(&pp, &where);
1089 if (pp == pp_first) {
1090 succ = pool_drain_end(pp, where);
1091 break;
1092 }
1093 }
1094
1095 /*
1096 * Need to use PYEC on our bag of tricks.
1097 * Unfortunately, the wife just borrowed it.
1098 */
1099
1100 mutex_enter(&pdaemonmtx);
1101 if (!succ && cleaned == 0 && pdaemon_waiters &&
1102 uvmexp.paging == 0) {
1103 rumpuser_dprintf("pagedaemoness: failed to reclaim "
1104 "memory ... sleeping (deadlock?)\n");
1105 cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
1106 }
1107 }
1108
1109 panic("you can swap out any time you like, but you can never leave");
1110 }
1111
1112 void
1113 uvm_kick_pdaemon()
1114 {
1115
1116 /*
1117 * Wake up the diabolical pagedaemon director if we are over
1118 * 90% of the memory limit. This is a complete and utter
1119 * stetson-harrison decision which you are allowed to finetune.
1120 * Don't bother locking. If we have some unflushed caches,
1121 * other waker-uppers will deal with the issue.
1122 */
1123 if (NEED_PAGEDAEMON()) {
1124 cv_signal(&pdaemoncv);
1125 }
1126 }
1127
1128 void *
1129 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1130 {
1131 unsigned long newmem;
1132 void *rv;
1133
1134 uvm_kick_pdaemon(); /* ouch */
1135
1136 /* first we must be within the limit */
1137 limitagain:
1138 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1139 newmem = atomic_add_long_nv(&curphysmem, howmuch);
1140 if (newmem > rump_physmemlimit) {
1141 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1142 if (!waitok) {
1143 return NULL;
1144 }
1145 uvm_wait(wmsg);
1146 goto limitagain;
1147 }
1148 }
1149
1150 /* second, we must get something from the backend */
1151 again:
1152 rv = rumpuser_malloc(howmuch, alignment);
1153 if (__predict_false(rv == NULL && waitok)) {
1154 uvm_wait(wmsg);
1155 goto again;
1156 }
1157
1158 return rv;
1159 }
1160
1161 void
1162 rump_hyperfree(void *what, size_t size)
1163 {
1164
1165 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1166 atomic_add_long(&curphysmem, -size);
1167 }
1168 rumpuser_free(what);
1169 }
1170