Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.121
      1 /*	$NetBSD: vm.c,v 1.121 2012/01/27 19:48:41 para Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.121 2012/01/27 19:48:41 para Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/vmem.h>
     52 #include <sys/mman.h>
     53 #include <sys/null.h>
     54 #include <sys/vnode.h>
     55 
     56 #include <machine/pmap.h>
     57 
     58 #include <rump/rumpuser.h>
     59 
     60 #include <uvm/uvm.h>
     61 #include <uvm/uvm_ddb.h>
     62 #include <uvm/uvm_pdpolicy.h>
     63 #include <uvm/uvm_prot.h>
     64 #include <uvm/uvm_readahead.h>
     65 
     66 #include "rump_private.h"
     67 #include "rump_vfs_private.h"
     68 
     69 kmutex_t uvm_pageqlock;
     70 kmutex_t uvm_swap_data_lock;
     71 
     72 struct uvmexp uvmexp;
     73 struct uvm uvm;
     74 
     75 #ifdef __uvmexp_pagesize
     76 int *uvmexp_pagesize = &uvmexp.pagesize;
     77 int *uvmexp_pagemask = &uvmexp.pagemask;
     78 int *uvmexp_pageshift = &uvmexp.pageshift;
     79 #endif
     80 
     81 struct vm_map rump_vmmap;
     82 
     83 static struct vm_map kernel_map_store;
     84 struct vm_map *kernel_map = &kernel_map_store;
     85 
     86 vmem_t *kmem_arena;
     87 vmem_t *kmem_va_arena;
     88 
     89 static unsigned int pdaemon_waiters;
     90 static kmutex_t pdaemonmtx;
     91 static kcondvar_t pdaemoncv, oomwait;
     92 
     93 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     94 static unsigned long curphysmem;
     95 static unsigned long dddlim;		/* 90% of memory limit used */
     96 #define NEED_PAGEDAEMON() \
     97     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
     98 
     99 /*
    100  * Try to free two pages worth of pages from objects.
    101  * If this succesfully frees a full page cache page, we'll
    102  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    103  */
    104 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    105 
    106 /*
    107  * Keep a list of least recently used pages.  Since the only way a
    108  * rump kernel can "access" a page is via lookup, we put the page
    109  * at the back of queue every time a lookup for it is done.  If the
    110  * page is in front of this global queue and we're short of memory,
    111  * it's a candidate for pageout.
    112  */
    113 static struct pglist vmpage_lruqueue;
    114 static unsigned vmpage_onqueue;
    115 
    116 static int
    117 pg_compare_key(void *ctx, const void *n, const void *key)
    118 {
    119 	voff_t a = ((const struct vm_page *)n)->offset;
    120 	voff_t b = *(const voff_t *)key;
    121 
    122 	if (a < b)
    123 		return -1;
    124 	else if (a > b)
    125 		return 1;
    126 	else
    127 		return 0;
    128 }
    129 
    130 static int
    131 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
    132 {
    133 
    134 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
    135 }
    136 
    137 const rb_tree_ops_t uvm_page_tree_ops = {
    138 	.rbto_compare_nodes = pg_compare_nodes,
    139 	.rbto_compare_key = pg_compare_key,
    140 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    141 	.rbto_context = NULL
    142 };
    143 
    144 /*
    145  * vm pages
    146  */
    147 
    148 static int
    149 pgctor(void *arg, void *obj, int flags)
    150 {
    151 	struct vm_page *pg = obj;
    152 
    153 	memset(pg, 0, sizeof(*pg));
    154 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    155 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    156 	return pg->uanon == NULL;
    157 }
    158 
    159 static void
    160 pgdtor(void *arg, void *obj)
    161 {
    162 	struct vm_page *pg = obj;
    163 
    164 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    165 }
    166 
    167 static struct pool_cache pagecache;
    168 
    169 /*
    170  * Called with the object locked.  We don't support anons.
    171  */
    172 struct vm_page *
    173 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    174 	int flags, int strat, int free_list)
    175 {
    176 	struct vm_page *pg;
    177 
    178 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
    179 	KASSERT(anon == NULL);
    180 
    181 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    182 	if (__predict_false(pg == NULL)) {
    183 		return NULL;
    184 	}
    185 
    186 	pg->offset = off;
    187 	pg->uobject = uobj;
    188 
    189 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    190 	if (flags & UVM_PGA_ZERO) {
    191 		uvm_pagezero(pg);
    192 	}
    193 
    194 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    195 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
    196 
    197 	/*
    198 	 * Don't put anons on the LRU page queue.  We can't flush them
    199 	 * (there's no concept of swap in a rump kernel), so no reason
    200 	 * to bother with them.
    201 	 */
    202 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    203 		atomic_inc_uint(&vmpage_onqueue);
    204 		mutex_enter(&uvm_pageqlock);
    205 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    206 		mutex_exit(&uvm_pageqlock);
    207 	}
    208 
    209 	uobj->uo_npages++;
    210 
    211 	return pg;
    212 }
    213 
    214 /*
    215  * Release a page.
    216  *
    217  * Called with the vm object locked.
    218  */
    219 void
    220 uvm_pagefree(struct vm_page *pg)
    221 {
    222 	struct uvm_object *uobj = pg->uobject;
    223 
    224 	KASSERT(mutex_owned(&uvm_pageqlock));
    225 	KASSERT(mutex_owned(uobj->vmobjlock));
    226 
    227 	if (pg->flags & PG_WANTED)
    228 		wakeup(pg);
    229 
    230 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    231 
    232 	uobj->uo_npages--;
    233 	rb_tree_remove_node(&uobj->rb_tree, pg);
    234 
    235 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    236 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    237 		atomic_dec_uint(&vmpage_onqueue);
    238 	}
    239 
    240 	pool_cache_put(&pagecache, pg);
    241 }
    242 
    243 void
    244 uvm_pagezero(struct vm_page *pg)
    245 {
    246 
    247 	pg->flags &= ~PG_CLEAN;
    248 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    249 }
    250 
    251 /*
    252  * Misc routines
    253  */
    254 
    255 static kmutex_t pagermtx;
    256 
    257 void
    258 uvm_init(void)
    259 {
    260 	char buf[64];
    261 	int error;
    262 
    263 	if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
    264 		unsigned long tmp;
    265 		char *ep;
    266 		int mult;
    267 
    268 		tmp = strtoul(buf, &ep, 10);
    269 		if (strlen(ep) > 1)
    270 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    271 
    272 		/* mini-dehumanize-number */
    273 		mult = 1;
    274 		switch (*ep) {
    275 		case 'k':
    276 			mult = 1024;
    277 			break;
    278 		case 'm':
    279 			mult = 1024*1024;
    280 			break;
    281 		case 'g':
    282 			mult = 1024*1024*1024;
    283 			break;
    284 		case 0:
    285 			break;
    286 		default:
    287 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    288 		}
    289 		rump_physmemlimit = tmp * mult;
    290 
    291 		if (rump_physmemlimit / mult != tmp)
    292 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    293 		/* it's not like we'd get far with, say, 1 byte, but ... */
    294 		if (rump_physmemlimit == 0)
    295 			panic("uvm_init: no memory");
    296 
    297 #define HUMANIZE_BYTES 9
    298 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    299 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    300 #undef HUMANIZE_BYTES
    301 		dddlim = 9 * (rump_physmemlimit / 10);
    302 	} else {
    303 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    304 	}
    305 	aprint_verbose("total memory = %s\n", buf);
    306 
    307 	TAILQ_INIT(&vmpage_lruqueue);
    308 
    309 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    310 
    311 #ifndef __uvmexp_pagesize
    312 	uvmexp.pagesize = PAGE_SIZE;
    313 	uvmexp.pagemask = PAGE_MASK;
    314 	uvmexp.pageshift = PAGE_SHIFT;
    315 #else
    316 #define FAKE_PAGE_SHIFT 12
    317 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    318 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    319 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    320 #undef FAKE_PAGE_SHIFT
    321 #endif
    322 
    323 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    324 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    325 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
    326 
    327 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    328 	cv_init(&pdaemoncv, "pdaemon");
    329 	cv_init(&oomwait, "oomwait");
    330 
    331 	kernel_map->pmap = pmap_kernel();
    332 
    333 	vmem_bootstrap();
    334 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    335 	    NULL, NULL, NULL,
    336 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    337 
    338 	vmem_init(kmem_arena);
    339 
    340 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    341 	    vmem_alloc, vmem_free, kmem_arena,
    342 	    32 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    343 
    344 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    345 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    346 }
    347 
    348 void
    349 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    350 {
    351 
    352 	vm->vm_map.pmap = pmap_kernel();
    353 	vm->vm_refcnt = 1;
    354 }
    355 
    356 void
    357 uvm_pagewire(struct vm_page *pg)
    358 {
    359 
    360 	/* nada */
    361 }
    362 
    363 void
    364 uvm_pageunwire(struct vm_page *pg)
    365 {
    366 
    367 	/* nada */
    368 }
    369 
    370 /* where's your schmonz now? */
    371 #define PUNLIMIT(a)	\
    372 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    373 void
    374 uvm_init_limits(struct proc *p)
    375 {
    376 
    377 	PUNLIMIT(RLIMIT_STACK);
    378 	PUNLIMIT(RLIMIT_DATA);
    379 	PUNLIMIT(RLIMIT_RSS);
    380 	PUNLIMIT(RLIMIT_AS);
    381 	/* nice, cascade */
    382 }
    383 #undef PUNLIMIT
    384 
    385 /*
    386  * This satisfies the "disgusting mmap hack" used by proplib.
    387  * We probably should grow some more assertables to make sure we're
    388  * not satisfying anything we shouldn't be satisfying.
    389  */
    390 int
    391 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    392 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    393 {
    394 	void *uaddr;
    395 	int error;
    396 
    397 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    398 		panic("uvm_mmap() variant unsupported");
    399 	if (flags != (MAP_PRIVATE | MAP_ANON))
    400 		panic("uvm_mmap() variant unsupported");
    401 
    402 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    403 	if (*addr != 0)
    404 		panic("uvm_mmap() variant unsupported");
    405 
    406 	if (RUMP_LOCALPROC_P(curproc)) {
    407 		uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    408 	} else {
    409 		error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
    410 		    size, &uaddr);
    411 	}
    412 	if (uaddr == NULL)
    413 		return error;
    414 
    415 	*addr = (vaddr_t)uaddr;
    416 	return 0;
    417 }
    418 
    419 struct pagerinfo {
    420 	vaddr_t pgr_kva;
    421 	int pgr_npages;
    422 	struct vm_page **pgr_pgs;
    423 	bool pgr_read;
    424 
    425 	LIST_ENTRY(pagerinfo) pgr_entries;
    426 };
    427 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    428 
    429 /*
    430  * Pager "map" in routine.  Instead of mapping, we allocate memory
    431  * and copy page contents there.  Not optimal or even strictly
    432  * correct (the caller might modify the page contents after mapping
    433  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    434  */
    435 vaddr_t
    436 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    437 {
    438 	struct pagerinfo *pgri;
    439 	vaddr_t curkva;
    440 	int i;
    441 
    442 	/* allocate structures */
    443 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    444 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    445 	pgri->pgr_npages = npages;
    446 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    447 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    448 
    449 	/* copy contents to "mapped" memory */
    450 	for (i = 0, curkva = pgri->pgr_kva;
    451 	    i < npages;
    452 	    i++, curkva += PAGE_SIZE) {
    453 		/*
    454 		 * We need to copy the previous contents of the pages to
    455 		 * the window even if we are reading from the
    456 		 * device, since the device might not fill the contents of
    457 		 * the full mapped range and we will end up corrupting
    458 		 * data when we unmap the window.
    459 		 */
    460 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    461 		pgri->pgr_pgs[i] = pgs[i];
    462 	}
    463 
    464 	mutex_enter(&pagermtx);
    465 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    466 	mutex_exit(&pagermtx);
    467 
    468 	return pgri->pgr_kva;
    469 }
    470 
    471 /*
    472  * map out the pager window.  return contents from VA to page storage
    473  * and free structures.
    474  *
    475  * Note: does not currently support partial frees
    476  */
    477 void
    478 uvm_pagermapout(vaddr_t kva, int npages)
    479 {
    480 	struct pagerinfo *pgri;
    481 	vaddr_t curkva;
    482 	int i;
    483 
    484 	mutex_enter(&pagermtx);
    485 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    486 		if (pgri->pgr_kva == kva)
    487 			break;
    488 	}
    489 	KASSERT(pgri);
    490 	if (pgri->pgr_npages != npages)
    491 		panic("uvm_pagermapout: partial unmapping not supported");
    492 	LIST_REMOVE(pgri, pgr_entries);
    493 	mutex_exit(&pagermtx);
    494 
    495 	if (pgri->pgr_read) {
    496 		for (i = 0, curkva = pgri->pgr_kva;
    497 		    i < pgri->pgr_npages;
    498 		    i++, curkva += PAGE_SIZE) {
    499 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    500 		}
    501 	}
    502 
    503 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    504 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    505 	kmem_free(pgri, sizeof(*pgri));
    506 }
    507 
    508 /*
    509  * convert va in pager window to page structure.
    510  * XXX: how expensive is this (global lock, list traversal)?
    511  */
    512 struct vm_page *
    513 uvm_pageratop(vaddr_t va)
    514 {
    515 	struct pagerinfo *pgri;
    516 	struct vm_page *pg = NULL;
    517 	int i;
    518 
    519 	mutex_enter(&pagermtx);
    520 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    521 		if (pgri->pgr_kva <= va
    522 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    523 			break;
    524 	}
    525 	if (pgri) {
    526 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    527 		pg = pgri->pgr_pgs[i];
    528 	}
    529 	mutex_exit(&pagermtx);
    530 
    531 	return pg;
    532 }
    533 
    534 /*
    535  * Called with the vm object locked.
    536  *
    537  * Put vnode object pages at the end of the access queue to indicate
    538  * they have been recently accessed and should not be immediate
    539  * candidates for pageout.  Do not do this for lookups done by
    540  * the pagedaemon to mimic pmap_kentered mappings which don't track
    541  * access information.
    542  */
    543 struct vm_page *
    544 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    545 {
    546 	struct vm_page *pg;
    547 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    548 
    549 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
    550 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    551 		mutex_enter(&uvm_pageqlock);
    552 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    553 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    554 		mutex_exit(&uvm_pageqlock);
    555 	}
    556 
    557 	return pg;
    558 }
    559 
    560 void
    561 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    562 {
    563 	struct vm_page *pg;
    564 	int i;
    565 
    566 	KASSERT(npgs > 0);
    567 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
    568 
    569 	for (i = 0; i < npgs; i++) {
    570 		pg = pgs[i];
    571 		if (pg == NULL)
    572 			continue;
    573 
    574 		KASSERT(pg->flags & PG_BUSY);
    575 		if (pg->flags & PG_WANTED)
    576 			wakeup(pg);
    577 		if (pg->flags & PG_RELEASED)
    578 			uvm_pagefree(pg);
    579 		else
    580 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    581 	}
    582 }
    583 
    584 void
    585 uvm_estimatepageable(int *active, int *inactive)
    586 {
    587 
    588 	/* XXX: guessing game */
    589 	*active = 1024;
    590 	*inactive = 1024;
    591 }
    592 
    593 bool
    594 vm_map_starved_p(struct vm_map *map)
    595 {
    596 
    597 	if (map->flags & VM_MAP_WANTVA)
    598 		return true;
    599 
    600 	return false;
    601 }
    602 
    603 int
    604 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    605 {
    606 
    607 	panic("%s: unimplemented", __func__);
    608 }
    609 
    610 void
    611 uvm_unloan(void *v, int npages, int flags)
    612 {
    613 
    614 	panic("%s: unimplemented", __func__);
    615 }
    616 
    617 int
    618 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    619 	struct vm_page **opp)
    620 {
    621 
    622 	return EBUSY;
    623 }
    624 
    625 struct vm_page *
    626 uvm_loanbreak(struct vm_page *pg)
    627 {
    628 
    629 	panic("%s: unimplemented", __func__);
    630 }
    631 
    632 void
    633 ubc_purge(struct uvm_object *uobj)
    634 {
    635 
    636 }
    637 
    638 #ifdef DEBUGPRINT
    639 void
    640 uvm_object_printit(struct uvm_object *uobj, bool full,
    641 	void (*pr)(const char *, ...))
    642 {
    643 
    644 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    645 }
    646 #endif
    647 
    648 vaddr_t
    649 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    650 {
    651 
    652 	return 0;
    653 }
    654 
    655 int
    656 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    657 	vm_prot_t prot, bool set_max)
    658 {
    659 
    660 	return EOPNOTSUPP;
    661 }
    662 
    663 /*
    664  * UVM km
    665  */
    666 
    667 vaddr_t
    668 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    669 {
    670 	void *rv, *desired = NULL;
    671 	int alignbit, error;
    672 
    673 #ifdef __x86_64__
    674 	/*
    675 	 * On amd64, allocate all module memory from the lowest 2GB.
    676 	 * This is because NetBSD kernel modules are compiled
    677 	 * with -mcmodel=kernel and reserve only 4 bytes for
    678 	 * offsets.  If we load code compiled with -mcmodel=kernel
    679 	 * anywhere except the lowest or highest 2GB, it will not
    680 	 * work.  Since userspace does not have access to the highest
    681 	 * 2GB, use the lowest 2GB.
    682 	 *
    683 	 * Note: this assumes the rump kernel resides in
    684 	 * the lowest 2GB as well.
    685 	 *
    686 	 * Note2: yes, it's a quick hack, but since this the only
    687 	 * place where we care about the map we're allocating from,
    688 	 * just use a simple "if" instead of coming up with a fancy
    689 	 * generic solution.
    690 	 */
    691 	extern struct vm_map *module_map;
    692 	if (map == module_map) {
    693 		desired = (void *)(0x80000000 - size);
    694 	}
    695 #endif
    696 
    697 	alignbit = 0;
    698 	if (align) {
    699 		alignbit = ffs(align)-1;
    700 	}
    701 
    702 	rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
    703 	    &error);
    704 	if (rv == NULL) {
    705 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    706 			return 0;
    707 		else
    708 			panic("uvm_km_alloc failed");
    709 	}
    710 
    711 	if (flags & UVM_KMF_ZERO)
    712 		memset(rv, 0, size);
    713 
    714 	return (vaddr_t)rv;
    715 }
    716 
    717 void
    718 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    719 {
    720 
    721 	rumpuser_unmap((void *)vaddr, size);
    722 }
    723 
    724 struct vm_map *
    725 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    726 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    727 {
    728 
    729 	return (struct vm_map *)417416;
    730 }
    731 
    732 int
    733 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    734     vmem_addr_t *addr)
    735 {
    736 	vaddr_t va;
    737 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    738 	    (flags & VM_SLEEP), "kmalloc");
    739 
    740 	if (va) {
    741 		*addr = va;
    742 		return 0;
    743 	} else {
    744 		return ENOMEM;
    745 	}
    746 }
    747 
    748 void
    749 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    750 {
    751 
    752 	rump_hyperfree((void *)addr, size);
    753 }
    754 
    755 /*
    756  * VM space locking routines.  We don't really have to do anything,
    757  * since the pages are always "wired" (both local and remote processes).
    758  */
    759 int
    760 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    761 {
    762 
    763 	return 0;
    764 }
    765 
    766 void
    767 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    768 {
    769 
    770 }
    771 
    772 /*
    773  * For the local case the buffer mappers don't need to do anything.
    774  * For the remote case we need to reserve space and copy data in or
    775  * out, depending on B_READ/B_WRITE.
    776  */
    777 int
    778 vmapbuf(struct buf *bp, vsize_t len)
    779 {
    780 	int error = 0;
    781 
    782 	bp->b_saveaddr = bp->b_data;
    783 
    784 	/* remote case */
    785 	if (!RUMP_LOCALPROC_P(curproc)) {
    786 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    787 		if (BUF_ISWRITE(bp)) {
    788 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    789 			if (error) {
    790 				rump_hyperfree(bp->b_data, len);
    791 				bp->b_data = bp->b_saveaddr;
    792 				bp->b_saveaddr = 0;
    793 			}
    794 		}
    795 	}
    796 
    797 	return error;
    798 }
    799 
    800 void
    801 vunmapbuf(struct buf *bp, vsize_t len)
    802 {
    803 
    804 	/* remote case */
    805 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    806 		if (BUF_ISREAD(bp)) {
    807 			bp->b_error = copyout_proc(bp->b_proc,
    808 			    bp->b_data, bp->b_saveaddr, len);
    809 		}
    810 		rump_hyperfree(bp->b_data, len);
    811 	}
    812 
    813 	bp->b_data = bp->b_saveaddr;
    814 	bp->b_saveaddr = 0;
    815 }
    816 
    817 void
    818 uvmspace_addref(struct vmspace *vm)
    819 {
    820 
    821 	/*
    822 	 * No dynamically allocated vmspaces exist.
    823 	 */
    824 }
    825 
    826 void
    827 uvmspace_free(struct vmspace *vm)
    828 {
    829 
    830 	/* nothing for now */
    831 }
    832 
    833 /*
    834  * page life cycle stuff.  it really doesn't exist, so just stubs.
    835  */
    836 
    837 void
    838 uvm_pageactivate(struct vm_page *pg)
    839 {
    840 
    841 	/* nada */
    842 }
    843 
    844 void
    845 uvm_pagedeactivate(struct vm_page *pg)
    846 {
    847 
    848 	/* nada */
    849 }
    850 
    851 void
    852 uvm_pagedequeue(struct vm_page *pg)
    853 {
    854 
    855 	/* nada*/
    856 }
    857 
    858 void
    859 uvm_pageenqueue(struct vm_page *pg)
    860 {
    861 
    862 	/* nada */
    863 }
    864 
    865 void
    866 uvmpdpol_anfree(struct vm_anon *an)
    867 {
    868 
    869 	/* nada */
    870 }
    871 
    872 /*
    873  * Physical address accessors.
    874  */
    875 
    876 struct vm_page *
    877 uvm_phys_to_vm_page(paddr_t pa)
    878 {
    879 
    880 	return NULL;
    881 }
    882 
    883 paddr_t
    884 uvm_vm_page_to_phys(const struct vm_page *pg)
    885 {
    886 
    887 	return 0;
    888 }
    889 
    890 /*
    891  * Routines related to the Page Baroness.
    892  */
    893 
    894 void
    895 uvm_wait(const char *msg)
    896 {
    897 
    898 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    899 		panic("pagedaemon out of memory");
    900 	if (__predict_false(rump_threads == 0))
    901 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    902 
    903 	mutex_enter(&pdaemonmtx);
    904 	pdaemon_waiters++;
    905 	cv_signal(&pdaemoncv);
    906 	cv_wait(&oomwait, &pdaemonmtx);
    907 	mutex_exit(&pdaemonmtx);
    908 }
    909 
    910 void
    911 uvm_pageout_start(int npages)
    912 {
    913 
    914 	mutex_enter(&pdaemonmtx);
    915 	uvmexp.paging += npages;
    916 	mutex_exit(&pdaemonmtx);
    917 }
    918 
    919 void
    920 uvm_pageout_done(int npages)
    921 {
    922 
    923 	if (!npages)
    924 		return;
    925 
    926 	mutex_enter(&pdaemonmtx);
    927 	KASSERT(uvmexp.paging >= npages);
    928 	uvmexp.paging -= npages;
    929 
    930 	if (pdaemon_waiters) {
    931 		pdaemon_waiters = 0;
    932 		cv_broadcast(&oomwait);
    933 	}
    934 	mutex_exit(&pdaemonmtx);
    935 }
    936 
    937 static bool
    938 processpage(struct vm_page *pg, bool *lockrunning)
    939 {
    940 	struct uvm_object *uobj;
    941 
    942 	uobj = pg->uobject;
    943 	if (mutex_tryenter(uobj->vmobjlock)) {
    944 		if ((pg->flags & PG_BUSY) == 0) {
    945 			mutex_exit(&uvm_pageqlock);
    946 			uobj->pgops->pgo_put(uobj, pg->offset,
    947 			    pg->offset + PAGE_SIZE,
    948 			    PGO_CLEANIT|PGO_FREE);
    949 			KASSERT(!mutex_owned(uobj->vmobjlock));
    950 			return true;
    951 		} else {
    952 			mutex_exit(uobj->vmobjlock);
    953 		}
    954 	} else if (*lockrunning == false && ncpu > 1) {
    955 		CPU_INFO_ITERATOR cii;
    956 		struct cpu_info *ci;
    957 		struct lwp *l;
    958 
    959 		l = mutex_owner(uobj->vmobjlock);
    960 		for (CPU_INFO_FOREACH(cii, ci)) {
    961 			if (ci->ci_curlwp == l) {
    962 				*lockrunning = true;
    963 				break;
    964 			}
    965 		}
    966 	}
    967 
    968 	return false;
    969 }
    970 
    971 /*
    972  * The Diabolical pageDaemon Director (DDD).
    973  *
    974  * This routine can always use better heuristics.
    975  */
    976 void
    977 uvm_pageout(void *arg)
    978 {
    979 	struct vm_page *pg;
    980 	struct pool *pp, *pp_first;
    981 	uint64_t where;
    982 	int cleaned, skip, skipped;
    983 	int waspaging;
    984 	bool succ;
    985 	bool lockrunning;
    986 
    987 	mutex_enter(&pdaemonmtx);
    988 	for (;;) {
    989 		if (!NEED_PAGEDAEMON()) {
    990 			kernel_map->flags &= ~VM_MAP_WANTVA;
    991 		}
    992 
    993 		if (pdaemon_waiters) {
    994 			pdaemon_waiters = 0;
    995 			cv_broadcast(&oomwait);
    996 		}
    997 
    998 		cv_wait(&pdaemoncv, &pdaemonmtx);
    999 		uvmexp.pdwoke++;
   1000 		waspaging = uvmexp.paging;
   1001 
   1002 		/* tell the world that we are hungry */
   1003 		kernel_map->flags |= VM_MAP_WANTVA;
   1004 		mutex_exit(&pdaemonmtx);
   1005 
   1006 		/*
   1007 		 * step one: reclaim the page cache.  this should give
   1008 		 * us the biggest earnings since whole pages are released
   1009 		 * into backing memory.
   1010 		 */
   1011 		pool_cache_reclaim(&pagecache);
   1012 		if (!NEED_PAGEDAEMON()) {
   1013 			mutex_enter(&pdaemonmtx);
   1014 			continue;
   1015 		}
   1016 
   1017 		/*
   1018 		 * Ok, so that didn't help.  Next, try to hunt memory
   1019 		 * by pushing out vnode pages.  The pages might contain
   1020 		 * useful cached data, but we need the memory.
   1021 		 */
   1022 		cleaned = 0;
   1023 		skip = 0;
   1024 		lockrunning = false;
   1025  again:
   1026 		mutex_enter(&uvm_pageqlock);
   1027 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1028 			skipped = 0;
   1029 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1030 
   1031 				/*
   1032 				 * skip over pages we _might_ have tried
   1033 				 * to handle earlier.  they might not be
   1034 				 * exactly the same ones, but I'm not too
   1035 				 * concerned.
   1036 				 */
   1037 				while (skipped++ < skip)
   1038 					continue;
   1039 
   1040 				if (processpage(pg, &lockrunning)) {
   1041 					cleaned++;
   1042 					goto again;
   1043 				}
   1044 
   1045 				skip++;
   1046 			}
   1047 			break;
   1048 		}
   1049 		mutex_exit(&uvm_pageqlock);
   1050 
   1051 		/*
   1052 		 * Ok, someone is running with an object lock held.
   1053 		 * We want to yield the host CPU to make sure the
   1054 		 * thread is not parked on the host.  Since sched_yield()
   1055 		 * doesn't appear to do anything on NetBSD, nanosleep
   1056 		 * for the smallest possible time and hope we're back in
   1057 		 * the game soon.
   1058 		 */
   1059 		if (cleaned == 0 && lockrunning) {
   1060 			uint64_t sec, nsec;
   1061 
   1062 			sec = 0;
   1063 			nsec = 1;
   1064 			rumpuser_nanosleep(&sec, &nsec, NULL);
   1065 
   1066 			lockrunning = false;
   1067 			skip = 0;
   1068 
   1069 			/* and here we go again */
   1070 			goto again;
   1071 		}
   1072 
   1073 		/*
   1074 		 * And of course we need to reclaim the page cache
   1075 		 * again to actually release memory.
   1076 		 */
   1077 		pool_cache_reclaim(&pagecache);
   1078 		if (!NEED_PAGEDAEMON()) {
   1079 			mutex_enter(&pdaemonmtx);
   1080 			continue;
   1081 		}
   1082 
   1083 		/*
   1084 		 * And then drain the pools.  Wipe them out ... all of them.
   1085 		 */
   1086 
   1087 		pool_drain_start(&pp_first, &where);
   1088 		pp = pp_first;
   1089 		for (;;) {
   1090 			rump_vfs_drainbufs(10 /* XXX: estimate better */);
   1091 			succ = pool_drain_end(pp, where);
   1092 			if (succ)
   1093 				break;
   1094 			pool_drain_start(&pp, &where);
   1095 			if (pp == pp_first) {
   1096 				succ = pool_drain_end(pp, where);
   1097 				break;
   1098 			}
   1099 		}
   1100 
   1101 		/*
   1102 		 * Need to use PYEC on our bag of tricks.
   1103 		 * Unfortunately, the wife just borrowed it.
   1104 		 */
   1105 
   1106 		mutex_enter(&pdaemonmtx);
   1107 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1108 		    uvmexp.paging == 0) {
   1109 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1110 			    "memory ... sleeping (deadlock?)\n");
   1111 			cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
   1112 			mutex_enter(&pdaemonmtx);
   1113 		}
   1114 	}
   1115 
   1116 	panic("you can swap out any time you like, but you can never leave");
   1117 }
   1118 
   1119 void
   1120 uvm_kick_pdaemon()
   1121 {
   1122 
   1123 	/*
   1124 	 * Wake up the diabolical pagedaemon director if we are over
   1125 	 * 90% of the memory limit.  This is a complete and utter
   1126 	 * stetson-harrison decision which you are allowed to finetune.
   1127 	 * Don't bother locking.  If we have some unflushed caches,
   1128 	 * other waker-uppers will deal with the issue.
   1129 	 */
   1130 	if (NEED_PAGEDAEMON()) {
   1131 		cv_signal(&pdaemoncv);
   1132 	}
   1133 }
   1134 
   1135 void *
   1136 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1137 {
   1138 	unsigned long newmem;
   1139 	void *rv;
   1140 
   1141 	uvm_kick_pdaemon(); /* ouch */
   1142 
   1143 	/* first we must be within the limit */
   1144  limitagain:
   1145 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1146 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1147 		if (newmem > rump_physmemlimit) {
   1148 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1149 			if (!waitok) {
   1150 				return NULL;
   1151 			}
   1152 			uvm_wait(wmsg);
   1153 			goto limitagain;
   1154 		}
   1155 	}
   1156 
   1157 	/* second, we must get something from the backend */
   1158  again:
   1159 	rv = rumpuser_malloc(howmuch, alignment);
   1160 	if (__predict_false(rv == NULL && waitok)) {
   1161 		uvm_wait(wmsg);
   1162 		goto again;
   1163 	}
   1164 
   1165 	return rv;
   1166 }
   1167 
   1168 void
   1169 rump_hyperfree(void *what, size_t size)
   1170 {
   1171 
   1172 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1173 		atomic_add_long(&curphysmem, -size);
   1174 	}
   1175 	rumpuser_free(what);
   1176 }
   1177