vm.c revision 1.121 1 /* $NetBSD: vm.c,v 1.121 2012/01/27 19:48:41 para Exp $ */
2
3 /*
4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.121 2012/01/27 19:48:41 para Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/vmem.h>
52 #include <sys/mman.h>
53 #include <sys/null.h>
54 #include <sys/vnode.h>
55
56 #include <machine/pmap.h>
57
58 #include <rump/rumpuser.h>
59
60 #include <uvm/uvm.h>
61 #include <uvm/uvm_ddb.h>
62 #include <uvm/uvm_pdpolicy.h>
63 #include <uvm/uvm_prot.h>
64 #include <uvm/uvm_readahead.h>
65
66 #include "rump_private.h"
67 #include "rump_vfs_private.h"
68
69 kmutex_t uvm_pageqlock;
70 kmutex_t uvm_swap_data_lock;
71
72 struct uvmexp uvmexp;
73 struct uvm uvm;
74
75 #ifdef __uvmexp_pagesize
76 int *uvmexp_pagesize = &uvmexp.pagesize;
77 int *uvmexp_pagemask = &uvmexp.pagemask;
78 int *uvmexp_pageshift = &uvmexp.pageshift;
79 #endif
80
81 struct vm_map rump_vmmap;
82
83 static struct vm_map kernel_map_store;
84 struct vm_map *kernel_map = &kernel_map_store;
85
86 vmem_t *kmem_arena;
87 vmem_t *kmem_va_arena;
88
89 static unsigned int pdaemon_waiters;
90 static kmutex_t pdaemonmtx;
91 static kcondvar_t pdaemoncv, oomwait;
92
93 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
94 static unsigned long curphysmem;
95 static unsigned long dddlim; /* 90% of memory limit used */
96 #define NEED_PAGEDAEMON() \
97 (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
98
99 /*
100 * Try to free two pages worth of pages from objects.
101 * If this succesfully frees a full page cache page, we'll
102 * free the released page plus PAGE_SIZE/sizeof(vm_page).
103 */
104 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
105
106 /*
107 * Keep a list of least recently used pages. Since the only way a
108 * rump kernel can "access" a page is via lookup, we put the page
109 * at the back of queue every time a lookup for it is done. If the
110 * page is in front of this global queue and we're short of memory,
111 * it's a candidate for pageout.
112 */
113 static struct pglist vmpage_lruqueue;
114 static unsigned vmpage_onqueue;
115
116 static int
117 pg_compare_key(void *ctx, const void *n, const void *key)
118 {
119 voff_t a = ((const struct vm_page *)n)->offset;
120 voff_t b = *(const voff_t *)key;
121
122 if (a < b)
123 return -1;
124 else if (a > b)
125 return 1;
126 else
127 return 0;
128 }
129
130 static int
131 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
132 {
133
134 return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
135 }
136
137 const rb_tree_ops_t uvm_page_tree_ops = {
138 .rbto_compare_nodes = pg_compare_nodes,
139 .rbto_compare_key = pg_compare_key,
140 .rbto_node_offset = offsetof(struct vm_page, rb_node),
141 .rbto_context = NULL
142 };
143
144 /*
145 * vm pages
146 */
147
148 static int
149 pgctor(void *arg, void *obj, int flags)
150 {
151 struct vm_page *pg = obj;
152
153 memset(pg, 0, sizeof(*pg));
154 pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
155 (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
156 return pg->uanon == NULL;
157 }
158
159 static void
160 pgdtor(void *arg, void *obj)
161 {
162 struct vm_page *pg = obj;
163
164 rump_hyperfree(pg->uanon, PAGE_SIZE);
165 }
166
167 static struct pool_cache pagecache;
168
169 /*
170 * Called with the object locked. We don't support anons.
171 */
172 struct vm_page *
173 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
174 int flags, int strat, int free_list)
175 {
176 struct vm_page *pg;
177
178 KASSERT(uobj && mutex_owned(uobj->vmobjlock));
179 KASSERT(anon == NULL);
180
181 pg = pool_cache_get(&pagecache, PR_NOWAIT);
182 if (__predict_false(pg == NULL)) {
183 return NULL;
184 }
185
186 pg->offset = off;
187 pg->uobject = uobj;
188
189 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
190 if (flags & UVM_PGA_ZERO) {
191 uvm_pagezero(pg);
192 }
193
194 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
195 (void)rb_tree_insert_node(&uobj->rb_tree, pg);
196
197 /*
198 * Don't put anons on the LRU page queue. We can't flush them
199 * (there's no concept of swap in a rump kernel), so no reason
200 * to bother with them.
201 */
202 if (!UVM_OBJ_IS_AOBJ(uobj)) {
203 atomic_inc_uint(&vmpage_onqueue);
204 mutex_enter(&uvm_pageqlock);
205 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
206 mutex_exit(&uvm_pageqlock);
207 }
208
209 uobj->uo_npages++;
210
211 return pg;
212 }
213
214 /*
215 * Release a page.
216 *
217 * Called with the vm object locked.
218 */
219 void
220 uvm_pagefree(struct vm_page *pg)
221 {
222 struct uvm_object *uobj = pg->uobject;
223
224 KASSERT(mutex_owned(&uvm_pageqlock));
225 KASSERT(mutex_owned(uobj->vmobjlock));
226
227 if (pg->flags & PG_WANTED)
228 wakeup(pg);
229
230 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
231
232 uobj->uo_npages--;
233 rb_tree_remove_node(&uobj->rb_tree, pg);
234
235 if (!UVM_OBJ_IS_AOBJ(uobj)) {
236 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
237 atomic_dec_uint(&vmpage_onqueue);
238 }
239
240 pool_cache_put(&pagecache, pg);
241 }
242
243 void
244 uvm_pagezero(struct vm_page *pg)
245 {
246
247 pg->flags &= ~PG_CLEAN;
248 memset((void *)pg->uanon, 0, PAGE_SIZE);
249 }
250
251 /*
252 * Misc routines
253 */
254
255 static kmutex_t pagermtx;
256
257 void
258 uvm_init(void)
259 {
260 char buf[64];
261 int error;
262
263 if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
264 unsigned long tmp;
265 char *ep;
266 int mult;
267
268 tmp = strtoul(buf, &ep, 10);
269 if (strlen(ep) > 1)
270 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
271
272 /* mini-dehumanize-number */
273 mult = 1;
274 switch (*ep) {
275 case 'k':
276 mult = 1024;
277 break;
278 case 'm':
279 mult = 1024*1024;
280 break;
281 case 'g':
282 mult = 1024*1024*1024;
283 break;
284 case 0:
285 break;
286 default:
287 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
288 }
289 rump_physmemlimit = tmp * mult;
290
291 if (rump_physmemlimit / mult != tmp)
292 panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
293 /* it's not like we'd get far with, say, 1 byte, but ... */
294 if (rump_physmemlimit == 0)
295 panic("uvm_init: no memory");
296
297 #define HUMANIZE_BYTES 9
298 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
299 format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
300 #undef HUMANIZE_BYTES
301 dddlim = 9 * (rump_physmemlimit / 10);
302 } else {
303 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
304 }
305 aprint_verbose("total memory = %s\n", buf);
306
307 TAILQ_INIT(&vmpage_lruqueue);
308
309 uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
310
311 #ifndef __uvmexp_pagesize
312 uvmexp.pagesize = PAGE_SIZE;
313 uvmexp.pagemask = PAGE_MASK;
314 uvmexp.pageshift = PAGE_SHIFT;
315 #else
316 #define FAKE_PAGE_SHIFT 12
317 uvmexp.pageshift = FAKE_PAGE_SHIFT;
318 uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
319 uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
320 #undef FAKE_PAGE_SHIFT
321 #endif
322
323 mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
324 mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
325 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
326
327 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
328 cv_init(&pdaemoncv, "pdaemon");
329 cv_init(&oomwait, "oomwait");
330
331 kernel_map->pmap = pmap_kernel();
332
333 vmem_bootstrap();
334 kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
335 NULL, NULL, NULL,
336 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
337
338 vmem_init(kmem_arena);
339
340 kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
341 vmem_alloc, vmem_free, kmem_arena,
342 32 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
343
344 pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
345 "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
346 }
347
348 void
349 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
350 {
351
352 vm->vm_map.pmap = pmap_kernel();
353 vm->vm_refcnt = 1;
354 }
355
356 void
357 uvm_pagewire(struct vm_page *pg)
358 {
359
360 /* nada */
361 }
362
363 void
364 uvm_pageunwire(struct vm_page *pg)
365 {
366
367 /* nada */
368 }
369
370 /* where's your schmonz now? */
371 #define PUNLIMIT(a) \
372 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
373 void
374 uvm_init_limits(struct proc *p)
375 {
376
377 PUNLIMIT(RLIMIT_STACK);
378 PUNLIMIT(RLIMIT_DATA);
379 PUNLIMIT(RLIMIT_RSS);
380 PUNLIMIT(RLIMIT_AS);
381 /* nice, cascade */
382 }
383 #undef PUNLIMIT
384
385 /*
386 * This satisfies the "disgusting mmap hack" used by proplib.
387 * We probably should grow some more assertables to make sure we're
388 * not satisfying anything we shouldn't be satisfying.
389 */
390 int
391 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
392 vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
393 {
394 void *uaddr;
395 int error;
396
397 if (prot != (VM_PROT_READ | VM_PROT_WRITE))
398 panic("uvm_mmap() variant unsupported");
399 if (flags != (MAP_PRIVATE | MAP_ANON))
400 panic("uvm_mmap() variant unsupported");
401
402 /* no reason in particular, but cf. uvm_default_mapaddr() */
403 if (*addr != 0)
404 panic("uvm_mmap() variant unsupported");
405
406 if (RUMP_LOCALPROC_P(curproc)) {
407 uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
408 } else {
409 error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
410 size, &uaddr);
411 }
412 if (uaddr == NULL)
413 return error;
414
415 *addr = (vaddr_t)uaddr;
416 return 0;
417 }
418
419 struct pagerinfo {
420 vaddr_t pgr_kva;
421 int pgr_npages;
422 struct vm_page **pgr_pgs;
423 bool pgr_read;
424
425 LIST_ENTRY(pagerinfo) pgr_entries;
426 };
427 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
428
429 /*
430 * Pager "map" in routine. Instead of mapping, we allocate memory
431 * and copy page contents there. Not optimal or even strictly
432 * correct (the caller might modify the page contents after mapping
433 * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
434 */
435 vaddr_t
436 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
437 {
438 struct pagerinfo *pgri;
439 vaddr_t curkva;
440 int i;
441
442 /* allocate structures */
443 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
444 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
445 pgri->pgr_npages = npages;
446 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
447 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
448
449 /* copy contents to "mapped" memory */
450 for (i = 0, curkva = pgri->pgr_kva;
451 i < npages;
452 i++, curkva += PAGE_SIZE) {
453 /*
454 * We need to copy the previous contents of the pages to
455 * the window even if we are reading from the
456 * device, since the device might not fill the contents of
457 * the full mapped range and we will end up corrupting
458 * data when we unmap the window.
459 */
460 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
461 pgri->pgr_pgs[i] = pgs[i];
462 }
463
464 mutex_enter(&pagermtx);
465 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
466 mutex_exit(&pagermtx);
467
468 return pgri->pgr_kva;
469 }
470
471 /*
472 * map out the pager window. return contents from VA to page storage
473 * and free structures.
474 *
475 * Note: does not currently support partial frees
476 */
477 void
478 uvm_pagermapout(vaddr_t kva, int npages)
479 {
480 struct pagerinfo *pgri;
481 vaddr_t curkva;
482 int i;
483
484 mutex_enter(&pagermtx);
485 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
486 if (pgri->pgr_kva == kva)
487 break;
488 }
489 KASSERT(pgri);
490 if (pgri->pgr_npages != npages)
491 panic("uvm_pagermapout: partial unmapping not supported");
492 LIST_REMOVE(pgri, pgr_entries);
493 mutex_exit(&pagermtx);
494
495 if (pgri->pgr_read) {
496 for (i = 0, curkva = pgri->pgr_kva;
497 i < pgri->pgr_npages;
498 i++, curkva += PAGE_SIZE) {
499 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
500 }
501 }
502
503 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
504 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
505 kmem_free(pgri, sizeof(*pgri));
506 }
507
508 /*
509 * convert va in pager window to page structure.
510 * XXX: how expensive is this (global lock, list traversal)?
511 */
512 struct vm_page *
513 uvm_pageratop(vaddr_t va)
514 {
515 struct pagerinfo *pgri;
516 struct vm_page *pg = NULL;
517 int i;
518
519 mutex_enter(&pagermtx);
520 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
521 if (pgri->pgr_kva <= va
522 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
523 break;
524 }
525 if (pgri) {
526 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
527 pg = pgri->pgr_pgs[i];
528 }
529 mutex_exit(&pagermtx);
530
531 return pg;
532 }
533
534 /*
535 * Called with the vm object locked.
536 *
537 * Put vnode object pages at the end of the access queue to indicate
538 * they have been recently accessed and should not be immediate
539 * candidates for pageout. Do not do this for lookups done by
540 * the pagedaemon to mimic pmap_kentered mappings which don't track
541 * access information.
542 */
543 struct vm_page *
544 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
545 {
546 struct vm_page *pg;
547 bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
548
549 pg = rb_tree_find_node(&uobj->rb_tree, &off);
550 if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
551 mutex_enter(&uvm_pageqlock);
552 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
553 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
554 mutex_exit(&uvm_pageqlock);
555 }
556
557 return pg;
558 }
559
560 void
561 uvm_page_unbusy(struct vm_page **pgs, int npgs)
562 {
563 struct vm_page *pg;
564 int i;
565
566 KASSERT(npgs > 0);
567 KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
568
569 for (i = 0; i < npgs; i++) {
570 pg = pgs[i];
571 if (pg == NULL)
572 continue;
573
574 KASSERT(pg->flags & PG_BUSY);
575 if (pg->flags & PG_WANTED)
576 wakeup(pg);
577 if (pg->flags & PG_RELEASED)
578 uvm_pagefree(pg);
579 else
580 pg->flags &= ~(PG_WANTED|PG_BUSY);
581 }
582 }
583
584 void
585 uvm_estimatepageable(int *active, int *inactive)
586 {
587
588 /* XXX: guessing game */
589 *active = 1024;
590 *inactive = 1024;
591 }
592
593 bool
594 vm_map_starved_p(struct vm_map *map)
595 {
596
597 if (map->flags & VM_MAP_WANTVA)
598 return true;
599
600 return false;
601 }
602
603 int
604 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
605 {
606
607 panic("%s: unimplemented", __func__);
608 }
609
610 void
611 uvm_unloan(void *v, int npages, int flags)
612 {
613
614 panic("%s: unimplemented", __func__);
615 }
616
617 int
618 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
619 struct vm_page **opp)
620 {
621
622 return EBUSY;
623 }
624
625 struct vm_page *
626 uvm_loanbreak(struct vm_page *pg)
627 {
628
629 panic("%s: unimplemented", __func__);
630 }
631
632 void
633 ubc_purge(struct uvm_object *uobj)
634 {
635
636 }
637
638 #ifdef DEBUGPRINT
639 void
640 uvm_object_printit(struct uvm_object *uobj, bool full,
641 void (*pr)(const char *, ...))
642 {
643
644 pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
645 }
646 #endif
647
648 vaddr_t
649 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
650 {
651
652 return 0;
653 }
654
655 int
656 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
657 vm_prot_t prot, bool set_max)
658 {
659
660 return EOPNOTSUPP;
661 }
662
663 /*
664 * UVM km
665 */
666
667 vaddr_t
668 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
669 {
670 void *rv, *desired = NULL;
671 int alignbit, error;
672
673 #ifdef __x86_64__
674 /*
675 * On amd64, allocate all module memory from the lowest 2GB.
676 * This is because NetBSD kernel modules are compiled
677 * with -mcmodel=kernel and reserve only 4 bytes for
678 * offsets. If we load code compiled with -mcmodel=kernel
679 * anywhere except the lowest or highest 2GB, it will not
680 * work. Since userspace does not have access to the highest
681 * 2GB, use the lowest 2GB.
682 *
683 * Note: this assumes the rump kernel resides in
684 * the lowest 2GB as well.
685 *
686 * Note2: yes, it's a quick hack, but since this the only
687 * place where we care about the map we're allocating from,
688 * just use a simple "if" instead of coming up with a fancy
689 * generic solution.
690 */
691 extern struct vm_map *module_map;
692 if (map == module_map) {
693 desired = (void *)(0x80000000 - size);
694 }
695 #endif
696
697 alignbit = 0;
698 if (align) {
699 alignbit = ffs(align)-1;
700 }
701
702 rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
703 &error);
704 if (rv == NULL) {
705 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
706 return 0;
707 else
708 panic("uvm_km_alloc failed");
709 }
710
711 if (flags & UVM_KMF_ZERO)
712 memset(rv, 0, size);
713
714 return (vaddr_t)rv;
715 }
716
717 void
718 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
719 {
720
721 rumpuser_unmap((void *)vaddr, size);
722 }
723
724 struct vm_map *
725 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
726 vsize_t size, int pageable, bool fixed, struct vm_map *submap)
727 {
728
729 return (struct vm_map *)417416;
730 }
731
732 int
733 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
734 vmem_addr_t *addr)
735 {
736 vaddr_t va;
737 va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
738 (flags & VM_SLEEP), "kmalloc");
739
740 if (va) {
741 *addr = va;
742 return 0;
743 } else {
744 return ENOMEM;
745 }
746 }
747
748 void
749 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
750 {
751
752 rump_hyperfree((void *)addr, size);
753 }
754
755 /*
756 * VM space locking routines. We don't really have to do anything,
757 * since the pages are always "wired" (both local and remote processes).
758 */
759 int
760 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
761 {
762
763 return 0;
764 }
765
766 void
767 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
768 {
769
770 }
771
772 /*
773 * For the local case the buffer mappers don't need to do anything.
774 * For the remote case we need to reserve space and copy data in or
775 * out, depending on B_READ/B_WRITE.
776 */
777 int
778 vmapbuf(struct buf *bp, vsize_t len)
779 {
780 int error = 0;
781
782 bp->b_saveaddr = bp->b_data;
783
784 /* remote case */
785 if (!RUMP_LOCALPROC_P(curproc)) {
786 bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
787 if (BUF_ISWRITE(bp)) {
788 error = copyin(bp->b_saveaddr, bp->b_data, len);
789 if (error) {
790 rump_hyperfree(bp->b_data, len);
791 bp->b_data = bp->b_saveaddr;
792 bp->b_saveaddr = 0;
793 }
794 }
795 }
796
797 return error;
798 }
799
800 void
801 vunmapbuf(struct buf *bp, vsize_t len)
802 {
803
804 /* remote case */
805 if (!RUMP_LOCALPROC_P(bp->b_proc)) {
806 if (BUF_ISREAD(bp)) {
807 bp->b_error = copyout_proc(bp->b_proc,
808 bp->b_data, bp->b_saveaddr, len);
809 }
810 rump_hyperfree(bp->b_data, len);
811 }
812
813 bp->b_data = bp->b_saveaddr;
814 bp->b_saveaddr = 0;
815 }
816
817 void
818 uvmspace_addref(struct vmspace *vm)
819 {
820
821 /*
822 * No dynamically allocated vmspaces exist.
823 */
824 }
825
826 void
827 uvmspace_free(struct vmspace *vm)
828 {
829
830 /* nothing for now */
831 }
832
833 /*
834 * page life cycle stuff. it really doesn't exist, so just stubs.
835 */
836
837 void
838 uvm_pageactivate(struct vm_page *pg)
839 {
840
841 /* nada */
842 }
843
844 void
845 uvm_pagedeactivate(struct vm_page *pg)
846 {
847
848 /* nada */
849 }
850
851 void
852 uvm_pagedequeue(struct vm_page *pg)
853 {
854
855 /* nada*/
856 }
857
858 void
859 uvm_pageenqueue(struct vm_page *pg)
860 {
861
862 /* nada */
863 }
864
865 void
866 uvmpdpol_anfree(struct vm_anon *an)
867 {
868
869 /* nada */
870 }
871
872 /*
873 * Physical address accessors.
874 */
875
876 struct vm_page *
877 uvm_phys_to_vm_page(paddr_t pa)
878 {
879
880 return NULL;
881 }
882
883 paddr_t
884 uvm_vm_page_to_phys(const struct vm_page *pg)
885 {
886
887 return 0;
888 }
889
890 /*
891 * Routines related to the Page Baroness.
892 */
893
894 void
895 uvm_wait(const char *msg)
896 {
897
898 if (__predict_false(curlwp == uvm.pagedaemon_lwp))
899 panic("pagedaemon out of memory");
900 if (__predict_false(rump_threads == 0))
901 panic("pagedaemon missing (RUMP_THREADS = 0)");
902
903 mutex_enter(&pdaemonmtx);
904 pdaemon_waiters++;
905 cv_signal(&pdaemoncv);
906 cv_wait(&oomwait, &pdaemonmtx);
907 mutex_exit(&pdaemonmtx);
908 }
909
910 void
911 uvm_pageout_start(int npages)
912 {
913
914 mutex_enter(&pdaemonmtx);
915 uvmexp.paging += npages;
916 mutex_exit(&pdaemonmtx);
917 }
918
919 void
920 uvm_pageout_done(int npages)
921 {
922
923 if (!npages)
924 return;
925
926 mutex_enter(&pdaemonmtx);
927 KASSERT(uvmexp.paging >= npages);
928 uvmexp.paging -= npages;
929
930 if (pdaemon_waiters) {
931 pdaemon_waiters = 0;
932 cv_broadcast(&oomwait);
933 }
934 mutex_exit(&pdaemonmtx);
935 }
936
937 static bool
938 processpage(struct vm_page *pg, bool *lockrunning)
939 {
940 struct uvm_object *uobj;
941
942 uobj = pg->uobject;
943 if (mutex_tryenter(uobj->vmobjlock)) {
944 if ((pg->flags & PG_BUSY) == 0) {
945 mutex_exit(&uvm_pageqlock);
946 uobj->pgops->pgo_put(uobj, pg->offset,
947 pg->offset + PAGE_SIZE,
948 PGO_CLEANIT|PGO_FREE);
949 KASSERT(!mutex_owned(uobj->vmobjlock));
950 return true;
951 } else {
952 mutex_exit(uobj->vmobjlock);
953 }
954 } else if (*lockrunning == false && ncpu > 1) {
955 CPU_INFO_ITERATOR cii;
956 struct cpu_info *ci;
957 struct lwp *l;
958
959 l = mutex_owner(uobj->vmobjlock);
960 for (CPU_INFO_FOREACH(cii, ci)) {
961 if (ci->ci_curlwp == l) {
962 *lockrunning = true;
963 break;
964 }
965 }
966 }
967
968 return false;
969 }
970
971 /*
972 * The Diabolical pageDaemon Director (DDD).
973 *
974 * This routine can always use better heuristics.
975 */
976 void
977 uvm_pageout(void *arg)
978 {
979 struct vm_page *pg;
980 struct pool *pp, *pp_first;
981 uint64_t where;
982 int cleaned, skip, skipped;
983 int waspaging;
984 bool succ;
985 bool lockrunning;
986
987 mutex_enter(&pdaemonmtx);
988 for (;;) {
989 if (!NEED_PAGEDAEMON()) {
990 kernel_map->flags &= ~VM_MAP_WANTVA;
991 }
992
993 if (pdaemon_waiters) {
994 pdaemon_waiters = 0;
995 cv_broadcast(&oomwait);
996 }
997
998 cv_wait(&pdaemoncv, &pdaemonmtx);
999 uvmexp.pdwoke++;
1000 waspaging = uvmexp.paging;
1001
1002 /* tell the world that we are hungry */
1003 kernel_map->flags |= VM_MAP_WANTVA;
1004 mutex_exit(&pdaemonmtx);
1005
1006 /*
1007 * step one: reclaim the page cache. this should give
1008 * us the biggest earnings since whole pages are released
1009 * into backing memory.
1010 */
1011 pool_cache_reclaim(&pagecache);
1012 if (!NEED_PAGEDAEMON()) {
1013 mutex_enter(&pdaemonmtx);
1014 continue;
1015 }
1016
1017 /*
1018 * Ok, so that didn't help. Next, try to hunt memory
1019 * by pushing out vnode pages. The pages might contain
1020 * useful cached data, but we need the memory.
1021 */
1022 cleaned = 0;
1023 skip = 0;
1024 lockrunning = false;
1025 again:
1026 mutex_enter(&uvm_pageqlock);
1027 while (cleaned < PAGEDAEMON_OBJCHUNK) {
1028 skipped = 0;
1029 TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1030
1031 /*
1032 * skip over pages we _might_ have tried
1033 * to handle earlier. they might not be
1034 * exactly the same ones, but I'm not too
1035 * concerned.
1036 */
1037 while (skipped++ < skip)
1038 continue;
1039
1040 if (processpage(pg, &lockrunning)) {
1041 cleaned++;
1042 goto again;
1043 }
1044
1045 skip++;
1046 }
1047 break;
1048 }
1049 mutex_exit(&uvm_pageqlock);
1050
1051 /*
1052 * Ok, someone is running with an object lock held.
1053 * We want to yield the host CPU to make sure the
1054 * thread is not parked on the host. Since sched_yield()
1055 * doesn't appear to do anything on NetBSD, nanosleep
1056 * for the smallest possible time and hope we're back in
1057 * the game soon.
1058 */
1059 if (cleaned == 0 && lockrunning) {
1060 uint64_t sec, nsec;
1061
1062 sec = 0;
1063 nsec = 1;
1064 rumpuser_nanosleep(&sec, &nsec, NULL);
1065
1066 lockrunning = false;
1067 skip = 0;
1068
1069 /* and here we go again */
1070 goto again;
1071 }
1072
1073 /*
1074 * And of course we need to reclaim the page cache
1075 * again to actually release memory.
1076 */
1077 pool_cache_reclaim(&pagecache);
1078 if (!NEED_PAGEDAEMON()) {
1079 mutex_enter(&pdaemonmtx);
1080 continue;
1081 }
1082
1083 /*
1084 * And then drain the pools. Wipe them out ... all of them.
1085 */
1086
1087 pool_drain_start(&pp_first, &where);
1088 pp = pp_first;
1089 for (;;) {
1090 rump_vfs_drainbufs(10 /* XXX: estimate better */);
1091 succ = pool_drain_end(pp, where);
1092 if (succ)
1093 break;
1094 pool_drain_start(&pp, &where);
1095 if (pp == pp_first) {
1096 succ = pool_drain_end(pp, where);
1097 break;
1098 }
1099 }
1100
1101 /*
1102 * Need to use PYEC on our bag of tricks.
1103 * Unfortunately, the wife just borrowed it.
1104 */
1105
1106 mutex_enter(&pdaemonmtx);
1107 if (!succ && cleaned == 0 && pdaemon_waiters &&
1108 uvmexp.paging == 0) {
1109 rumpuser_dprintf("pagedaemoness: failed to reclaim "
1110 "memory ... sleeping (deadlock?)\n");
1111 cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
1112 mutex_enter(&pdaemonmtx);
1113 }
1114 }
1115
1116 panic("you can swap out any time you like, but you can never leave");
1117 }
1118
1119 void
1120 uvm_kick_pdaemon()
1121 {
1122
1123 /*
1124 * Wake up the diabolical pagedaemon director if we are over
1125 * 90% of the memory limit. This is a complete and utter
1126 * stetson-harrison decision which you are allowed to finetune.
1127 * Don't bother locking. If we have some unflushed caches,
1128 * other waker-uppers will deal with the issue.
1129 */
1130 if (NEED_PAGEDAEMON()) {
1131 cv_signal(&pdaemoncv);
1132 }
1133 }
1134
1135 void *
1136 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1137 {
1138 unsigned long newmem;
1139 void *rv;
1140
1141 uvm_kick_pdaemon(); /* ouch */
1142
1143 /* first we must be within the limit */
1144 limitagain:
1145 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1146 newmem = atomic_add_long_nv(&curphysmem, howmuch);
1147 if (newmem > rump_physmemlimit) {
1148 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1149 if (!waitok) {
1150 return NULL;
1151 }
1152 uvm_wait(wmsg);
1153 goto limitagain;
1154 }
1155 }
1156
1157 /* second, we must get something from the backend */
1158 again:
1159 rv = rumpuser_malloc(howmuch, alignment);
1160 if (__predict_false(rv == NULL && waitok)) {
1161 uvm_wait(wmsg);
1162 goto again;
1163 }
1164
1165 return rv;
1166 }
1167
1168 void
1169 rump_hyperfree(void *what, size_t size)
1170 {
1171
1172 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1173 atomic_add_long(&curphysmem, -size);
1174 }
1175 rumpuser_free(what);
1176 }
1177