Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.120.2.9
      1 /*	$NetBSD: vm.c,v 1.120.2.9 2013/01/23 00:06:29 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.120.2.9 2013/01/23 00:06:29 yamt Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/vmem.h>
     52 #include <sys/mman.h>
     53 #include <sys/null.h>
     54 #include <sys/vnode.h>
     55 
     56 #include <machine/pmap.h>
     57 
     58 #include <rump/rumpuser.h>
     59 
     60 #include <uvm/uvm.h>
     61 #include <uvm/uvm_ddb.h>
     62 #include <uvm/uvm_pdpolicy.h>
     63 #include <uvm/uvm_prot.h>
     64 #include <uvm/uvm_readahead.h>
     65 
     66 #include "rump_private.h"
     67 #include "rump_vfs_private.h"
     68 
     69 kmutex_t uvm_pageqlock;
     70 kmutex_t uvm_swap_data_lock;
     71 
     72 struct uvmexp uvmexp;
     73 struct uvm uvm;
     74 
     75 #ifdef __uvmexp_pagesize
     76 const int * const uvmexp_pagesize = &uvmexp.pagesize;
     77 const int * const uvmexp_pagemask = &uvmexp.pagemask;
     78 const int * const uvmexp_pageshift = &uvmexp.pageshift;
     79 #endif
     80 
     81 struct vm_map rump_vmmap;
     82 
     83 static struct vm_map kernel_map_store;
     84 struct vm_map *kernel_map = &kernel_map_store;
     85 
     86 static struct vm_map module_map_store;
     87 extern struct vm_map *module_map;
     88 
     89 vmem_t *kmem_arena;
     90 vmem_t *kmem_va_arena;
     91 
     92 static unsigned int pdaemon_waiters;
     93 static kmutex_t pdaemonmtx;
     94 static kcondvar_t pdaemoncv, oomwait;
     95 
     96 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     97 static unsigned long curphysmem;
     98 static unsigned long dddlim;		/* 90% of memory limit used */
     99 #define NEED_PAGEDAEMON() \
    100     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    101 
    102 /*
    103  * Try to free two pages worth of pages from objects.
    104  * If this succesfully frees a full page cache page, we'll
    105  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    106  */
    107 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    108 
    109 /*
    110  * Keep a list of least recently used pages.  Since the only way a
    111  * rump kernel can "access" a page is via lookup, we put the page
    112  * at the back of queue every time a lookup for it is done.  If the
    113  * page is in front of this global queue and we're short of memory,
    114  * it's a candidate for pageout.
    115  */
    116 static struct pglist vmpage_lruqueue;
    117 static unsigned vmpage_onqueue;
    118 
    119 /*
    120  * vm pages
    121  */
    122 
    123 static int
    124 pgctor(void *arg, void *obj, int flags)
    125 {
    126 	struct vm_page *pg = obj;
    127 
    128 	memset(pg, 0, sizeof(*pg));
    129 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    130 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    131 	return pg->uanon == NULL;
    132 }
    133 
    134 static void
    135 pgdtor(void *arg, void *obj)
    136 {
    137 	struct vm_page *pg = obj;
    138 
    139 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    140 }
    141 
    142 static struct pool_cache pagecache;
    143 
    144 /*
    145  * Called with the object locked.  We don't support anons.
    146  */
    147 struct vm_page *
    148 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    149 	int flags, int strat, int free_list)
    150 {
    151 	struct vm_page *pg;
    152 	int error;
    153 
    154 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
    155 	KASSERT(anon == NULL);
    156 
    157 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    158 	if (__predict_false(pg == NULL)) {
    159 		return NULL;
    160 	}
    161 
    162 	pg->offset = off;
    163 	pg->uobject = uobj;
    164 
    165 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    166 	if (flags & UVM_PGA_ZERO) {
    167 		uvm_pagezero(pg);
    168 	}
    169 
    170 	error = radix_tree_insert_node(&uobj->uo_pages,
    171 	    pg->offset >> PAGE_SHIFT, pg);
    172 	KASSERT(error == 0);
    173 
    174 	/*
    175 	 * Don't put anons on the LRU page queue.  We can't flush them
    176 	 * (there's no concept of swap in a rump kernel), so no reason
    177 	 * to bother with them.
    178 	 */
    179 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    180 		atomic_inc_uint(&vmpage_onqueue);
    181 		mutex_enter(&uvm_pageqlock);
    182 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    183 		mutex_exit(&uvm_pageqlock);
    184 	}
    185 
    186 	uobj->uo_npages++;
    187 
    188 	return pg;
    189 }
    190 
    191 /*
    192  * Release a page.
    193  *
    194  * Called with the vm object locked.
    195  */
    196 void
    197 uvm_pagefree(struct vm_page *pg)
    198 {
    199 	struct uvm_object *uobj = pg->uobject;
    200 	struct vm_page *opg;
    201 
    202 	KASSERT(mutex_owned(&uvm_pageqlock));
    203 	KASSERT(mutex_owned(uobj->vmobjlock));
    204 
    205 	if (pg->flags & PG_WANTED)
    206 		wakeup(pg);
    207 
    208 	uobj->uo_npages--;
    209 	opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    210 	KASSERT(pg == opg);
    211 
    212 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    213 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    214 		atomic_dec_uint(&vmpage_onqueue);
    215 	}
    216 
    217 	pool_cache_put(&pagecache, pg);
    218 }
    219 
    220 void
    221 uvm_pagezero(struct vm_page *pg)
    222 {
    223 
    224 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    225 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    226 }
    227 
    228 /*
    229  * Misc routines
    230  */
    231 
    232 static kmutex_t pagermtx;
    233 
    234 void
    235 uvm_init(void)
    236 {
    237 	char buf[64];
    238 	int error;
    239 
    240 	if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
    241 		unsigned long tmp;
    242 		char *ep;
    243 		int mult;
    244 
    245 		tmp = strtoul(buf, &ep, 10);
    246 		if (strlen(ep) > 1)
    247 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    248 
    249 		/* mini-dehumanize-number */
    250 		mult = 1;
    251 		switch (*ep) {
    252 		case 'k':
    253 			mult = 1024;
    254 			break;
    255 		case 'm':
    256 			mult = 1024*1024;
    257 			break;
    258 		case 'g':
    259 			mult = 1024*1024*1024;
    260 			break;
    261 		case 0:
    262 			break;
    263 		default:
    264 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    265 		}
    266 		rump_physmemlimit = tmp * mult;
    267 
    268 		if (rump_physmemlimit / mult != tmp)
    269 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    270 		/* it's not like we'd get far with, say, 1 byte, but ... */
    271 		if (rump_physmemlimit == 0)
    272 			panic("uvm_init: no memory");
    273 
    274 #define HUMANIZE_BYTES 9
    275 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    276 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    277 #undef HUMANIZE_BYTES
    278 		dddlim = 9 * (rump_physmemlimit / 10);
    279 	} else {
    280 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    281 	}
    282 	aprint_verbose("total memory = %s\n", buf);
    283 
    284 	TAILQ_INIT(&vmpage_lruqueue);
    285 
    286 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    287 
    288 #ifndef __uvmexp_pagesize
    289 	uvmexp.pagesize = PAGE_SIZE;
    290 	uvmexp.pagemask = PAGE_MASK;
    291 	uvmexp.pageshift = PAGE_SHIFT;
    292 #else
    293 #define FAKE_PAGE_SHIFT 12
    294 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    295 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    296 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    297 #undef FAKE_PAGE_SHIFT
    298 #endif
    299 
    300 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    301 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    302 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
    303 
    304 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    305 	cv_init(&pdaemoncv, "pdaemon");
    306 	cv_init(&oomwait, "oomwait");
    307 
    308 	module_map = &module_map_store;
    309 
    310 	kernel_map->pmap = pmap_kernel();
    311 
    312 	pool_subsystem_init();
    313 
    314 #ifndef RUMP_UNREAL_ALLOCATORS
    315 	vmem_bootstrap();
    316 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    317 	    NULL, NULL, NULL,
    318 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    319 
    320 	vmem_init(kmem_arena);
    321 
    322 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    323 	    vmem_alloc, vmem_free, kmem_arena,
    324 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    325 #endif /* !RUMP_UNREAL_ALLOCATORS */
    326 
    327 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    328 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    329 }
    330 
    331 void
    332 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    333 {
    334 
    335 	vm->vm_map.pmap = pmap_kernel();
    336 	vm->vm_refcnt = 1;
    337 }
    338 
    339 bool
    340 uvm_page_locked_p(struct vm_page *pg)
    341 {
    342 
    343 	if (pg->uobject != NULL) {
    344 		return mutex_owned(pg->uobject->vmobjlock);
    345 	}
    346 	return true;
    347 }
    348 
    349 void
    350 uvm_pagewire(struct vm_page *pg)
    351 {
    352 
    353 	/* nada */
    354 }
    355 
    356 void
    357 uvm_pageunwire(struct vm_page *pg)
    358 {
    359 
    360 	/* nada */
    361 }
    362 
    363 /* where's your schmonz now? */
    364 #define PUNLIMIT(a)	\
    365 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    366 void
    367 uvm_init_limits(struct proc *p)
    368 {
    369 
    370 	PUNLIMIT(RLIMIT_STACK);
    371 	PUNLIMIT(RLIMIT_DATA);
    372 	PUNLIMIT(RLIMIT_RSS);
    373 	PUNLIMIT(RLIMIT_AS);
    374 	/* nice, cascade */
    375 }
    376 #undef PUNLIMIT
    377 
    378 /*
    379  * This satisfies the "disgusting mmap hack" used by proplib.
    380  * We probably should grow some more assertables to make sure we're
    381  * not satisfying anything we shouldn't be satisfying.
    382  */
    383 int
    384 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    385 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    386 {
    387 	void *uaddr;
    388 	int error;
    389 
    390 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    391 		panic("uvm_mmap() variant unsupported");
    392 	if (flags != (MAP_PRIVATE | MAP_ANON))
    393 		panic("uvm_mmap() variant unsupported");
    394 
    395 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    396 	if (*addr != 0)
    397 		panic("uvm_mmap() variant unsupported");
    398 
    399 	if (RUMP_LOCALPROC_P(curproc)) {
    400 		uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    401 	} else {
    402 		error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
    403 		    size, &uaddr);
    404 	}
    405 	if (uaddr == NULL)
    406 		return error;
    407 
    408 	*addr = (vaddr_t)uaddr;
    409 	return 0;
    410 }
    411 
    412 struct pagerinfo {
    413 	vaddr_t pgr_kva;
    414 	int pgr_npages;
    415 	struct vm_page **pgr_pgs;
    416 	bool pgr_read;
    417 
    418 	LIST_ENTRY(pagerinfo) pgr_entries;
    419 };
    420 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    421 
    422 /*
    423  * Pager "map" in routine.  Instead of mapping, we allocate memory
    424  * and copy page contents there.  Not optimal or even strictly
    425  * correct (the caller might modify the page contents after mapping
    426  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    427  */
    428 vaddr_t
    429 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    430 {
    431 	struct pagerinfo *pgri;
    432 	vaddr_t curkva;
    433 	int i;
    434 
    435 	/* allocate structures */
    436 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    437 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    438 	pgri->pgr_npages = npages;
    439 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    440 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    441 
    442 	/* copy contents to "mapped" memory */
    443 	for (i = 0, curkva = pgri->pgr_kva;
    444 	    i < npages;
    445 	    i++, curkva += PAGE_SIZE) {
    446 		/*
    447 		 * We need to copy the previous contents of the pages to
    448 		 * the window even if we are reading from the
    449 		 * device, since the device might not fill the contents of
    450 		 * the full mapped range and we will end up corrupting
    451 		 * data when we unmap the window.
    452 		 */
    453 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    454 		pgri->pgr_pgs[i] = pgs[i];
    455 	}
    456 
    457 	mutex_enter(&pagermtx);
    458 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    459 	mutex_exit(&pagermtx);
    460 
    461 	return pgri->pgr_kva;
    462 }
    463 
    464 /*
    465  * map out the pager window.  return contents from VA to page storage
    466  * and free structures.
    467  *
    468  * Note: does not currently support partial frees
    469  */
    470 void
    471 uvm_pagermapout(vaddr_t kva, int npages)
    472 {
    473 	struct pagerinfo *pgri;
    474 	vaddr_t curkva;
    475 	int i;
    476 
    477 	mutex_enter(&pagermtx);
    478 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    479 		if (pgri->pgr_kva == kva)
    480 			break;
    481 	}
    482 	KASSERT(pgri);
    483 	if (pgri->pgr_npages != npages)
    484 		panic("uvm_pagermapout: partial unmapping not supported");
    485 	LIST_REMOVE(pgri, pgr_entries);
    486 	mutex_exit(&pagermtx);
    487 
    488 	if (pgri->pgr_read) {
    489 		for (i = 0, curkva = pgri->pgr_kva;
    490 		    i < pgri->pgr_npages;
    491 		    i++, curkva += PAGE_SIZE) {
    492 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    493 		}
    494 	}
    495 
    496 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    497 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    498 	kmem_free(pgri, sizeof(*pgri));
    499 }
    500 
    501 /*
    502  * convert va in pager window to page structure.
    503  * XXX: how expensive is this (global lock, list traversal)?
    504  */
    505 struct vm_page *
    506 uvm_pageratop(vaddr_t va)
    507 {
    508 	struct pagerinfo *pgri;
    509 	struct vm_page *pg = NULL;
    510 	int i;
    511 
    512 	mutex_enter(&pagermtx);
    513 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    514 		if (pgri->pgr_kva <= va
    515 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    516 			break;
    517 	}
    518 	if (pgri) {
    519 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    520 		pg = pgri->pgr_pgs[i];
    521 	}
    522 	mutex_exit(&pagermtx);
    523 
    524 	return pg;
    525 }
    526 
    527 /*
    528  * Called with the vm object locked.
    529  *
    530  * Put vnode object pages at the end of the access queue to indicate
    531  * they have been recently accessed and should not be immediate
    532  * candidates for pageout.  Do not do this for lookups done by
    533  * the pagedaemon to mimic pmap_kentered mappings which don't track
    534  * access information.
    535  */
    536 struct vm_page *
    537 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    538 {
    539 	struct vm_page *pg;
    540 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    541 
    542 	pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
    543 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    544 		mutex_enter(&uvm_pageqlock);
    545 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    546 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    547 		mutex_exit(&uvm_pageqlock);
    548 	}
    549 
    550 	return pg;
    551 }
    552 
    553 void
    554 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    555 {
    556 	struct vm_page *pg;
    557 	int i;
    558 
    559 	KASSERT(npgs > 0);
    560 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
    561 
    562 	for (i = 0; i < npgs; i++) {
    563 		pg = pgs[i];
    564 		if (pg == NULL)
    565 			continue;
    566 
    567 		KASSERT(pg->flags & PG_BUSY);
    568 		if (pg->flags & PG_WANTED)
    569 			wakeup(pg);
    570 		if (pg->flags & PG_RELEASED)
    571 			uvm_pagefree(pg);
    572 		else
    573 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    574 	}
    575 }
    576 
    577 void
    578 uvm_estimatepageable(int *active, int *inactive)
    579 {
    580 
    581 	/* XXX: guessing game */
    582 	*active = 1024;
    583 	*inactive = 1024;
    584 }
    585 
    586 bool
    587 vm_map_starved_p(struct vm_map *map)
    588 {
    589 
    590 	if (map->flags & VM_MAP_WANTVA)
    591 		return true;
    592 
    593 	return false;
    594 }
    595 
    596 int
    597 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    598 {
    599 
    600 	panic("%s: unimplemented", __func__);
    601 }
    602 
    603 void
    604 uvm_unloan(void *v, int npages, int flags)
    605 {
    606 
    607 	panic("%s: unimplemented", __func__);
    608 }
    609 
    610 int
    611 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    612 	struct vm_page **opp)
    613 {
    614 
    615 	return EBUSY;
    616 }
    617 
    618 struct vm_page *
    619 uvm_loanbreak(struct vm_page *pg)
    620 {
    621 
    622 	panic("%s: unimplemented", __func__);
    623 }
    624 
    625 int
    626 uvm_loanobj(struct uvm_object *uobj, struct uio *uio, int advice)
    627 {
    628 
    629 	return ENOTSUP;
    630 }
    631 
    632 void
    633 ubc_purge(struct uvm_object *uobj)
    634 {
    635 
    636 }
    637 
    638 #ifdef DEBUGPRINT
    639 void
    640 uvm_object_printit(struct uvm_object *uobj, bool full,
    641 	void (*pr)(const char *, ...))
    642 {
    643 
    644 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    645 }
    646 #endif
    647 
    648 vaddr_t
    649 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    650 {
    651 
    652 	return 0;
    653 }
    654 
    655 int
    656 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    657 	vm_prot_t prot, bool set_max)
    658 {
    659 
    660 	return EOPNOTSUPP;
    661 }
    662 
    663 /*
    664  * UVM km
    665  */
    666 
    667 vaddr_t
    668 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    669 {
    670 	void *rv, *desired = NULL;
    671 	int alignbit, error;
    672 
    673 #ifdef __x86_64__
    674 	/*
    675 	 * On amd64, allocate all module memory from the lowest 2GB.
    676 	 * This is because NetBSD kernel modules are compiled
    677 	 * with -mcmodel=kernel and reserve only 4 bytes for
    678 	 * offsets.  If we load code compiled with -mcmodel=kernel
    679 	 * anywhere except the lowest or highest 2GB, it will not
    680 	 * work.  Since userspace does not have access to the highest
    681 	 * 2GB, use the lowest 2GB.
    682 	 *
    683 	 * Note: this assumes the rump kernel resides in
    684 	 * the lowest 2GB as well.
    685 	 *
    686 	 * Note2: yes, it's a quick hack, but since this the only
    687 	 * place where we care about the map we're allocating from,
    688 	 * just use a simple "if" instead of coming up with a fancy
    689 	 * generic solution.
    690 	 */
    691 	if (map == module_map) {
    692 		desired = (void *)(0x80000000 - size);
    693 	}
    694 #endif
    695 
    696 	if (__predict_false(map == module_map)) {
    697 		alignbit = 0;
    698 		if (align) {
    699 			alignbit = ffs(align)-1;
    700 		}
    701 		rv = rumpuser_anonmmap(desired, size, alignbit,
    702 		    flags & UVM_KMF_EXEC, &error);
    703 	} else {
    704 		rv = rumpuser_malloc(size, align);
    705 	}
    706 
    707 	if (rv == NULL) {
    708 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    709 			return 0;
    710 		else
    711 			panic("uvm_km_alloc failed");
    712 	}
    713 
    714 	if (flags & UVM_KMF_ZERO)
    715 		memset(rv, 0, size);
    716 
    717 	return (vaddr_t)rv;
    718 }
    719 
    720 void
    721 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    722 {
    723 
    724 	if (__predict_false(map == module_map))
    725 		rumpuser_unmap((void *)vaddr, size);
    726 	else
    727 		rumpuser_free((void *)vaddr);
    728 }
    729 
    730 struct vm_map *
    731 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    732 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    733 {
    734 
    735 	return (struct vm_map *)417416;
    736 }
    737 
    738 int
    739 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    740     vmem_addr_t *addr)
    741 {
    742 	vaddr_t va;
    743 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    744 	    (flags & VM_SLEEP), "kmalloc");
    745 
    746 	if (va) {
    747 		*addr = va;
    748 		return 0;
    749 	} else {
    750 		return ENOMEM;
    751 	}
    752 }
    753 
    754 void
    755 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    756 {
    757 
    758 	rump_hyperfree((void *)addr, size);
    759 }
    760 
    761 /*
    762  * VM space locking routines.  We don't really have to do anything,
    763  * since the pages are always "wired" (both local and remote processes).
    764  */
    765 int
    766 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    767 {
    768 
    769 	return 0;
    770 }
    771 
    772 void
    773 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    774 {
    775 
    776 }
    777 
    778 /*
    779  * For the local case the buffer mappers don't need to do anything.
    780  * For the remote case we need to reserve space and copy data in or
    781  * out, depending on B_READ/B_WRITE.
    782  */
    783 int
    784 vmapbuf(struct buf *bp, vsize_t len)
    785 {
    786 	int error = 0;
    787 
    788 	bp->b_saveaddr = bp->b_data;
    789 
    790 	/* remote case */
    791 	if (!RUMP_LOCALPROC_P(curproc)) {
    792 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    793 		if (BUF_ISWRITE(bp)) {
    794 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    795 			if (error) {
    796 				rump_hyperfree(bp->b_data, len);
    797 				bp->b_data = bp->b_saveaddr;
    798 				bp->b_saveaddr = 0;
    799 			}
    800 		}
    801 	}
    802 
    803 	return error;
    804 }
    805 
    806 void
    807 vunmapbuf(struct buf *bp, vsize_t len)
    808 {
    809 
    810 	/* remote case */
    811 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    812 		if (BUF_ISREAD(bp)) {
    813 			bp->b_error = copyout_proc(bp->b_proc,
    814 			    bp->b_data, bp->b_saveaddr, len);
    815 		}
    816 		rump_hyperfree(bp->b_data, len);
    817 	}
    818 
    819 	bp->b_data = bp->b_saveaddr;
    820 	bp->b_saveaddr = 0;
    821 }
    822 
    823 void
    824 uvmspace_addref(struct vmspace *vm)
    825 {
    826 
    827 	/*
    828 	 * No dynamically allocated vmspaces exist.
    829 	 */
    830 }
    831 
    832 void
    833 uvmspace_free(struct vmspace *vm)
    834 {
    835 
    836 	/* nothing for now */
    837 }
    838 
    839 /*
    840  * page life cycle stuff.  it really doesn't exist, so just stubs.
    841  */
    842 
    843 void
    844 uvm_pageactivate(struct vm_page *pg)
    845 {
    846 
    847 	/* nada */
    848 }
    849 
    850 void
    851 uvm_pagedeactivate(struct vm_page *pg)
    852 {
    853 
    854 	/* nada */
    855 }
    856 
    857 void
    858 uvm_pagedequeue(struct vm_page *pg)
    859 {
    860 
    861 	/* nada*/
    862 }
    863 
    864 void
    865 uvm_pageenqueue(struct vm_page *pg)
    866 {
    867 
    868 	/* nada */
    869 }
    870 
    871 void
    872 uvmpdpol_anfree(struct vm_anon *an)
    873 {
    874 
    875 	/* nada */
    876 }
    877 
    878 /*
    879  * Physical address accessors.
    880  */
    881 
    882 struct vm_page *
    883 uvm_phys_to_vm_page(paddr_t pa)
    884 {
    885 
    886 	return NULL;
    887 }
    888 
    889 paddr_t
    890 uvm_vm_page_to_phys(const struct vm_page *pg)
    891 {
    892 
    893 	return 0;
    894 }
    895 
    896 /*
    897  * Routines related to the Page Baroness.
    898  */
    899 
    900 void
    901 uvm_wait(const char *msg)
    902 {
    903 
    904 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    905 		panic("pagedaemon out of memory");
    906 	if (__predict_false(rump_threads == 0))
    907 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    908 
    909 	mutex_enter(&pdaemonmtx);
    910 	pdaemon_waiters++;
    911 	cv_signal(&pdaemoncv);
    912 	cv_wait(&oomwait, &pdaemonmtx);
    913 	mutex_exit(&pdaemonmtx);
    914 }
    915 
    916 void
    917 uvm_pageout_start(int npages)
    918 {
    919 
    920 	mutex_enter(&pdaemonmtx);
    921 	uvmexp.paging += npages;
    922 	mutex_exit(&pdaemonmtx);
    923 }
    924 
    925 void
    926 uvm_pageout_done(int npages)
    927 {
    928 
    929 	if (!npages)
    930 		return;
    931 
    932 	mutex_enter(&pdaemonmtx);
    933 	KASSERT(uvmexp.paging >= npages);
    934 	uvmexp.paging -= npages;
    935 
    936 	if (pdaemon_waiters) {
    937 		pdaemon_waiters = 0;
    938 		cv_broadcast(&oomwait);
    939 	}
    940 	mutex_exit(&pdaemonmtx);
    941 }
    942 
    943 static bool
    944 processpage(struct vm_page *pg, bool *lockrunning)
    945 {
    946 	struct uvm_object *uobj;
    947 
    948 	uobj = pg->uobject;
    949 	if (mutex_tryenter(uobj->vmobjlock)) {
    950 		if ((pg->flags & PG_BUSY) == 0) {
    951 			mutex_exit(&uvm_pageqlock);
    952 			uobj->pgops->pgo_put(uobj, pg->offset,
    953 			    pg->offset + PAGE_SIZE,
    954 			    PGO_CLEANIT|PGO_FREE);
    955 			KASSERT(!mutex_owned(uobj->vmobjlock));
    956 			return true;
    957 		} else {
    958 			mutex_exit(uobj->vmobjlock);
    959 		}
    960 	} else if (*lockrunning == false && ncpu > 1) {
    961 		CPU_INFO_ITERATOR cii;
    962 		struct cpu_info *ci;
    963 		struct lwp *l;
    964 
    965 		l = mutex_owner(uobj->vmobjlock);
    966 		for (CPU_INFO_FOREACH(cii, ci)) {
    967 			if (ci->ci_curlwp == l) {
    968 				*lockrunning = true;
    969 				break;
    970 			}
    971 		}
    972 	}
    973 
    974 	return false;
    975 }
    976 
    977 /*
    978  * The Diabolical pageDaemon Director (DDD).
    979  *
    980  * This routine can always use better heuristics.
    981  */
    982 void
    983 uvm_pageout(void *arg)
    984 {
    985 	struct vm_page *pg;
    986 	struct pool *pp, *pp_first;
    987 	int cleaned, skip, skipped;
    988 	bool succ;
    989 	bool lockrunning;
    990 
    991 	mutex_enter(&pdaemonmtx);
    992 	for (;;) {
    993 		if (!NEED_PAGEDAEMON()) {
    994 			kernel_map->flags &= ~VM_MAP_WANTVA;
    995 		}
    996 
    997 		if (pdaemon_waiters) {
    998 			pdaemon_waiters = 0;
    999 			cv_broadcast(&oomwait);
   1000 		}
   1001 
   1002 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1003 		uvmexp.pdwoke++;
   1004 
   1005 		/* tell the world that we are hungry */
   1006 		kernel_map->flags |= VM_MAP_WANTVA;
   1007 		mutex_exit(&pdaemonmtx);
   1008 
   1009 		/*
   1010 		 * step one: reclaim the page cache.  this should give
   1011 		 * us the biggest earnings since whole pages are released
   1012 		 * into backing memory.
   1013 		 */
   1014 		pool_cache_reclaim(&pagecache);
   1015 		if (!NEED_PAGEDAEMON()) {
   1016 			mutex_enter(&pdaemonmtx);
   1017 			continue;
   1018 		}
   1019 
   1020 		/*
   1021 		 * Ok, so that didn't help.  Next, try to hunt memory
   1022 		 * by pushing out vnode pages.  The pages might contain
   1023 		 * useful cached data, but we need the memory.
   1024 		 */
   1025 		cleaned = 0;
   1026 		skip = 0;
   1027 		lockrunning = false;
   1028  again:
   1029 		mutex_enter(&uvm_pageqlock);
   1030 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1031 			skipped = 0;
   1032 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1033 
   1034 				/*
   1035 				 * skip over pages we _might_ have tried
   1036 				 * to handle earlier.  they might not be
   1037 				 * exactly the same ones, but I'm not too
   1038 				 * concerned.
   1039 				 */
   1040 				while (skipped++ < skip)
   1041 					continue;
   1042 
   1043 				if (processpage(pg, &lockrunning)) {
   1044 					cleaned++;
   1045 					goto again;
   1046 				}
   1047 
   1048 				skip++;
   1049 			}
   1050 			break;
   1051 		}
   1052 		mutex_exit(&uvm_pageqlock);
   1053 
   1054 		/*
   1055 		 * Ok, someone is running with an object lock held.
   1056 		 * We want to yield the host CPU to make sure the
   1057 		 * thread is not parked on the host.  Since sched_yield()
   1058 		 * doesn't appear to do anything on NetBSD, nanosleep
   1059 		 * for the smallest possible time and hope we're back in
   1060 		 * the game soon.
   1061 		 */
   1062 		if (cleaned == 0 && lockrunning) {
   1063 			uint64_t sec, nsec;
   1064 
   1065 			sec = 0;
   1066 			nsec = 1;
   1067 			rumpuser_nanosleep(&sec, &nsec, NULL);
   1068 
   1069 			lockrunning = false;
   1070 			skip = 0;
   1071 
   1072 			/* and here we go again */
   1073 			goto again;
   1074 		}
   1075 
   1076 		/*
   1077 		 * And of course we need to reclaim the page cache
   1078 		 * again to actually release memory.
   1079 		 */
   1080 		pool_cache_reclaim(&pagecache);
   1081 		if (!NEED_PAGEDAEMON()) {
   1082 			mutex_enter(&pdaemonmtx);
   1083 			continue;
   1084 		}
   1085 
   1086 		/*
   1087 		 * And then drain the pools.  Wipe them out ... all of them.
   1088 		 */
   1089 		for (pp_first = NULL;;) {
   1090 			if (rump_vfs_drainbufs)
   1091 				rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1092 
   1093 			succ = pool_drain(&pp);
   1094 			if (succ || pp == pp_first)
   1095 				break;
   1096 
   1097 			if (pp_first == NULL)
   1098 				pp_first = pp;
   1099 		}
   1100 
   1101 		/*
   1102 		 * Need to use PYEC on our bag of tricks.
   1103 		 * Unfortunately, the wife just borrowed it.
   1104 		 */
   1105 
   1106 		mutex_enter(&pdaemonmtx);
   1107 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1108 		    uvmexp.paging == 0) {
   1109 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1110 			    "memory ... sleeping (deadlock?)\n");
   1111 			cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
   1112 		}
   1113 	}
   1114 
   1115 	panic("you can swap out any time you like, but you can never leave");
   1116 }
   1117 
   1118 void
   1119 uvm_kick_pdaemon()
   1120 {
   1121 
   1122 	/*
   1123 	 * Wake up the diabolical pagedaemon director if we are over
   1124 	 * 90% of the memory limit.  This is a complete and utter
   1125 	 * stetson-harrison decision which you are allowed to finetune.
   1126 	 * Don't bother locking.  If we have some unflushed caches,
   1127 	 * other waker-uppers will deal with the issue.
   1128 	 */
   1129 	if (NEED_PAGEDAEMON()) {
   1130 		cv_signal(&pdaemoncv);
   1131 	}
   1132 }
   1133 
   1134 void *
   1135 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1136 {
   1137 	unsigned long newmem;
   1138 	void *rv;
   1139 
   1140 	uvm_kick_pdaemon(); /* ouch */
   1141 
   1142 	/* first we must be within the limit */
   1143  limitagain:
   1144 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1145 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1146 		if (newmem > rump_physmemlimit) {
   1147 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1148 			if (!waitok) {
   1149 				return NULL;
   1150 			}
   1151 			uvm_wait(wmsg);
   1152 			goto limitagain;
   1153 		}
   1154 	}
   1155 
   1156 	/* second, we must get something from the backend */
   1157  again:
   1158 	rv = rumpuser_malloc(howmuch, alignment);
   1159 	if (__predict_false(rv == NULL && waitok)) {
   1160 		uvm_wait(wmsg);
   1161 		goto again;
   1162 	}
   1163 
   1164 	return rv;
   1165 }
   1166 
   1167 void
   1168 rump_hyperfree(void *what, size_t size)
   1169 {
   1170 
   1171 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1172 		atomic_add_long(&curphysmem, -size);
   1173 	}
   1174 	rumpuser_free(what);
   1175 }
   1176