vm.c revision 1.120.6.2 1 /* $NetBSD: vm.c,v 1.120.6.2 2012/02/24 09:11:50 mrg Exp $ */
2
3 /*
4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.120.6.2 2012/02/24 09:11:50 mrg Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/vmem.h>
52 #include <sys/mman.h>
53 #include <sys/null.h>
54 #include <sys/vnode.h>
55
56 #include <machine/pmap.h>
57
58 #include <rump/rumpuser.h>
59
60 #include <uvm/uvm.h>
61 #include <uvm/uvm_ddb.h>
62 #include <uvm/uvm_pdpolicy.h>
63 #include <uvm/uvm_prot.h>
64 #include <uvm/uvm_readahead.h>
65
66 #include "rump_private.h"
67 #include "rump_vfs_private.h"
68
69 kmutex_t uvm_pageqlock;
70 kmutex_t uvm_swap_data_lock;
71
72 struct uvmexp uvmexp;
73 struct uvm uvm;
74
75 #ifdef __uvmexp_pagesize
76 const int * const uvmexp_pagesize = &uvmexp.pagesize;
77 const int * const uvmexp_pagemask = &uvmexp.pagemask;
78 const int * const uvmexp_pageshift = &uvmexp.pageshift;
79 #endif
80
81 struct vm_map rump_vmmap;
82
83 static struct vm_map kernel_map_store;
84 struct vm_map *kernel_map = &kernel_map_store;
85
86 vmem_t *kmem_arena;
87 vmem_t *kmem_va_arena;
88
89 static unsigned int pdaemon_waiters;
90 static kmutex_t pdaemonmtx;
91 static kcondvar_t pdaemoncv, oomwait;
92
93 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
94 static unsigned long curphysmem;
95 static unsigned long dddlim; /* 90% of memory limit used */
96 #define NEED_PAGEDAEMON() \
97 (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
98
99 /*
100 * Try to free two pages worth of pages from objects.
101 * If this succesfully frees a full page cache page, we'll
102 * free the released page plus PAGE_SIZE/sizeof(vm_page).
103 */
104 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
105
106 /*
107 * Keep a list of least recently used pages. Since the only way a
108 * rump kernel can "access" a page is via lookup, we put the page
109 * at the back of queue every time a lookup for it is done. If the
110 * page is in front of this global queue and we're short of memory,
111 * it's a candidate for pageout.
112 */
113 static struct pglist vmpage_lruqueue;
114 static unsigned vmpage_onqueue;
115
116 static int
117 pg_compare_key(void *ctx, const void *n, const void *key)
118 {
119 voff_t a = ((const struct vm_page *)n)->offset;
120 voff_t b = *(const voff_t *)key;
121
122 if (a < b)
123 return -1;
124 else if (a > b)
125 return 1;
126 else
127 return 0;
128 }
129
130 static int
131 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
132 {
133
134 return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
135 }
136
137 const rb_tree_ops_t uvm_page_tree_ops = {
138 .rbto_compare_nodes = pg_compare_nodes,
139 .rbto_compare_key = pg_compare_key,
140 .rbto_node_offset = offsetof(struct vm_page, rb_node),
141 .rbto_context = NULL
142 };
143
144 /*
145 * vm pages
146 */
147
148 static int
149 pgctor(void *arg, void *obj, int flags)
150 {
151 struct vm_page *pg = obj;
152
153 memset(pg, 0, sizeof(*pg));
154 pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
155 (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
156 return pg->uanon == NULL;
157 }
158
159 static void
160 pgdtor(void *arg, void *obj)
161 {
162 struct vm_page *pg = obj;
163
164 rump_hyperfree(pg->uanon, PAGE_SIZE);
165 }
166
167 static struct pool_cache pagecache;
168
169 /*
170 * Called with the object locked. We don't support anons.
171 */
172 struct vm_page *
173 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
174 int flags, int strat, int free_list)
175 {
176 struct vm_page *pg;
177
178 KASSERT(uobj && mutex_owned(uobj->vmobjlock));
179 KASSERT(anon == NULL);
180
181 pg = pool_cache_get(&pagecache, PR_NOWAIT);
182 if (__predict_false(pg == NULL)) {
183 return NULL;
184 }
185
186 pg->offset = off;
187 pg->uobject = uobj;
188
189 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
190 if (flags & UVM_PGA_ZERO) {
191 uvm_pagezero(pg);
192 }
193
194 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
195 (void)rb_tree_insert_node(&uobj->rb_tree, pg);
196
197 /*
198 * Don't put anons on the LRU page queue. We can't flush them
199 * (there's no concept of swap in a rump kernel), so no reason
200 * to bother with them.
201 */
202 if (!UVM_OBJ_IS_AOBJ(uobj)) {
203 atomic_inc_uint(&vmpage_onqueue);
204 mutex_enter(&uvm_pageqlock);
205 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
206 mutex_exit(&uvm_pageqlock);
207 }
208
209 uobj->uo_npages++;
210
211 return pg;
212 }
213
214 /*
215 * Release a page.
216 *
217 * Called with the vm object locked.
218 */
219 void
220 uvm_pagefree(struct vm_page *pg)
221 {
222 struct uvm_object *uobj = pg->uobject;
223
224 KASSERT(mutex_owned(&uvm_pageqlock));
225 KASSERT(mutex_owned(uobj->vmobjlock));
226
227 if (pg->flags & PG_WANTED)
228 wakeup(pg);
229
230 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
231
232 uobj->uo_npages--;
233 rb_tree_remove_node(&uobj->rb_tree, pg);
234
235 if (!UVM_OBJ_IS_AOBJ(uobj)) {
236 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
237 atomic_dec_uint(&vmpage_onqueue);
238 }
239
240 pool_cache_put(&pagecache, pg);
241 }
242
243 void
244 uvm_pagezero(struct vm_page *pg)
245 {
246
247 pg->flags &= ~PG_CLEAN;
248 memset((void *)pg->uanon, 0, PAGE_SIZE);
249 }
250
251 /*
252 * Misc routines
253 */
254
255 static kmutex_t pagermtx;
256
257 void
258 uvm_init(void)
259 {
260 char buf[64];
261 int error;
262
263 if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
264 unsigned long tmp;
265 char *ep;
266 int mult;
267
268 tmp = strtoul(buf, &ep, 10);
269 if (strlen(ep) > 1)
270 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
271
272 /* mini-dehumanize-number */
273 mult = 1;
274 switch (*ep) {
275 case 'k':
276 mult = 1024;
277 break;
278 case 'm':
279 mult = 1024*1024;
280 break;
281 case 'g':
282 mult = 1024*1024*1024;
283 break;
284 case 0:
285 break;
286 default:
287 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
288 }
289 rump_physmemlimit = tmp * mult;
290
291 if (rump_physmemlimit / mult != tmp)
292 panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
293 /* it's not like we'd get far with, say, 1 byte, but ... */
294 if (rump_physmemlimit == 0)
295 panic("uvm_init: no memory");
296
297 #define HUMANIZE_BYTES 9
298 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
299 format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
300 #undef HUMANIZE_BYTES
301 dddlim = 9 * (rump_physmemlimit / 10);
302 } else {
303 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
304 }
305 aprint_verbose("total memory = %s\n", buf);
306
307 TAILQ_INIT(&vmpage_lruqueue);
308
309 uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
310
311 #ifndef __uvmexp_pagesize
312 uvmexp.pagesize = PAGE_SIZE;
313 uvmexp.pagemask = PAGE_MASK;
314 uvmexp.pageshift = PAGE_SHIFT;
315 #else
316 #define FAKE_PAGE_SHIFT 12
317 uvmexp.pageshift = FAKE_PAGE_SHIFT;
318 uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
319 uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
320 #undef FAKE_PAGE_SHIFT
321 #endif
322
323 mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
324 mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
325 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
326
327 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
328 cv_init(&pdaemoncv, "pdaemon");
329 cv_init(&oomwait, "oomwait");
330
331 kernel_map->pmap = pmap_kernel();
332
333 pool_subsystem_init();
334 vmem_bootstrap();
335 kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
336 NULL, NULL, NULL,
337 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
338
339 vmem_init(kmem_arena);
340
341 kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
342 vmem_alloc, vmem_free, kmem_arena,
343 32 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
344
345 pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
346 "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
347 }
348
349 void
350 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
351 {
352
353 vm->vm_map.pmap = pmap_kernel();
354 vm->vm_refcnt = 1;
355 }
356
357 void
358 uvm_pagewire(struct vm_page *pg)
359 {
360
361 /* nada */
362 }
363
364 void
365 uvm_pageunwire(struct vm_page *pg)
366 {
367
368 /* nada */
369 }
370
371 /* where's your schmonz now? */
372 #define PUNLIMIT(a) \
373 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
374 void
375 uvm_init_limits(struct proc *p)
376 {
377
378 PUNLIMIT(RLIMIT_STACK);
379 PUNLIMIT(RLIMIT_DATA);
380 PUNLIMIT(RLIMIT_RSS);
381 PUNLIMIT(RLIMIT_AS);
382 /* nice, cascade */
383 }
384 #undef PUNLIMIT
385
386 /*
387 * This satisfies the "disgusting mmap hack" used by proplib.
388 * We probably should grow some more assertables to make sure we're
389 * not satisfying anything we shouldn't be satisfying.
390 */
391 int
392 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
393 vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
394 {
395 void *uaddr;
396 int error;
397
398 if (prot != (VM_PROT_READ | VM_PROT_WRITE))
399 panic("uvm_mmap() variant unsupported");
400 if (flags != (MAP_PRIVATE | MAP_ANON))
401 panic("uvm_mmap() variant unsupported");
402
403 /* no reason in particular, but cf. uvm_default_mapaddr() */
404 if (*addr != 0)
405 panic("uvm_mmap() variant unsupported");
406
407 if (RUMP_LOCALPROC_P(curproc)) {
408 uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
409 } else {
410 error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
411 size, &uaddr);
412 }
413 if (uaddr == NULL)
414 return error;
415
416 *addr = (vaddr_t)uaddr;
417 return 0;
418 }
419
420 struct pagerinfo {
421 vaddr_t pgr_kva;
422 int pgr_npages;
423 struct vm_page **pgr_pgs;
424 bool pgr_read;
425
426 LIST_ENTRY(pagerinfo) pgr_entries;
427 };
428 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
429
430 /*
431 * Pager "map" in routine. Instead of mapping, we allocate memory
432 * and copy page contents there. Not optimal or even strictly
433 * correct (the caller might modify the page contents after mapping
434 * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
435 */
436 vaddr_t
437 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
438 {
439 struct pagerinfo *pgri;
440 vaddr_t curkva;
441 int i;
442
443 /* allocate structures */
444 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
445 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
446 pgri->pgr_npages = npages;
447 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
448 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
449
450 /* copy contents to "mapped" memory */
451 for (i = 0, curkva = pgri->pgr_kva;
452 i < npages;
453 i++, curkva += PAGE_SIZE) {
454 /*
455 * We need to copy the previous contents of the pages to
456 * the window even if we are reading from the
457 * device, since the device might not fill the contents of
458 * the full mapped range and we will end up corrupting
459 * data when we unmap the window.
460 */
461 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
462 pgri->pgr_pgs[i] = pgs[i];
463 }
464
465 mutex_enter(&pagermtx);
466 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
467 mutex_exit(&pagermtx);
468
469 return pgri->pgr_kva;
470 }
471
472 /*
473 * map out the pager window. return contents from VA to page storage
474 * and free structures.
475 *
476 * Note: does not currently support partial frees
477 */
478 void
479 uvm_pagermapout(vaddr_t kva, int npages)
480 {
481 struct pagerinfo *pgri;
482 vaddr_t curkva;
483 int i;
484
485 mutex_enter(&pagermtx);
486 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
487 if (pgri->pgr_kva == kva)
488 break;
489 }
490 KASSERT(pgri);
491 if (pgri->pgr_npages != npages)
492 panic("uvm_pagermapout: partial unmapping not supported");
493 LIST_REMOVE(pgri, pgr_entries);
494 mutex_exit(&pagermtx);
495
496 if (pgri->pgr_read) {
497 for (i = 0, curkva = pgri->pgr_kva;
498 i < pgri->pgr_npages;
499 i++, curkva += PAGE_SIZE) {
500 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
501 }
502 }
503
504 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
505 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
506 kmem_free(pgri, sizeof(*pgri));
507 }
508
509 /*
510 * convert va in pager window to page structure.
511 * XXX: how expensive is this (global lock, list traversal)?
512 */
513 struct vm_page *
514 uvm_pageratop(vaddr_t va)
515 {
516 struct pagerinfo *pgri;
517 struct vm_page *pg = NULL;
518 int i;
519
520 mutex_enter(&pagermtx);
521 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
522 if (pgri->pgr_kva <= va
523 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
524 break;
525 }
526 if (pgri) {
527 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
528 pg = pgri->pgr_pgs[i];
529 }
530 mutex_exit(&pagermtx);
531
532 return pg;
533 }
534
535 /*
536 * Called with the vm object locked.
537 *
538 * Put vnode object pages at the end of the access queue to indicate
539 * they have been recently accessed and should not be immediate
540 * candidates for pageout. Do not do this for lookups done by
541 * the pagedaemon to mimic pmap_kentered mappings which don't track
542 * access information.
543 */
544 struct vm_page *
545 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
546 {
547 struct vm_page *pg;
548 bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
549
550 pg = rb_tree_find_node(&uobj->rb_tree, &off);
551 if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
552 mutex_enter(&uvm_pageqlock);
553 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
554 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
555 mutex_exit(&uvm_pageqlock);
556 }
557
558 return pg;
559 }
560
561 void
562 uvm_page_unbusy(struct vm_page **pgs, int npgs)
563 {
564 struct vm_page *pg;
565 int i;
566
567 KASSERT(npgs > 0);
568 KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
569
570 for (i = 0; i < npgs; i++) {
571 pg = pgs[i];
572 if (pg == NULL)
573 continue;
574
575 KASSERT(pg->flags & PG_BUSY);
576 if (pg->flags & PG_WANTED)
577 wakeup(pg);
578 if (pg->flags & PG_RELEASED)
579 uvm_pagefree(pg);
580 else
581 pg->flags &= ~(PG_WANTED|PG_BUSY);
582 }
583 }
584
585 void
586 uvm_estimatepageable(int *active, int *inactive)
587 {
588
589 /* XXX: guessing game */
590 *active = 1024;
591 *inactive = 1024;
592 }
593
594 bool
595 vm_map_starved_p(struct vm_map *map)
596 {
597
598 if (map->flags & VM_MAP_WANTVA)
599 return true;
600
601 return false;
602 }
603
604 int
605 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
606 {
607
608 panic("%s: unimplemented", __func__);
609 }
610
611 void
612 uvm_unloan(void *v, int npages, int flags)
613 {
614
615 panic("%s: unimplemented", __func__);
616 }
617
618 int
619 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
620 struct vm_page **opp)
621 {
622
623 return EBUSY;
624 }
625
626 struct vm_page *
627 uvm_loanbreak(struct vm_page *pg)
628 {
629
630 panic("%s: unimplemented", __func__);
631 }
632
633 void
634 ubc_purge(struct uvm_object *uobj)
635 {
636
637 }
638
639 #ifdef DEBUGPRINT
640 void
641 uvm_object_printit(struct uvm_object *uobj, bool full,
642 void (*pr)(const char *, ...))
643 {
644
645 pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
646 }
647 #endif
648
649 vaddr_t
650 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
651 {
652
653 return 0;
654 }
655
656 int
657 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
658 vm_prot_t prot, bool set_max)
659 {
660
661 return EOPNOTSUPP;
662 }
663
664 /*
665 * UVM km
666 */
667
668 vaddr_t
669 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
670 {
671 void *rv, *desired = NULL;
672 int alignbit, error;
673
674 #ifdef __x86_64__
675 /*
676 * On amd64, allocate all module memory from the lowest 2GB.
677 * This is because NetBSD kernel modules are compiled
678 * with -mcmodel=kernel and reserve only 4 bytes for
679 * offsets. If we load code compiled with -mcmodel=kernel
680 * anywhere except the lowest or highest 2GB, it will not
681 * work. Since userspace does not have access to the highest
682 * 2GB, use the lowest 2GB.
683 *
684 * Note: this assumes the rump kernel resides in
685 * the lowest 2GB as well.
686 *
687 * Note2: yes, it's a quick hack, but since this the only
688 * place where we care about the map we're allocating from,
689 * just use a simple "if" instead of coming up with a fancy
690 * generic solution.
691 */
692 extern struct vm_map *module_map;
693 if (map == module_map) {
694 desired = (void *)(0x80000000 - size);
695 }
696 #endif
697
698 alignbit = 0;
699 if (align) {
700 alignbit = ffs(align)-1;
701 }
702
703 rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
704 &error);
705 if (rv == NULL) {
706 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
707 return 0;
708 else
709 panic("uvm_km_alloc failed");
710 }
711
712 if (flags & UVM_KMF_ZERO)
713 memset(rv, 0, size);
714
715 return (vaddr_t)rv;
716 }
717
718 void
719 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
720 {
721
722 rumpuser_unmap((void *)vaddr, size);
723 }
724
725 struct vm_map *
726 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
727 vsize_t size, int pageable, bool fixed, struct vm_map *submap)
728 {
729
730 return (struct vm_map *)417416;
731 }
732
733 int
734 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
735 vmem_addr_t *addr)
736 {
737 vaddr_t va;
738 va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
739 (flags & VM_SLEEP), "kmalloc");
740
741 if (va) {
742 *addr = va;
743 return 0;
744 } else {
745 return ENOMEM;
746 }
747 }
748
749 void
750 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
751 {
752
753 rump_hyperfree((void *)addr, size);
754 }
755
756 /*
757 * VM space locking routines. We don't really have to do anything,
758 * since the pages are always "wired" (both local and remote processes).
759 */
760 int
761 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
762 {
763
764 return 0;
765 }
766
767 void
768 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
769 {
770
771 }
772
773 /*
774 * For the local case the buffer mappers don't need to do anything.
775 * For the remote case we need to reserve space and copy data in or
776 * out, depending on B_READ/B_WRITE.
777 */
778 int
779 vmapbuf(struct buf *bp, vsize_t len)
780 {
781 int error = 0;
782
783 bp->b_saveaddr = bp->b_data;
784
785 /* remote case */
786 if (!RUMP_LOCALPROC_P(curproc)) {
787 bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
788 if (BUF_ISWRITE(bp)) {
789 error = copyin(bp->b_saveaddr, bp->b_data, len);
790 if (error) {
791 rump_hyperfree(bp->b_data, len);
792 bp->b_data = bp->b_saveaddr;
793 bp->b_saveaddr = 0;
794 }
795 }
796 }
797
798 return error;
799 }
800
801 void
802 vunmapbuf(struct buf *bp, vsize_t len)
803 {
804
805 /* remote case */
806 if (!RUMP_LOCALPROC_P(bp->b_proc)) {
807 if (BUF_ISREAD(bp)) {
808 bp->b_error = copyout_proc(bp->b_proc,
809 bp->b_data, bp->b_saveaddr, len);
810 }
811 rump_hyperfree(bp->b_data, len);
812 }
813
814 bp->b_data = bp->b_saveaddr;
815 bp->b_saveaddr = 0;
816 }
817
818 void
819 uvmspace_addref(struct vmspace *vm)
820 {
821
822 /*
823 * No dynamically allocated vmspaces exist.
824 */
825 }
826
827 void
828 uvmspace_free(struct vmspace *vm)
829 {
830
831 /* nothing for now */
832 }
833
834 /*
835 * page life cycle stuff. it really doesn't exist, so just stubs.
836 */
837
838 void
839 uvm_pageactivate(struct vm_page *pg)
840 {
841
842 /* nada */
843 }
844
845 void
846 uvm_pagedeactivate(struct vm_page *pg)
847 {
848
849 /* nada */
850 }
851
852 void
853 uvm_pagedequeue(struct vm_page *pg)
854 {
855
856 /* nada*/
857 }
858
859 void
860 uvm_pageenqueue(struct vm_page *pg)
861 {
862
863 /* nada */
864 }
865
866 void
867 uvmpdpol_anfree(struct vm_anon *an)
868 {
869
870 /* nada */
871 }
872
873 /*
874 * Physical address accessors.
875 */
876
877 struct vm_page *
878 uvm_phys_to_vm_page(paddr_t pa)
879 {
880
881 return NULL;
882 }
883
884 paddr_t
885 uvm_vm_page_to_phys(const struct vm_page *pg)
886 {
887
888 return 0;
889 }
890
891 /*
892 * Routines related to the Page Baroness.
893 */
894
895 void
896 uvm_wait(const char *msg)
897 {
898
899 if (__predict_false(curlwp == uvm.pagedaemon_lwp))
900 panic("pagedaemon out of memory");
901 if (__predict_false(rump_threads == 0))
902 panic("pagedaemon missing (RUMP_THREADS = 0)");
903
904 mutex_enter(&pdaemonmtx);
905 pdaemon_waiters++;
906 cv_signal(&pdaemoncv);
907 cv_wait(&oomwait, &pdaemonmtx);
908 mutex_exit(&pdaemonmtx);
909 }
910
911 void
912 uvm_pageout_start(int npages)
913 {
914
915 mutex_enter(&pdaemonmtx);
916 uvmexp.paging += npages;
917 mutex_exit(&pdaemonmtx);
918 }
919
920 void
921 uvm_pageout_done(int npages)
922 {
923
924 if (!npages)
925 return;
926
927 mutex_enter(&pdaemonmtx);
928 KASSERT(uvmexp.paging >= npages);
929 uvmexp.paging -= npages;
930
931 if (pdaemon_waiters) {
932 pdaemon_waiters = 0;
933 cv_broadcast(&oomwait);
934 }
935 mutex_exit(&pdaemonmtx);
936 }
937
938 static bool
939 processpage(struct vm_page *pg, bool *lockrunning)
940 {
941 struct uvm_object *uobj;
942
943 uobj = pg->uobject;
944 if (mutex_tryenter(uobj->vmobjlock)) {
945 if ((pg->flags & PG_BUSY) == 0) {
946 mutex_exit(&uvm_pageqlock);
947 uobj->pgops->pgo_put(uobj, pg->offset,
948 pg->offset + PAGE_SIZE,
949 PGO_CLEANIT|PGO_FREE);
950 KASSERT(!mutex_owned(uobj->vmobjlock));
951 return true;
952 } else {
953 mutex_exit(uobj->vmobjlock);
954 }
955 } else if (*lockrunning == false && ncpu > 1) {
956 CPU_INFO_ITERATOR cii;
957 struct cpu_info *ci;
958 struct lwp *l;
959
960 l = mutex_owner(uobj->vmobjlock);
961 for (CPU_INFO_FOREACH(cii, ci)) {
962 if (ci->ci_curlwp == l) {
963 *lockrunning = true;
964 break;
965 }
966 }
967 }
968
969 return false;
970 }
971
972 /*
973 * The Diabolical pageDaemon Director (DDD).
974 *
975 * This routine can always use better heuristics.
976 */
977 void
978 uvm_pageout(void *arg)
979 {
980 struct vm_page *pg;
981 struct pool *pp, *pp_first;
982 uint64_t where;
983 int cleaned, skip, skipped;
984 int waspaging;
985 bool succ;
986 bool lockrunning;
987
988 mutex_enter(&pdaemonmtx);
989 for (;;) {
990 if (!NEED_PAGEDAEMON()) {
991 kernel_map->flags &= ~VM_MAP_WANTVA;
992 }
993
994 if (pdaemon_waiters) {
995 pdaemon_waiters = 0;
996 cv_broadcast(&oomwait);
997 }
998
999 cv_wait(&pdaemoncv, &pdaemonmtx);
1000 uvmexp.pdwoke++;
1001 waspaging = uvmexp.paging;
1002
1003 /* tell the world that we are hungry */
1004 kernel_map->flags |= VM_MAP_WANTVA;
1005 mutex_exit(&pdaemonmtx);
1006
1007 /*
1008 * step one: reclaim the page cache. this should give
1009 * us the biggest earnings since whole pages are released
1010 * into backing memory.
1011 */
1012 pool_cache_reclaim(&pagecache);
1013 if (!NEED_PAGEDAEMON()) {
1014 mutex_enter(&pdaemonmtx);
1015 continue;
1016 }
1017
1018 /*
1019 * Ok, so that didn't help. Next, try to hunt memory
1020 * by pushing out vnode pages. The pages might contain
1021 * useful cached data, but we need the memory.
1022 */
1023 cleaned = 0;
1024 skip = 0;
1025 lockrunning = false;
1026 again:
1027 mutex_enter(&uvm_pageqlock);
1028 while (cleaned < PAGEDAEMON_OBJCHUNK) {
1029 skipped = 0;
1030 TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1031
1032 /*
1033 * skip over pages we _might_ have tried
1034 * to handle earlier. they might not be
1035 * exactly the same ones, but I'm not too
1036 * concerned.
1037 */
1038 while (skipped++ < skip)
1039 continue;
1040
1041 if (processpage(pg, &lockrunning)) {
1042 cleaned++;
1043 goto again;
1044 }
1045
1046 skip++;
1047 }
1048 break;
1049 }
1050 mutex_exit(&uvm_pageqlock);
1051
1052 /*
1053 * Ok, someone is running with an object lock held.
1054 * We want to yield the host CPU to make sure the
1055 * thread is not parked on the host. Since sched_yield()
1056 * doesn't appear to do anything on NetBSD, nanosleep
1057 * for the smallest possible time and hope we're back in
1058 * the game soon.
1059 */
1060 if (cleaned == 0 && lockrunning) {
1061 uint64_t sec, nsec;
1062
1063 sec = 0;
1064 nsec = 1;
1065 rumpuser_nanosleep(&sec, &nsec, NULL);
1066
1067 lockrunning = false;
1068 skip = 0;
1069
1070 /* and here we go again */
1071 goto again;
1072 }
1073
1074 /*
1075 * And of course we need to reclaim the page cache
1076 * again to actually release memory.
1077 */
1078 pool_cache_reclaim(&pagecache);
1079 if (!NEED_PAGEDAEMON()) {
1080 mutex_enter(&pdaemonmtx);
1081 continue;
1082 }
1083
1084 /*
1085 * And then drain the pools. Wipe them out ... all of them.
1086 */
1087
1088 pool_drain_start(&pp_first, &where);
1089 pp = pp_first;
1090 for (;;) {
1091 rump_vfs_drainbufs(10 /* XXX: estimate better */);
1092 succ = pool_drain_end(pp, where);
1093 if (succ)
1094 break;
1095 pool_drain_start(&pp, &where);
1096 if (pp == pp_first) {
1097 succ = pool_drain_end(pp, where);
1098 break;
1099 }
1100 }
1101
1102 /*
1103 * Need to use PYEC on our bag of tricks.
1104 * Unfortunately, the wife just borrowed it.
1105 */
1106
1107 mutex_enter(&pdaemonmtx);
1108 if (!succ && cleaned == 0 && pdaemon_waiters &&
1109 uvmexp.paging == 0) {
1110 rumpuser_dprintf("pagedaemoness: failed to reclaim "
1111 "memory ... sleeping (deadlock?)\n");
1112 cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
1113 mutex_enter(&pdaemonmtx);
1114 }
1115 }
1116
1117 panic("you can swap out any time you like, but you can never leave");
1118 }
1119
1120 void
1121 uvm_kick_pdaemon()
1122 {
1123
1124 /*
1125 * Wake up the diabolical pagedaemon director if we are over
1126 * 90% of the memory limit. This is a complete and utter
1127 * stetson-harrison decision which you are allowed to finetune.
1128 * Don't bother locking. If we have some unflushed caches,
1129 * other waker-uppers will deal with the issue.
1130 */
1131 if (NEED_PAGEDAEMON()) {
1132 cv_signal(&pdaemoncv);
1133 }
1134 }
1135
1136 void *
1137 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1138 {
1139 unsigned long newmem;
1140 void *rv;
1141
1142 uvm_kick_pdaemon(); /* ouch */
1143
1144 /* first we must be within the limit */
1145 limitagain:
1146 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1147 newmem = atomic_add_long_nv(&curphysmem, howmuch);
1148 if (newmem > rump_physmemlimit) {
1149 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1150 if (!waitok) {
1151 return NULL;
1152 }
1153 uvm_wait(wmsg);
1154 goto limitagain;
1155 }
1156 }
1157
1158 /* second, we must get something from the backend */
1159 again:
1160 rv = rumpuser_malloc(howmuch, alignment);
1161 if (__predict_false(rv == NULL && waitok)) {
1162 uvm_wait(wmsg);
1163 goto again;
1164 }
1165
1166 return rv;
1167 }
1168
1169 void
1170 rump_hyperfree(void *what, size_t size)
1171 {
1172
1173 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1174 atomic_add_long(&curphysmem, -size);
1175 }
1176 rumpuser_free(what);
1177 }
1178