vm.c revision 1.126 1 /* $NetBSD: vm.c,v 1.126 2012/05/23 14:59:21 martin Exp $ */
2
3 /*
4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.126 2012/05/23 14:59:21 martin Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/vmem.h>
52 #include <sys/mman.h>
53 #include <sys/null.h>
54 #include <sys/vnode.h>
55
56 #include <machine/pmap.h>
57
58 #include <rump/rumpuser.h>
59
60 #include <uvm/uvm.h>
61 #include <uvm/uvm_ddb.h>
62 #include <uvm/uvm_pdpolicy.h>
63 #include <uvm/uvm_prot.h>
64 #include <uvm/uvm_readahead.h>
65
66 #include "rump_private.h"
67 #include "rump_vfs_private.h"
68
69 kmutex_t uvm_pageqlock;
70 kmutex_t uvm_swap_data_lock;
71
72 struct uvmexp uvmexp;
73 struct uvm uvm;
74
75 #ifdef __uvmexp_pagesize
76 const int * const uvmexp_pagesize = &uvmexp.pagesize;
77 const int * const uvmexp_pagemask = &uvmexp.pagemask;
78 const int * const uvmexp_pageshift = &uvmexp.pageshift;
79 #endif
80
81 struct vm_map rump_vmmap;
82
83 static struct vm_map kernel_map_store;
84 struct vm_map *kernel_map = &kernel_map_store;
85
86 vmem_t *kmem_arena;
87 vmem_t *kmem_va_arena;
88
89 static unsigned int pdaemon_waiters;
90 static kmutex_t pdaemonmtx;
91 static kcondvar_t pdaemoncv, oomwait;
92
93 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
94 static unsigned long curphysmem;
95 static unsigned long dddlim; /* 90% of memory limit used */
96 #define NEED_PAGEDAEMON() \
97 (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
98
99 /*
100 * Try to free two pages worth of pages from objects.
101 * If this succesfully frees a full page cache page, we'll
102 * free the released page plus PAGE_SIZE/sizeof(vm_page).
103 */
104 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
105
106 /*
107 * Keep a list of least recently used pages. Since the only way a
108 * rump kernel can "access" a page is via lookup, we put the page
109 * at the back of queue every time a lookup for it is done. If the
110 * page is in front of this global queue and we're short of memory,
111 * it's a candidate for pageout.
112 */
113 static struct pglist vmpage_lruqueue;
114 static unsigned vmpage_onqueue;
115
116 static int
117 pg_compare_key(void *ctx, const void *n, const void *key)
118 {
119 voff_t a = ((const struct vm_page *)n)->offset;
120 voff_t b = *(const voff_t *)key;
121
122 if (a < b)
123 return -1;
124 else if (a > b)
125 return 1;
126 else
127 return 0;
128 }
129
130 static int
131 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
132 {
133
134 return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
135 }
136
137 const rb_tree_ops_t uvm_page_tree_ops = {
138 .rbto_compare_nodes = pg_compare_nodes,
139 .rbto_compare_key = pg_compare_key,
140 .rbto_node_offset = offsetof(struct vm_page, rb_node),
141 .rbto_context = NULL
142 };
143
144 /*
145 * vm pages
146 */
147
148 static int
149 pgctor(void *arg, void *obj, int flags)
150 {
151 struct vm_page *pg = obj;
152
153 memset(pg, 0, sizeof(*pg));
154 pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
155 (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
156 return pg->uanon == NULL;
157 }
158
159 static void
160 pgdtor(void *arg, void *obj)
161 {
162 struct vm_page *pg = obj;
163
164 rump_hyperfree(pg->uanon, PAGE_SIZE);
165 }
166
167 static struct pool_cache pagecache;
168
169 /*
170 * Called with the object locked. We don't support anons.
171 */
172 struct vm_page *
173 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
174 int flags, int strat, int free_list)
175 {
176 struct vm_page *pg;
177
178 KASSERT(uobj && mutex_owned(uobj->vmobjlock));
179 KASSERT(anon == NULL);
180
181 pg = pool_cache_get(&pagecache, PR_NOWAIT);
182 if (__predict_false(pg == NULL)) {
183 return NULL;
184 }
185
186 pg->offset = off;
187 pg->uobject = uobj;
188
189 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
190 if (flags & UVM_PGA_ZERO) {
191 uvm_pagezero(pg);
192 }
193
194 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
195 (void)rb_tree_insert_node(&uobj->rb_tree, pg);
196
197 /*
198 * Don't put anons on the LRU page queue. We can't flush them
199 * (there's no concept of swap in a rump kernel), so no reason
200 * to bother with them.
201 */
202 if (!UVM_OBJ_IS_AOBJ(uobj)) {
203 atomic_inc_uint(&vmpage_onqueue);
204 mutex_enter(&uvm_pageqlock);
205 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
206 mutex_exit(&uvm_pageqlock);
207 }
208
209 uobj->uo_npages++;
210
211 return pg;
212 }
213
214 /*
215 * Release a page.
216 *
217 * Called with the vm object locked.
218 */
219 void
220 uvm_pagefree(struct vm_page *pg)
221 {
222 struct uvm_object *uobj = pg->uobject;
223
224 KASSERT(mutex_owned(&uvm_pageqlock));
225 KASSERT(mutex_owned(uobj->vmobjlock));
226
227 if (pg->flags & PG_WANTED)
228 wakeup(pg);
229
230 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
231
232 uobj->uo_npages--;
233 rb_tree_remove_node(&uobj->rb_tree, pg);
234
235 if (!UVM_OBJ_IS_AOBJ(uobj)) {
236 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
237 atomic_dec_uint(&vmpage_onqueue);
238 }
239
240 pool_cache_put(&pagecache, pg);
241 }
242
243 void
244 uvm_pagezero(struct vm_page *pg)
245 {
246
247 pg->flags &= ~PG_CLEAN;
248 memset((void *)pg->uanon, 0, PAGE_SIZE);
249 }
250
251 /*
252 * Misc routines
253 */
254
255 static kmutex_t pagermtx;
256
257 void
258 uvm_init(void)
259 {
260 char buf[64];
261 int error;
262
263 if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
264 unsigned long tmp;
265 char *ep;
266 int mult;
267
268 tmp = strtoul(buf, &ep, 10);
269 if (strlen(ep) > 1)
270 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
271
272 /* mini-dehumanize-number */
273 mult = 1;
274 switch (*ep) {
275 case 'k':
276 mult = 1024;
277 break;
278 case 'm':
279 mult = 1024*1024;
280 break;
281 case 'g':
282 mult = 1024*1024*1024;
283 break;
284 case 0:
285 break;
286 default:
287 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
288 }
289 rump_physmemlimit = tmp * mult;
290
291 if (rump_physmemlimit / mult != tmp)
292 panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
293 /* it's not like we'd get far with, say, 1 byte, but ... */
294 if (rump_physmemlimit == 0)
295 panic("uvm_init: no memory");
296
297 #define HUMANIZE_BYTES 9
298 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
299 format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
300 #undef HUMANIZE_BYTES
301 dddlim = 9 * (rump_physmemlimit / 10);
302 } else {
303 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
304 }
305 aprint_verbose("total memory = %s\n", buf);
306
307 TAILQ_INIT(&vmpage_lruqueue);
308
309 uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
310
311 #ifndef __uvmexp_pagesize
312 uvmexp.pagesize = PAGE_SIZE;
313 uvmexp.pagemask = PAGE_MASK;
314 uvmexp.pageshift = PAGE_SHIFT;
315 #else
316 #define FAKE_PAGE_SHIFT 12
317 uvmexp.pageshift = FAKE_PAGE_SHIFT;
318 uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
319 uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
320 #undef FAKE_PAGE_SHIFT
321 #endif
322
323 mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
324 mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
325 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
326
327 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
328 cv_init(&pdaemoncv, "pdaemon");
329 cv_init(&oomwait, "oomwait");
330
331 kernel_map->pmap = pmap_kernel();
332
333 pool_subsystem_init();
334 vmem_bootstrap();
335 kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
336 NULL, NULL, NULL,
337 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
338
339 vmem_init(kmem_arena);
340
341 kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
342 vmem_alloc, vmem_free, kmem_arena,
343 8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
344
345 pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
346 "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
347 }
348
349 void
350 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
351 {
352
353 vm->vm_map.pmap = pmap_kernel();
354 vm->vm_refcnt = 1;
355 }
356
357 bool
358 uvm_page_locked_p(struct vm_page *pg)
359 {
360
361 if (pg->uobject != NULL) {
362 return mutex_owned(pg->uobject->vmobjlock);
363 }
364 return true;
365 }
366
367 void
368 uvm_pagewire(struct vm_page *pg)
369 {
370
371 /* nada */
372 }
373
374 void
375 uvm_pageunwire(struct vm_page *pg)
376 {
377
378 /* nada */
379 }
380
381 /* where's your schmonz now? */
382 #define PUNLIMIT(a) \
383 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
384 void
385 uvm_init_limits(struct proc *p)
386 {
387
388 PUNLIMIT(RLIMIT_STACK);
389 PUNLIMIT(RLIMIT_DATA);
390 PUNLIMIT(RLIMIT_RSS);
391 PUNLIMIT(RLIMIT_AS);
392 /* nice, cascade */
393 }
394 #undef PUNLIMIT
395
396 /*
397 * This satisfies the "disgusting mmap hack" used by proplib.
398 * We probably should grow some more assertables to make sure we're
399 * not satisfying anything we shouldn't be satisfying.
400 */
401 int
402 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
403 vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
404 {
405 void *uaddr;
406 int error;
407
408 if (prot != (VM_PROT_READ | VM_PROT_WRITE))
409 panic("uvm_mmap() variant unsupported");
410 if (flags != (MAP_PRIVATE | MAP_ANON))
411 panic("uvm_mmap() variant unsupported");
412
413 /* no reason in particular, but cf. uvm_default_mapaddr() */
414 if (*addr != 0)
415 panic("uvm_mmap() variant unsupported");
416
417 if (RUMP_LOCALPROC_P(curproc)) {
418 uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
419 } else {
420 error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
421 size, &uaddr);
422 }
423 if (uaddr == NULL)
424 return error;
425
426 *addr = (vaddr_t)uaddr;
427 return 0;
428 }
429
430 struct pagerinfo {
431 vaddr_t pgr_kva;
432 int pgr_npages;
433 struct vm_page **pgr_pgs;
434 bool pgr_read;
435
436 LIST_ENTRY(pagerinfo) pgr_entries;
437 };
438 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
439
440 /*
441 * Pager "map" in routine. Instead of mapping, we allocate memory
442 * and copy page contents there. Not optimal or even strictly
443 * correct (the caller might modify the page contents after mapping
444 * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
445 */
446 vaddr_t
447 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
448 {
449 struct pagerinfo *pgri;
450 vaddr_t curkva;
451 int i;
452
453 /* allocate structures */
454 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
455 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
456 pgri->pgr_npages = npages;
457 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
458 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
459
460 /* copy contents to "mapped" memory */
461 for (i = 0, curkva = pgri->pgr_kva;
462 i < npages;
463 i++, curkva += PAGE_SIZE) {
464 /*
465 * We need to copy the previous contents of the pages to
466 * the window even if we are reading from the
467 * device, since the device might not fill the contents of
468 * the full mapped range and we will end up corrupting
469 * data when we unmap the window.
470 */
471 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
472 pgri->pgr_pgs[i] = pgs[i];
473 }
474
475 mutex_enter(&pagermtx);
476 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
477 mutex_exit(&pagermtx);
478
479 return pgri->pgr_kva;
480 }
481
482 /*
483 * map out the pager window. return contents from VA to page storage
484 * and free structures.
485 *
486 * Note: does not currently support partial frees
487 */
488 void
489 uvm_pagermapout(vaddr_t kva, int npages)
490 {
491 struct pagerinfo *pgri;
492 vaddr_t curkva;
493 int i;
494
495 mutex_enter(&pagermtx);
496 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
497 if (pgri->pgr_kva == kva)
498 break;
499 }
500 KASSERT(pgri);
501 if (pgri->pgr_npages != npages)
502 panic("uvm_pagermapout: partial unmapping not supported");
503 LIST_REMOVE(pgri, pgr_entries);
504 mutex_exit(&pagermtx);
505
506 if (pgri->pgr_read) {
507 for (i = 0, curkva = pgri->pgr_kva;
508 i < pgri->pgr_npages;
509 i++, curkva += PAGE_SIZE) {
510 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
511 }
512 }
513
514 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
515 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
516 kmem_free(pgri, sizeof(*pgri));
517 }
518
519 /*
520 * convert va in pager window to page structure.
521 * XXX: how expensive is this (global lock, list traversal)?
522 */
523 struct vm_page *
524 uvm_pageratop(vaddr_t va)
525 {
526 struct pagerinfo *pgri;
527 struct vm_page *pg = NULL;
528 int i;
529
530 mutex_enter(&pagermtx);
531 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
532 if (pgri->pgr_kva <= va
533 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
534 break;
535 }
536 if (pgri) {
537 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
538 pg = pgri->pgr_pgs[i];
539 }
540 mutex_exit(&pagermtx);
541
542 return pg;
543 }
544
545 /*
546 * Called with the vm object locked.
547 *
548 * Put vnode object pages at the end of the access queue to indicate
549 * they have been recently accessed and should not be immediate
550 * candidates for pageout. Do not do this for lookups done by
551 * the pagedaemon to mimic pmap_kentered mappings which don't track
552 * access information.
553 */
554 struct vm_page *
555 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
556 {
557 struct vm_page *pg;
558 bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
559
560 pg = rb_tree_find_node(&uobj->rb_tree, &off);
561 if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
562 mutex_enter(&uvm_pageqlock);
563 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
564 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
565 mutex_exit(&uvm_pageqlock);
566 }
567
568 return pg;
569 }
570
571 void
572 uvm_page_unbusy(struct vm_page **pgs, int npgs)
573 {
574 struct vm_page *pg;
575 int i;
576
577 KASSERT(npgs > 0);
578 KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
579
580 for (i = 0; i < npgs; i++) {
581 pg = pgs[i];
582 if (pg == NULL)
583 continue;
584
585 KASSERT(pg->flags & PG_BUSY);
586 if (pg->flags & PG_WANTED)
587 wakeup(pg);
588 if (pg->flags & PG_RELEASED)
589 uvm_pagefree(pg);
590 else
591 pg->flags &= ~(PG_WANTED|PG_BUSY);
592 }
593 }
594
595 void
596 uvm_estimatepageable(int *active, int *inactive)
597 {
598
599 /* XXX: guessing game */
600 *active = 1024;
601 *inactive = 1024;
602 }
603
604 bool
605 vm_map_starved_p(struct vm_map *map)
606 {
607
608 if (map->flags & VM_MAP_WANTVA)
609 return true;
610
611 return false;
612 }
613
614 int
615 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
616 {
617
618 panic("%s: unimplemented", __func__);
619 }
620
621 void
622 uvm_unloan(void *v, int npages, int flags)
623 {
624
625 panic("%s: unimplemented", __func__);
626 }
627
628 int
629 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
630 struct vm_page **opp)
631 {
632
633 return EBUSY;
634 }
635
636 struct vm_page *
637 uvm_loanbreak(struct vm_page *pg)
638 {
639
640 panic("%s: unimplemented", __func__);
641 }
642
643 void
644 ubc_purge(struct uvm_object *uobj)
645 {
646
647 }
648
649 #ifdef DEBUGPRINT
650 void
651 uvm_object_printit(struct uvm_object *uobj, bool full,
652 void (*pr)(const char *, ...))
653 {
654
655 pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
656 }
657 #endif
658
659 vaddr_t
660 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
661 {
662
663 return 0;
664 }
665
666 int
667 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
668 vm_prot_t prot, bool set_max)
669 {
670
671 return EOPNOTSUPP;
672 }
673
674 /*
675 * UVM km
676 */
677
678 vaddr_t
679 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
680 {
681 void *rv, *desired = NULL;
682 int alignbit, error;
683
684 #ifdef __x86_64__
685 /*
686 * On amd64, allocate all module memory from the lowest 2GB.
687 * This is because NetBSD kernel modules are compiled
688 * with -mcmodel=kernel and reserve only 4 bytes for
689 * offsets. If we load code compiled with -mcmodel=kernel
690 * anywhere except the lowest or highest 2GB, it will not
691 * work. Since userspace does not have access to the highest
692 * 2GB, use the lowest 2GB.
693 *
694 * Note: this assumes the rump kernel resides in
695 * the lowest 2GB as well.
696 *
697 * Note2: yes, it's a quick hack, but since this the only
698 * place where we care about the map we're allocating from,
699 * just use a simple "if" instead of coming up with a fancy
700 * generic solution.
701 */
702 extern struct vm_map *module_map;
703 if (map == module_map) {
704 desired = (void *)(0x80000000 - size);
705 }
706 #endif
707
708 alignbit = 0;
709 if (align) {
710 alignbit = ffs(align)-1;
711 }
712
713 rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
714 &error);
715 if (rv == NULL) {
716 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
717 return 0;
718 else
719 panic("uvm_km_alloc failed");
720 }
721
722 if (flags & UVM_KMF_ZERO)
723 memset(rv, 0, size);
724
725 return (vaddr_t)rv;
726 }
727
728 void
729 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
730 {
731
732 rumpuser_unmap((void *)vaddr, size);
733 }
734
735 struct vm_map *
736 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
737 vsize_t size, int pageable, bool fixed, struct vm_map *submap)
738 {
739
740 return (struct vm_map *)417416;
741 }
742
743 int
744 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
745 vmem_addr_t *addr)
746 {
747 vaddr_t va;
748 va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
749 (flags & VM_SLEEP), "kmalloc");
750
751 if (va) {
752 *addr = va;
753 return 0;
754 } else {
755 return ENOMEM;
756 }
757 }
758
759 void
760 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
761 {
762
763 rump_hyperfree((void *)addr, size);
764 }
765
766 /*
767 * VM space locking routines. We don't really have to do anything,
768 * since the pages are always "wired" (both local and remote processes).
769 */
770 int
771 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
772 {
773
774 return 0;
775 }
776
777 void
778 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
779 {
780
781 }
782
783 /*
784 * For the local case the buffer mappers don't need to do anything.
785 * For the remote case we need to reserve space and copy data in or
786 * out, depending on B_READ/B_WRITE.
787 */
788 int
789 vmapbuf(struct buf *bp, vsize_t len)
790 {
791 int error = 0;
792
793 bp->b_saveaddr = bp->b_data;
794
795 /* remote case */
796 if (!RUMP_LOCALPROC_P(curproc)) {
797 bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
798 if (BUF_ISWRITE(bp)) {
799 error = copyin(bp->b_saveaddr, bp->b_data, len);
800 if (error) {
801 rump_hyperfree(bp->b_data, len);
802 bp->b_data = bp->b_saveaddr;
803 bp->b_saveaddr = 0;
804 }
805 }
806 }
807
808 return error;
809 }
810
811 void
812 vunmapbuf(struct buf *bp, vsize_t len)
813 {
814
815 /* remote case */
816 if (!RUMP_LOCALPROC_P(bp->b_proc)) {
817 if (BUF_ISREAD(bp)) {
818 bp->b_error = copyout_proc(bp->b_proc,
819 bp->b_data, bp->b_saveaddr, len);
820 }
821 rump_hyperfree(bp->b_data, len);
822 }
823
824 bp->b_data = bp->b_saveaddr;
825 bp->b_saveaddr = 0;
826 }
827
828 void
829 uvmspace_addref(struct vmspace *vm)
830 {
831
832 /*
833 * No dynamically allocated vmspaces exist.
834 */
835 }
836
837 void
838 uvmspace_free(struct vmspace *vm)
839 {
840
841 /* nothing for now */
842 }
843
844 /*
845 * page life cycle stuff. it really doesn't exist, so just stubs.
846 */
847
848 void
849 uvm_pageactivate(struct vm_page *pg)
850 {
851
852 /* nada */
853 }
854
855 void
856 uvm_pagedeactivate(struct vm_page *pg)
857 {
858
859 /* nada */
860 }
861
862 void
863 uvm_pagedequeue(struct vm_page *pg)
864 {
865
866 /* nada*/
867 }
868
869 void
870 uvm_pageenqueue(struct vm_page *pg)
871 {
872
873 /* nada */
874 }
875
876 void
877 uvmpdpol_anfree(struct vm_anon *an)
878 {
879
880 /* nada */
881 }
882
883 /*
884 * Physical address accessors.
885 */
886
887 struct vm_page *
888 uvm_phys_to_vm_page(paddr_t pa)
889 {
890
891 return NULL;
892 }
893
894 paddr_t
895 uvm_vm_page_to_phys(const struct vm_page *pg)
896 {
897
898 return 0;
899 }
900
901 /*
902 * Routines related to the Page Baroness.
903 */
904
905 void
906 uvm_wait(const char *msg)
907 {
908
909 if (__predict_false(curlwp == uvm.pagedaemon_lwp))
910 panic("pagedaemon out of memory");
911 if (__predict_false(rump_threads == 0))
912 panic("pagedaemon missing (RUMP_THREADS = 0)");
913
914 mutex_enter(&pdaemonmtx);
915 pdaemon_waiters++;
916 cv_signal(&pdaemoncv);
917 cv_wait(&oomwait, &pdaemonmtx);
918 mutex_exit(&pdaemonmtx);
919 }
920
921 void
922 uvm_pageout_start(int npages)
923 {
924
925 mutex_enter(&pdaemonmtx);
926 uvmexp.paging += npages;
927 mutex_exit(&pdaemonmtx);
928 }
929
930 void
931 uvm_pageout_done(int npages)
932 {
933
934 if (!npages)
935 return;
936
937 mutex_enter(&pdaemonmtx);
938 KASSERT(uvmexp.paging >= npages);
939 uvmexp.paging -= npages;
940
941 if (pdaemon_waiters) {
942 pdaemon_waiters = 0;
943 cv_broadcast(&oomwait);
944 }
945 mutex_exit(&pdaemonmtx);
946 }
947
948 static bool
949 processpage(struct vm_page *pg, bool *lockrunning)
950 {
951 struct uvm_object *uobj;
952
953 uobj = pg->uobject;
954 if (mutex_tryenter(uobj->vmobjlock)) {
955 if ((pg->flags & PG_BUSY) == 0) {
956 mutex_exit(&uvm_pageqlock);
957 uobj->pgops->pgo_put(uobj, pg->offset,
958 pg->offset + PAGE_SIZE,
959 PGO_CLEANIT|PGO_FREE);
960 KASSERT(!mutex_owned(uobj->vmobjlock));
961 return true;
962 } else {
963 mutex_exit(uobj->vmobjlock);
964 }
965 } else if (*lockrunning == false && ncpu > 1) {
966 CPU_INFO_ITERATOR cii;
967 struct cpu_info *ci;
968 struct lwp *l;
969
970 l = mutex_owner(uobj->vmobjlock);
971 for (CPU_INFO_FOREACH(cii, ci)) {
972 if (ci->ci_curlwp == l) {
973 *lockrunning = true;
974 break;
975 }
976 }
977 }
978
979 return false;
980 }
981
982 /*
983 * The Diabolical pageDaemon Director (DDD).
984 *
985 * This routine can always use better heuristics.
986 */
987 void
988 uvm_pageout(void *arg)
989 {
990 struct vm_page *pg;
991 struct pool *pp, *pp_first;
992 uint64_t where;
993 int cleaned, skip, skipped;
994 int waspaging;
995 bool succ;
996 bool lockrunning;
997
998 mutex_enter(&pdaemonmtx);
999 for (;;) {
1000 if (!NEED_PAGEDAEMON()) {
1001 kernel_map->flags &= ~VM_MAP_WANTVA;
1002 }
1003
1004 if (pdaemon_waiters) {
1005 pdaemon_waiters = 0;
1006 cv_broadcast(&oomwait);
1007 }
1008
1009 cv_wait(&pdaemoncv, &pdaemonmtx);
1010 uvmexp.pdwoke++;
1011 waspaging = uvmexp.paging;
1012
1013 /* tell the world that we are hungry */
1014 kernel_map->flags |= VM_MAP_WANTVA;
1015 mutex_exit(&pdaemonmtx);
1016
1017 /*
1018 * step one: reclaim the page cache. this should give
1019 * us the biggest earnings since whole pages are released
1020 * into backing memory.
1021 */
1022 pool_cache_reclaim(&pagecache);
1023 if (!NEED_PAGEDAEMON()) {
1024 mutex_enter(&pdaemonmtx);
1025 continue;
1026 }
1027
1028 /*
1029 * Ok, so that didn't help. Next, try to hunt memory
1030 * by pushing out vnode pages. The pages might contain
1031 * useful cached data, but we need the memory.
1032 */
1033 cleaned = 0;
1034 skip = 0;
1035 lockrunning = false;
1036 again:
1037 mutex_enter(&uvm_pageqlock);
1038 while (cleaned < PAGEDAEMON_OBJCHUNK) {
1039 skipped = 0;
1040 TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1041
1042 /*
1043 * skip over pages we _might_ have tried
1044 * to handle earlier. they might not be
1045 * exactly the same ones, but I'm not too
1046 * concerned.
1047 */
1048 while (skipped++ < skip)
1049 continue;
1050
1051 if (processpage(pg, &lockrunning)) {
1052 cleaned++;
1053 goto again;
1054 }
1055
1056 skip++;
1057 }
1058 break;
1059 }
1060 mutex_exit(&uvm_pageqlock);
1061
1062 /*
1063 * Ok, someone is running with an object lock held.
1064 * We want to yield the host CPU to make sure the
1065 * thread is not parked on the host. Since sched_yield()
1066 * doesn't appear to do anything on NetBSD, nanosleep
1067 * for the smallest possible time and hope we're back in
1068 * the game soon.
1069 */
1070 if (cleaned == 0 && lockrunning) {
1071 uint64_t sec, nsec;
1072
1073 sec = 0;
1074 nsec = 1;
1075 rumpuser_nanosleep(&sec, &nsec, NULL);
1076
1077 lockrunning = false;
1078 skip = 0;
1079
1080 /* and here we go again */
1081 goto again;
1082 }
1083
1084 /*
1085 * And of course we need to reclaim the page cache
1086 * again to actually release memory.
1087 */
1088 pool_cache_reclaim(&pagecache);
1089 if (!NEED_PAGEDAEMON()) {
1090 mutex_enter(&pdaemonmtx);
1091 continue;
1092 }
1093
1094 /*
1095 * And then drain the pools. Wipe them out ... all of them.
1096 */
1097
1098 pool_drain_start(&pp_first, &where);
1099 pp = pp_first;
1100 for (;;) {
1101 rump_vfs_drainbufs(10 /* XXX: estimate better */);
1102 succ = pool_drain_end(pp, where);
1103 if (succ)
1104 break;
1105 pool_drain_start(&pp, &where);
1106 if (pp == pp_first) {
1107 succ = pool_drain_end(pp, where);
1108 break;
1109 }
1110 }
1111
1112 /*
1113 * Need to use PYEC on our bag of tricks.
1114 * Unfortunately, the wife just borrowed it.
1115 */
1116
1117 mutex_enter(&pdaemonmtx);
1118 if (!succ && cleaned == 0 && pdaemon_waiters &&
1119 uvmexp.paging == 0) {
1120 rumpuser_dprintf("pagedaemoness: failed to reclaim "
1121 "memory ... sleeping (deadlock?)\n");
1122 cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
1123 }
1124 }
1125
1126 panic("you can swap out any time you like, but you can never leave");
1127 }
1128
1129 void
1130 uvm_kick_pdaemon()
1131 {
1132
1133 /*
1134 * Wake up the diabolical pagedaemon director if we are over
1135 * 90% of the memory limit. This is a complete and utter
1136 * stetson-harrison decision which you are allowed to finetune.
1137 * Don't bother locking. If we have some unflushed caches,
1138 * other waker-uppers will deal with the issue.
1139 */
1140 if (NEED_PAGEDAEMON()) {
1141 cv_signal(&pdaemoncv);
1142 }
1143 }
1144
1145 void *
1146 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1147 {
1148 unsigned long newmem;
1149 void *rv;
1150
1151 uvm_kick_pdaemon(); /* ouch */
1152
1153 /* first we must be within the limit */
1154 limitagain:
1155 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1156 newmem = atomic_add_long_nv(&curphysmem, howmuch);
1157 if (newmem > rump_physmemlimit) {
1158 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1159 if (!waitok) {
1160 return NULL;
1161 }
1162 uvm_wait(wmsg);
1163 goto limitagain;
1164 }
1165 }
1166
1167 /* second, we must get something from the backend */
1168 again:
1169 rv = rumpuser_malloc(howmuch, alignment);
1170 if (__predict_false(rv == NULL && waitok)) {
1171 uvm_wait(wmsg);
1172 goto again;
1173 }
1174
1175 return rv;
1176 }
1177
1178 void
1179 rump_hyperfree(void *what, size_t size)
1180 {
1181
1182 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1183 atomic_add_long(&curphysmem, -size);
1184 }
1185 rumpuser_free(what);
1186 }
1187