vm.c revision 1.120.2.6 1 /* $NetBSD: vm.c,v 1.120.2.6 2012/10/30 17:22:54 yamt Exp $ */
2
3 /*
4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.120.2.6 2012/10/30 17:22:54 yamt Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/vmem.h>
52 #include <sys/mman.h>
53 #include <sys/null.h>
54 #include <sys/vnode.h>
55
56 #include <machine/pmap.h>
57
58 #include <rump/rumpuser.h>
59
60 #include <uvm/uvm.h>
61 #include <uvm/uvm_ddb.h>
62 #include <uvm/uvm_pdpolicy.h>
63 #include <uvm/uvm_prot.h>
64 #include <uvm/uvm_readahead.h>
65
66 #include "rump_private.h"
67 #include "rump_vfs_private.h"
68
69 kmutex_t uvm_pageqlock;
70 kmutex_t uvm_swap_data_lock;
71
72 struct uvmexp uvmexp;
73 struct uvm uvm;
74
75 #ifdef __uvmexp_pagesize
76 const int * const uvmexp_pagesize = &uvmexp.pagesize;
77 const int * const uvmexp_pagemask = &uvmexp.pagemask;
78 const int * const uvmexp_pageshift = &uvmexp.pageshift;
79 #endif
80
81 struct vm_map rump_vmmap;
82
83 static struct vm_map kernel_map_store;
84 struct vm_map *kernel_map = &kernel_map_store;
85
86 static struct vm_map module_map_store;
87 extern struct vm_map *module_map;
88
89 vmem_t *kmem_arena;
90 vmem_t *kmem_va_arena;
91
92 static unsigned int pdaemon_waiters;
93 static kmutex_t pdaemonmtx;
94 static kcondvar_t pdaemoncv, oomwait;
95
96 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
97 static unsigned long curphysmem;
98 static unsigned long dddlim; /* 90% of memory limit used */
99 #define NEED_PAGEDAEMON() \
100 (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
101
102 /*
103 * Try to free two pages worth of pages from objects.
104 * If this succesfully frees a full page cache page, we'll
105 * free the released page plus PAGE_SIZE/sizeof(vm_page).
106 */
107 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
108
109 /*
110 * Keep a list of least recently used pages. Since the only way a
111 * rump kernel can "access" a page is via lookup, we put the page
112 * at the back of queue every time a lookup for it is done. If the
113 * page is in front of this global queue and we're short of memory,
114 * it's a candidate for pageout.
115 */
116 static struct pglist vmpage_lruqueue;
117 static unsigned vmpage_onqueue;
118
119 /*
120 * vm pages
121 */
122
123 static int
124 pgctor(void *arg, void *obj, int flags)
125 {
126 struct vm_page *pg = obj;
127
128 memset(pg, 0, sizeof(*pg));
129 pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
130 (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
131 return pg->uanon == NULL;
132 }
133
134 static void
135 pgdtor(void *arg, void *obj)
136 {
137 struct vm_page *pg = obj;
138
139 rump_hyperfree(pg->uanon, PAGE_SIZE);
140 }
141
142 static struct pool_cache pagecache;
143
144 /*
145 * Called with the object locked. We don't support anons.
146 */
147 struct vm_page *
148 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
149 int flags, int strat, int free_list)
150 {
151 struct vm_page *pg;
152 int error;
153
154 KASSERT(uobj && mutex_owned(uobj->vmobjlock));
155 KASSERT(anon == NULL);
156
157 pg = pool_cache_get(&pagecache, PR_NOWAIT);
158 if (__predict_false(pg == NULL)) {
159 return NULL;
160 }
161
162 pg->offset = off;
163 pg->uobject = uobj;
164
165 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
166 if (flags & UVM_PGA_ZERO) {
167 uvm_pagezero(pg);
168 }
169
170 error = radix_tree_insert_node(&uobj->uo_pages,
171 pg->offset >> PAGE_SHIFT, pg);
172 KASSERT(error == 0);
173
174 /*
175 * Don't put anons on the LRU page queue. We can't flush them
176 * (there's no concept of swap in a rump kernel), so no reason
177 * to bother with them.
178 */
179 if (!UVM_OBJ_IS_AOBJ(uobj)) {
180 atomic_inc_uint(&vmpage_onqueue);
181 mutex_enter(&uvm_pageqlock);
182 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
183 mutex_exit(&uvm_pageqlock);
184 }
185
186 uobj->uo_npages++;
187
188 return pg;
189 }
190
191 /*
192 * Release a page.
193 *
194 * Called with the vm object locked.
195 */
196 void
197 uvm_pagefree(struct vm_page *pg)
198 {
199 struct uvm_object *uobj = pg->uobject;
200 struct vm_page *opg;
201
202 KASSERT(mutex_owned(&uvm_pageqlock));
203 KASSERT(mutex_owned(uobj->vmobjlock));
204
205 if (pg->flags & PG_WANTED)
206 wakeup(pg);
207
208 uobj->uo_npages--;
209 opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
210 KASSERT(pg == opg);
211
212 if (!UVM_OBJ_IS_AOBJ(uobj)) {
213 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
214 atomic_dec_uint(&vmpage_onqueue);
215 }
216
217 pool_cache_put(&pagecache, pg);
218 }
219
220 void
221 uvm_pagezero(struct vm_page *pg)
222 {
223
224 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
225 memset((void *)pg->uanon, 0, PAGE_SIZE);
226 }
227
228 /*
229 * uvm_page_locked_p: return true if object associated with page is
230 * locked. this is a weak check for runtime assertions only.
231 */
232
233 bool
234 uvm_page_locked_p(struct vm_page *pg)
235 {
236
237 return mutex_owned(pg->uobject->vmobjlock);
238 }
239
240 /*
241 * Misc routines
242 */
243
244 static kmutex_t pagermtx;
245
246 void
247 uvm_init(void)
248 {
249 char buf[64];
250 int error;
251
252 if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
253 unsigned long tmp;
254 char *ep;
255 int mult;
256
257 tmp = strtoul(buf, &ep, 10);
258 if (strlen(ep) > 1)
259 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
260
261 /* mini-dehumanize-number */
262 mult = 1;
263 switch (*ep) {
264 case 'k':
265 mult = 1024;
266 break;
267 case 'm':
268 mult = 1024*1024;
269 break;
270 case 'g':
271 mult = 1024*1024*1024;
272 break;
273 case 0:
274 break;
275 default:
276 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
277 }
278 rump_physmemlimit = tmp * mult;
279
280 if (rump_physmemlimit / mult != tmp)
281 panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
282 /* it's not like we'd get far with, say, 1 byte, but ... */
283 if (rump_physmemlimit == 0)
284 panic("uvm_init: no memory");
285
286 #define HUMANIZE_BYTES 9
287 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
288 format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
289 #undef HUMANIZE_BYTES
290 dddlim = 9 * (rump_physmemlimit / 10);
291 } else {
292 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
293 }
294 aprint_verbose("total memory = %s\n", buf);
295
296 TAILQ_INIT(&vmpage_lruqueue);
297
298 uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
299
300 #ifndef __uvmexp_pagesize
301 uvmexp.pagesize = PAGE_SIZE;
302 uvmexp.pagemask = PAGE_MASK;
303 uvmexp.pageshift = PAGE_SHIFT;
304 #else
305 #define FAKE_PAGE_SHIFT 12
306 uvmexp.pageshift = FAKE_PAGE_SHIFT;
307 uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
308 uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
309 #undef FAKE_PAGE_SHIFT
310 #endif
311
312 mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
313 mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
314 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
315
316 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
317 cv_init(&pdaemoncv, "pdaemon");
318 cv_init(&oomwait, "oomwait");
319
320 module_map = &module_map_store;
321
322 kernel_map->pmap = pmap_kernel();
323
324 pool_subsystem_init();
325
326 #ifndef RUMP_UNREAL_ALLOCATORS
327 vmem_bootstrap();
328 kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
329 NULL, NULL, NULL,
330 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
331
332 vmem_init(kmem_arena);
333
334 kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
335 vmem_alloc, vmem_free, kmem_arena,
336 8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
337 #endif /* !RUMP_UNREAL_ALLOCATORS */
338
339 pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
340 "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
341 }
342
343 void
344 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
345 {
346
347 vm->vm_map.pmap = pmap_kernel();
348 vm->vm_refcnt = 1;
349 }
350
351 bool
352 uvm_page_locked_p(struct vm_page *pg)
353 {
354
355 if (pg->uobject != NULL) {
356 return mutex_owned(pg->uobject->vmobjlock);
357 }
358 return true;
359 }
360
361 void
362 uvm_pagewire(struct vm_page *pg)
363 {
364
365 /* nada */
366 }
367
368 void
369 uvm_pageunwire(struct vm_page *pg)
370 {
371
372 /* nada */
373 }
374
375 /* where's your schmonz now? */
376 #define PUNLIMIT(a) \
377 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
378 void
379 uvm_init_limits(struct proc *p)
380 {
381
382 PUNLIMIT(RLIMIT_STACK);
383 PUNLIMIT(RLIMIT_DATA);
384 PUNLIMIT(RLIMIT_RSS);
385 PUNLIMIT(RLIMIT_AS);
386 /* nice, cascade */
387 }
388 #undef PUNLIMIT
389
390 /*
391 * This satisfies the "disgusting mmap hack" used by proplib.
392 * We probably should grow some more assertables to make sure we're
393 * not satisfying anything we shouldn't be satisfying.
394 */
395 int
396 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
397 vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
398 {
399 void *uaddr;
400 int error;
401
402 if (prot != (VM_PROT_READ | VM_PROT_WRITE))
403 panic("uvm_mmap() variant unsupported");
404 if (flags != (MAP_PRIVATE | MAP_ANON))
405 panic("uvm_mmap() variant unsupported");
406
407 /* no reason in particular, but cf. uvm_default_mapaddr() */
408 if (*addr != 0)
409 panic("uvm_mmap() variant unsupported");
410
411 if (RUMP_LOCALPROC_P(curproc)) {
412 uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
413 } else {
414 error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
415 size, &uaddr);
416 }
417 if (uaddr == NULL)
418 return error;
419
420 *addr = (vaddr_t)uaddr;
421 return 0;
422 }
423
424 struct pagerinfo {
425 vaddr_t pgr_kva;
426 int pgr_npages;
427 struct vm_page **pgr_pgs;
428 bool pgr_read;
429
430 LIST_ENTRY(pagerinfo) pgr_entries;
431 };
432 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
433
434 /*
435 * Pager "map" in routine. Instead of mapping, we allocate memory
436 * and copy page contents there. Not optimal or even strictly
437 * correct (the caller might modify the page contents after mapping
438 * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
439 */
440 vaddr_t
441 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
442 {
443 struct pagerinfo *pgri;
444 vaddr_t curkva;
445 int i;
446
447 /* allocate structures */
448 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
449 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
450 pgri->pgr_npages = npages;
451 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
452 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
453
454 /* copy contents to "mapped" memory */
455 for (i = 0, curkva = pgri->pgr_kva;
456 i < npages;
457 i++, curkva += PAGE_SIZE) {
458 /*
459 * We need to copy the previous contents of the pages to
460 * the window even if we are reading from the
461 * device, since the device might not fill the contents of
462 * the full mapped range and we will end up corrupting
463 * data when we unmap the window.
464 */
465 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
466 pgri->pgr_pgs[i] = pgs[i];
467 }
468
469 mutex_enter(&pagermtx);
470 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
471 mutex_exit(&pagermtx);
472
473 return pgri->pgr_kva;
474 }
475
476 /*
477 * map out the pager window. return contents from VA to page storage
478 * and free structures.
479 *
480 * Note: does not currently support partial frees
481 */
482 void
483 uvm_pagermapout(vaddr_t kva, int npages)
484 {
485 struct pagerinfo *pgri;
486 vaddr_t curkva;
487 int i;
488
489 mutex_enter(&pagermtx);
490 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
491 if (pgri->pgr_kva == kva)
492 break;
493 }
494 KASSERT(pgri);
495 if (pgri->pgr_npages != npages)
496 panic("uvm_pagermapout: partial unmapping not supported");
497 LIST_REMOVE(pgri, pgr_entries);
498 mutex_exit(&pagermtx);
499
500 if (pgri->pgr_read) {
501 for (i = 0, curkva = pgri->pgr_kva;
502 i < pgri->pgr_npages;
503 i++, curkva += PAGE_SIZE) {
504 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
505 }
506 }
507
508 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
509 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
510 kmem_free(pgri, sizeof(*pgri));
511 }
512
513 /*
514 * convert va in pager window to page structure.
515 * XXX: how expensive is this (global lock, list traversal)?
516 */
517 struct vm_page *
518 uvm_pageratop(vaddr_t va)
519 {
520 struct pagerinfo *pgri;
521 struct vm_page *pg = NULL;
522 int i;
523
524 mutex_enter(&pagermtx);
525 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
526 if (pgri->pgr_kva <= va
527 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
528 break;
529 }
530 if (pgri) {
531 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
532 pg = pgri->pgr_pgs[i];
533 }
534 mutex_exit(&pagermtx);
535
536 return pg;
537 }
538
539 /*
540 * Called with the vm object locked.
541 *
542 * Put vnode object pages at the end of the access queue to indicate
543 * they have been recently accessed and should not be immediate
544 * candidates for pageout. Do not do this for lookups done by
545 * the pagedaemon to mimic pmap_kentered mappings which don't track
546 * access information.
547 */
548 struct vm_page *
549 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
550 {
551 struct vm_page *pg;
552 bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
553
554 pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
555 if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
556 mutex_enter(&uvm_pageqlock);
557 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
558 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
559 mutex_exit(&uvm_pageqlock);
560 }
561
562 return pg;
563 }
564
565 void
566 uvm_page_unbusy(struct vm_page **pgs, int npgs)
567 {
568 struct vm_page *pg;
569 int i;
570
571 KASSERT(npgs > 0);
572 KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
573
574 for (i = 0; i < npgs; i++) {
575 pg = pgs[i];
576 if (pg == NULL)
577 continue;
578
579 KASSERT(pg->flags & PG_BUSY);
580 if (pg->flags & PG_WANTED)
581 wakeup(pg);
582 if (pg->flags & PG_RELEASED)
583 uvm_pagefree(pg);
584 else
585 pg->flags &= ~(PG_WANTED|PG_BUSY);
586 }
587 }
588
589 void
590 uvm_estimatepageable(int *active, int *inactive)
591 {
592
593 /* XXX: guessing game */
594 *active = 1024;
595 *inactive = 1024;
596 }
597
598 bool
599 vm_map_starved_p(struct vm_map *map)
600 {
601
602 if (map->flags & VM_MAP_WANTVA)
603 return true;
604
605 return false;
606 }
607
608 int
609 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
610 {
611
612 panic("%s: unimplemented", __func__);
613 }
614
615 void
616 uvm_unloan(void *v, int npages, int flags)
617 {
618
619 panic("%s: unimplemented", __func__);
620 }
621
622 int
623 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
624 struct vm_page **opp)
625 {
626
627 return EBUSY;
628 }
629
630 struct vm_page *
631 uvm_loanbreak(struct vm_page *pg)
632 {
633
634 panic("%s: unimplemented", __func__);
635 }
636
637 int
638 uvm_loanobj(struct uvm_object *uobj, struct uio *uio, int advice)
639 {
640
641 return ENOTSUP;
642 }
643
644 void
645 ubc_purge(struct uvm_object *uobj)
646 {
647
648 }
649
650 #ifdef DEBUGPRINT
651 void
652 uvm_object_printit(struct uvm_object *uobj, bool full,
653 void (*pr)(const char *, ...))
654 {
655
656 pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
657 }
658 #endif
659
660 vaddr_t
661 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
662 {
663
664 return 0;
665 }
666
667 int
668 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
669 vm_prot_t prot, bool set_max)
670 {
671
672 return EOPNOTSUPP;
673 }
674
675 /*
676 * UVM km
677 */
678
679 vaddr_t
680 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
681 {
682 void *rv, *desired = NULL;
683 int alignbit, error;
684
685 #ifdef __x86_64__
686 /*
687 * On amd64, allocate all module memory from the lowest 2GB.
688 * This is because NetBSD kernel modules are compiled
689 * with -mcmodel=kernel and reserve only 4 bytes for
690 * offsets. If we load code compiled with -mcmodel=kernel
691 * anywhere except the lowest or highest 2GB, it will not
692 * work. Since userspace does not have access to the highest
693 * 2GB, use the lowest 2GB.
694 *
695 * Note: this assumes the rump kernel resides in
696 * the lowest 2GB as well.
697 *
698 * Note2: yes, it's a quick hack, but since this the only
699 * place where we care about the map we're allocating from,
700 * just use a simple "if" instead of coming up with a fancy
701 * generic solution.
702 */
703 if (map == module_map) {
704 desired = (void *)(0x80000000 - size);
705 }
706 #endif
707
708 if (__predict_false(map == module_map)) {
709 alignbit = 0;
710 if (align) {
711 alignbit = ffs(align)-1;
712 }
713 rv = rumpuser_anonmmap(desired, size, alignbit,
714 flags & UVM_KMF_EXEC, &error);
715 } else {
716 rv = rumpuser_malloc(size, align);
717 }
718
719 if (rv == NULL) {
720 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
721 return 0;
722 else
723 panic("uvm_km_alloc failed");
724 }
725
726 if (flags & UVM_KMF_ZERO)
727 memset(rv, 0, size);
728
729 return (vaddr_t)rv;
730 }
731
732 void
733 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
734 {
735
736 if (__predict_false(map == module_map))
737 rumpuser_unmap((void *)vaddr, size);
738 else
739 rumpuser_free((void *)vaddr);
740 }
741
742 struct vm_map *
743 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
744 vsize_t size, int pageable, bool fixed, struct vm_map *submap)
745 {
746
747 return (struct vm_map *)417416;
748 }
749
750 int
751 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
752 vmem_addr_t *addr)
753 {
754 vaddr_t va;
755 va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
756 (flags & VM_SLEEP), "kmalloc");
757
758 if (va) {
759 *addr = va;
760 return 0;
761 } else {
762 return ENOMEM;
763 }
764 }
765
766 void
767 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
768 {
769
770 rump_hyperfree((void *)addr, size);
771 }
772
773 /*
774 * VM space locking routines. We don't really have to do anything,
775 * since the pages are always "wired" (both local and remote processes).
776 */
777 int
778 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
779 {
780
781 return 0;
782 }
783
784 void
785 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
786 {
787
788 }
789
790 /*
791 * For the local case the buffer mappers don't need to do anything.
792 * For the remote case we need to reserve space and copy data in or
793 * out, depending on B_READ/B_WRITE.
794 */
795 int
796 vmapbuf(struct buf *bp, vsize_t len)
797 {
798 int error = 0;
799
800 bp->b_saveaddr = bp->b_data;
801
802 /* remote case */
803 if (!RUMP_LOCALPROC_P(curproc)) {
804 bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
805 if (BUF_ISWRITE(bp)) {
806 error = copyin(bp->b_saveaddr, bp->b_data, len);
807 if (error) {
808 rump_hyperfree(bp->b_data, len);
809 bp->b_data = bp->b_saveaddr;
810 bp->b_saveaddr = 0;
811 }
812 }
813 }
814
815 return error;
816 }
817
818 void
819 vunmapbuf(struct buf *bp, vsize_t len)
820 {
821
822 /* remote case */
823 if (!RUMP_LOCALPROC_P(bp->b_proc)) {
824 if (BUF_ISREAD(bp)) {
825 bp->b_error = copyout_proc(bp->b_proc,
826 bp->b_data, bp->b_saveaddr, len);
827 }
828 rump_hyperfree(bp->b_data, len);
829 }
830
831 bp->b_data = bp->b_saveaddr;
832 bp->b_saveaddr = 0;
833 }
834
835 void
836 uvmspace_addref(struct vmspace *vm)
837 {
838
839 /*
840 * No dynamically allocated vmspaces exist.
841 */
842 }
843
844 void
845 uvmspace_free(struct vmspace *vm)
846 {
847
848 /* nothing for now */
849 }
850
851 /*
852 * page life cycle stuff. it really doesn't exist, so just stubs.
853 */
854
855 void
856 uvm_pageactivate(struct vm_page *pg)
857 {
858
859 /* nada */
860 }
861
862 void
863 uvm_pagedeactivate(struct vm_page *pg)
864 {
865
866 /* nada */
867 }
868
869 void
870 uvm_pagedequeue(struct vm_page *pg)
871 {
872
873 /* nada*/
874 }
875
876 void
877 uvm_pageenqueue(struct vm_page *pg)
878 {
879
880 /* nada */
881 }
882
883 void
884 uvmpdpol_anfree(struct vm_anon *an)
885 {
886
887 /* nada */
888 }
889
890 /*
891 * Physical address accessors.
892 */
893
894 struct vm_page *
895 uvm_phys_to_vm_page(paddr_t pa)
896 {
897
898 return NULL;
899 }
900
901 paddr_t
902 uvm_vm_page_to_phys(const struct vm_page *pg)
903 {
904
905 return 0;
906 }
907
908 /*
909 * Routines related to the Page Baroness.
910 */
911
912 void
913 uvm_wait(const char *msg)
914 {
915
916 if (__predict_false(curlwp == uvm.pagedaemon_lwp))
917 panic("pagedaemon out of memory");
918 if (__predict_false(rump_threads == 0))
919 panic("pagedaemon missing (RUMP_THREADS = 0)");
920
921 mutex_enter(&pdaemonmtx);
922 pdaemon_waiters++;
923 cv_signal(&pdaemoncv);
924 cv_wait(&oomwait, &pdaemonmtx);
925 mutex_exit(&pdaemonmtx);
926 }
927
928 void
929 uvm_pageout_start(int npages)
930 {
931
932 mutex_enter(&pdaemonmtx);
933 uvmexp.paging += npages;
934 mutex_exit(&pdaemonmtx);
935 }
936
937 void
938 uvm_pageout_done(int npages)
939 {
940
941 if (!npages)
942 return;
943
944 mutex_enter(&pdaemonmtx);
945 KASSERT(uvmexp.paging >= npages);
946 uvmexp.paging -= npages;
947
948 if (pdaemon_waiters) {
949 pdaemon_waiters = 0;
950 cv_broadcast(&oomwait);
951 }
952 mutex_exit(&pdaemonmtx);
953 }
954
955 static bool
956 processpage(struct vm_page *pg, bool *lockrunning)
957 {
958 struct uvm_object *uobj;
959
960 uobj = pg->uobject;
961 if (mutex_tryenter(uobj->vmobjlock)) {
962 if ((pg->flags & PG_BUSY) == 0) {
963 mutex_exit(&uvm_pageqlock);
964 uobj->pgops->pgo_put(uobj, pg->offset,
965 pg->offset + PAGE_SIZE,
966 PGO_CLEANIT|PGO_FREE);
967 KASSERT(!mutex_owned(uobj->vmobjlock));
968 return true;
969 } else {
970 mutex_exit(uobj->vmobjlock);
971 }
972 } else if (*lockrunning == false && ncpu > 1) {
973 CPU_INFO_ITERATOR cii;
974 struct cpu_info *ci;
975 struct lwp *l;
976
977 l = mutex_owner(uobj->vmobjlock);
978 for (CPU_INFO_FOREACH(cii, ci)) {
979 if (ci->ci_curlwp == l) {
980 *lockrunning = true;
981 break;
982 }
983 }
984 }
985
986 return false;
987 }
988
989 /*
990 * The Diabolical pageDaemon Director (DDD).
991 *
992 * This routine can always use better heuristics.
993 */
994 void
995 uvm_pageout(void *arg)
996 {
997 struct vm_page *pg;
998 struct pool *pp, *pp_first;
999 int cleaned, skip, skipped;
1000 int waspaging;
1001 bool succ;
1002 bool lockrunning;
1003
1004 mutex_enter(&pdaemonmtx);
1005 for (;;) {
1006 if (!NEED_PAGEDAEMON()) {
1007 kernel_map->flags &= ~VM_MAP_WANTVA;
1008 }
1009
1010 if (pdaemon_waiters) {
1011 pdaemon_waiters = 0;
1012 cv_broadcast(&oomwait);
1013 }
1014
1015 cv_wait(&pdaemoncv, &pdaemonmtx);
1016 uvmexp.pdwoke++;
1017 waspaging = uvmexp.paging;
1018
1019 /* tell the world that we are hungry */
1020 kernel_map->flags |= VM_MAP_WANTVA;
1021 mutex_exit(&pdaemonmtx);
1022
1023 /*
1024 * step one: reclaim the page cache. this should give
1025 * us the biggest earnings since whole pages are released
1026 * into backing memory.
1027 */
1028 pool_cache_reclaim(&pagecache);
1029 if (!NEED_PAGEDAEMON()) {
1030 mutex_enter(&pdaemonmtx);
1031 continue;
1032 }
1033
1034 /*
1035 * Ok, so that didn't help. Next, try to hunt memory
1036 * by pushing out vnode pages. The pages might contain
1037 * useful cached data, but we need the memory.
1038 */
1039 cleaned = 0;
1040 skip = 0;
1041 lockrunning = false;
1042 again:
1043 mutex_enter(&uvm_pageqlock);
1044 while (cleaned < PAGEDAEMON_OBJCHUNK) {
1045 skipped = 0;
1046 TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1047
1048 /*
1049 * skip over pages we _might_ have tried
1050 * to handle earlier. they might not be
1051 * exactly the same ones, but I'm not too
1052 * concerned.
1053 */
1054 while (skipped++ < skip)
1055 continue;
1056
1057 if (processpage(pg, &lockrunning)) {
1058 cleaned++;
1059 goto again;
1060 }
1061
1062 skip++;
1063 }
1064 break;
1065 }
1066 mutex_exit(&uvm_pageqlock);
1067
1068 /*
1069 * Ok, someone is running with an object lock held.
1070 * We want to yield the host CPU to make sure the
1071 * thread is not parked on the host. Since sched_yield()
1072 * doesn't appear to do anything on NetBSD, nanosleep
1073 * for the smallest possible time and hope we're back in
1074 * the game soon.
1075 */
1076 if (cleaned == 0 && lockrunning) {
1077 uint64_t sec, nsec;
1078
1079 sec = 0;
1080 nsec = 1;
1081 rumpuser_nanosleep(&sec, &nsec, NULL);
1082
1083 lockrunning = false;
1084 skip = 0;
1085
1086 /* and here we go again */
1087 goto again;
1088 }
1089
1090 /*
1091 * And of course we need to reclaim the page cache
1092 * again to actually release memory.
1093 */
1094 pool_cache_reclaim(&pagecache);
1095 if (!NEED_PAGEDAEMON()) {
1096 mutex_enter(&pdaemonmtx);
1097 continue;
1098 }
1099
1100 /*
1101 * And then drain the pools. Wipe them out ... all of them.
1102 */
1103 for (pp_first = NULL;;) {
1104 rump_vfs_drainbufs(10 /* XXX: estimate better */);
1105
1106 succ = pool_drain(&pp);
1107 if (succ || pp == pp_first)
1108 break;
1109
1110 if (pp_first == NULL)
1111 pp_first = pp;
1112 }
1113
1114 /*
1115 * Need to use PYEC on our bag of tricks.
1116 * Unfortunately, the wife just borrowed it.
1117 */
1118
1119 mutex_enter(&pdaemonmtx);
1120 if (!succ && cleaned == 0 && pdaemon_waiters &&
1121 uvmexp.paging == 0) {
1122 rumpuser_dprintf("pagedaemoness: failed to reclaim "
1123 "memory ... sleeping (deadlock?)\n");
1124 cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
1125 }
1126 }
1127
1128 panic("you can swap out any time you like, but you can never leave");
1129 }
1130
1131 void
1132 uvm_kick_pdaemon()
1133 {
1134
1135 /*
1136 * Wake up the diabolical pagedaemon director if we are over
1137 * 90% of the memory limit. This is a complete and utter
1138 * stetson-harrison decision which you are allowed to finetune.
1139 * Don't bother locking. If we have some unflushed caches,
1140 * other waker-uppers will deal with the issue.
1141 */
1142 if (NEED_PAGEDAEMON()) {
1143 cv_signal(&pdaemoncv);
1144 }
1145 }
1146
1147 void *
1148 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1149 {
1150 unsigned long newmem;
1151 void *rv;
1152
1153 uvm_kick_pdaemon(); /* ouch */
1154
1155 /* first we must be within the limit */
1156 limitagain:
1157 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1158 newmem = atomic_add_long_nv(&curphysmem, howmuch);
1159 if (newmem > rump_physmemlimit) {
1160 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1161 if (!waitok) {
1162 return NULL;
1163 }
1164 uvm_wait(wmsg);
1165 goto limitagain;
1166 }
1167 }
1168
1169 /* second, we must get something from the backend */
1170 again:
1171 rv = rumpuser_malloc(howmuch, alignment);
1172 if (__predict_false(rv == NULL && waitok)) {
1173 uvm_wait(wmsg);
1174 goto again;
1175 }
1176
1177 return rv;
1178 }
1179
1180 void
1181 rump_hyperfree(void *what, size_t size)
1182 {
1183
1184 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1185 atomic_add_long(&curphysmem, -size);
1186 }
1187 rumpuser_free(what);
1188 }
1189