Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.130.2.1
      1 /*	$NetBSD: vm.c,v 1.130.2.1 2012/11/20 03:02:50 tls Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.130.2.1 2012/11/20 03:02:50 tls Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/vmem.h>
     52 #include <sys/mman.h>
     53 #include <sys/null.h>
     54 #include <sys/vnode.h>
     55 
     56 #include <machine/pmap.h>
     57 
     58 #include <rump/rumpuser.h>
     59 
     60 #include <uvm/uvm.h>
     61 #include <uvm/uvm_ddb.h>
     62 #include <uvm/uvm_pdpolicy.h>
     63 #include <uvm/uvm_prot.h>
     64 #include <uvm/uvm_readahead.h>
     65 
     66 #include "rump_private.h"
     67 #include "rump_vfs_private.h"
     68 
     69 kmutex_t uvm_pageqlock;
     70 kmutex_t uvm_swap_data_lock;
     71 
     72 struct uvmexp uvmexp;
     73 struct uvm uvm;
     74 
     75 #ifdef __uvmexp_pagesize
     76 const int * const uvmexp_pagesize = &uvmexp.pagesize;
     77 const int * const uvmexp_pagemask = &uvmexp.pagemask;
     78 const int * const uvmexp_pageshift = &uvmexp.pageshift;
     79 #endif
     80 
     81 struct vm_map rump_vmmap;
     82 
     83 static struct vm_map kernel_map_store;
     84 struct vm_map *kernel_map = &kernel_map_store;
     85 
     86 static struct vm_map module_map_store;
     87 extern struct vm_map *module_map;
     88 
     89 vmem_t *kmem_arena;
     90 vmem_t *kmem_va_arena;
     91 
     92 static unsigned int pdaemon_waiters;
     93 static kmutex_t pdaemonmtx;
     94 static kcondvar_t pdaemoncv, oomwait;
     95 
     96 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     97 static unsigned long curphysmem;
     98 static unsigned long dddlim;		/* 90% of memory limit used */
     99 #define NEED_PAGEDAEMON() \
    100     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    101 
    102 /*
    103  * Try to free two pages worth of pages from objects.
    104  * If this succesfully frees a full page cache page, we'll
    105  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    106  */
    107 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    108 
    109 /*
    110  * Keep a list of least recently used pages.  Since the only way a
    111  * rump kernel can "access" a page is via lookup, we put the page
    112  * at the back of queue every time a lookup for it is done.  If the
    113  * page is in front of this global queue and we're short of memory,
    114  * it's a candidate for pageout.
    115  */
    116 static struct pglist vmpage_lruqueue;
    117 static unsigned vmpage_onqueue;
    118 
    119 static int
    120 pg_compare_key(void *ctx, const void *n, const void *key)
    121 {
    122 	voff_t a = ((const struct vm_page *)n)->offset;
    123 	voff_t b = *(const voff_t *)key;
    124 
    125 	if (a < b)
    126 		return -1;
    127 	else if (a > b)
    128 		return 1;
    129 	else
    130 		return 0;
    131 }
    132 
    133 static int
    134 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
    135 {
    136 
    137 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
    138 }
    139 
    140 const rb_tree_ops_t uvm_page_tree_ops = {
    141 	.rbto_compare_nodes = pg_compare_nodes,
    142 	.rbto_compare_key = pg_compare_key,
    143 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    144 	.rbto_context = NULL
    145 };
    146 
    147 /*
    148  * vm pages
    149  */
    150 
    151 static int
    152 pgctor(void *arg, void *obj, int flags)
    153 {
    154 	struct vm_page *pg = obj;
    155 
    156 	memset(pg, 0, sizeof(*pg));
    157 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    158 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    159 	return pg->uanon == NULL;
    160 }
    161 
    162 static void
    163 pgdtor(void *arg, void *obj)
    164 {
    165 	struct vm_page *pg = obj;
    166 
    167 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    168 }
    169 
    170 static struct pool_cache pagecache;
    171 
    172 /*
    173  * Called with the object locked.  We don't support anons.
    174  */
    175 struct vm_page *
    176 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    177 	int flags, int strat, int free_list)
    178 {
    179 	struct vm_page *pg;
    180 
    181 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
    182 	KASSERT(anon == NULL);
    183 
    184 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    185 	if (__predict_false(pg == NULL)) {
    186 		return NULL;
    187 	}
    188 
    189 	pg->offset = off;
    190 	pg->uobject = uobj;
    191 
    192 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    193 	if (flags & UVM_PGA_ZERO) {
    194 		uvm_pagezero(pg);
    195 	}
    196 
    197 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    198 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
    199 
    200 	/*
    201 	 * Don't put anons on the LRU page queue.  We can't flush them
    202 	 * (there's no concept of swap in a rump kernel), so no reason
    203 	 * to bother with them.
    204 	 */
    205 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    206 		atomic_inc_uint(&vmpage_onqueue);
    207 		mutex_enter(&uvm_pageqlock);
    208 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    209 		mutex_exit(&uvm_pageqlock);
    210 	}
    211 
    212 	uobj->uo_npages++;
    213 
    214 	return pg;
    215 }
    216 
    217 /*
    218  * Release a page.
    219  *
    220  * Called with the vm object locked.
    221  */
    222 void
    223 uvm_pagefree(struct vm_page *pg)
    224 {
    225 	struct uvm_object *uobj = pg->uobject;
    226 
    227 	KASSERT(mutex_owned(&uvm_pageqlock));
    228 	KASSERT(mutex_owned(uobj->vmobjlock));
    229 
    230 	if (pg->flags & PG_WANTED)
    231 		wakeup(pg);
    232 
    233 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    234 
    235 	uobj->uo_npages--;
    236 	rb_tree_remove_node(&uobj->rb_tree, pg);
    237 
    238 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    239 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    240 		atomic_dec_uint(&vmpage_onqueue);
    241 	}
    242 
    243 	pool_cache_put(&pagecache, pg);
    244 }
    245 
    246 void
    247 uvm_pagezero(struct vm_page *pg)
    248 {
    249 
    250 	pg->flags &= ~PG_CLEAN;
    251 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    252 }
    253 
    254 /*
    255  * Misc routines
    256  */
    257 
    258 static kmutex_t pagermtx;
    259 
    260 void
    261 uvm_init(void)
    262 {
    263 	char buf[64];
    264 	int error;
    265 
    266 	if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
    267 		unsigned long tmp;
    268 		char *ep;
    269 		int mult;
    270 
    271 		tmp = strtoul(buf, &ep, 10);
    272 		if (strlen(ep) > 1)
    273 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    274 
    275 		/* mini-dehumanize-number */
    276 		mult = 1;
    277 		switch (*ep) {
    278 		case 'k':
    279 			mult = 1024;
    280 			break;
    281 		case 'm':
    282 			mult = 1024*1024;
    283 			break;
    284 		case 'g':
    285 			mult = 1024*1024*1024;
    286 			break;
    287 		case 0:
    288 			break;
    289 		default:
    290 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    291 		}
    292 		rump_physmemlimit = tmp * mult;
    293 
    294 		if (rump_physmemlimit / mult != tmp)
    295 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    296 		/* it's not like we'd get far with, say, 1 byte, but ... */
    297 		if (rump_physmemlimit == 0)
    298 			panic("uvm_init: no memory");
    299 
    300 #define HUMANIZE_BYTES 9
    301 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    302 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    303 #undef HUMANIZE_BYTES
    304 		dddlim = 9 * (rump_physmemlimit / 10);
    305 	} else {
    306 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    307 	}
    308 	aprint_verbose("total memory = %s\n", buf);
    309 
    310 	TAILQ_INIT(&vmpage_lruqueue);
    311 
    312 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    313 
    314 #ifndef __uvmexp_pagesize
    315 	uvmexp.pagesize = PAGE_SIZE;
    316 	uvmexp.pagemask = PAGE_MASK;
    317 	uvmexp.pageshift = PAGE_SHIFT;
    318 #else
    319 #define FAKE_PAGE_SHIFT 12
    320 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    321 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    322 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    323 #undef FAKE_PAGE_SHIFT
    324 #endif
    325 
    326 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    327 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    328 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
    329 
    330 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    331 	cv_init(&pdaemoncv, "pdaemon");
    332 	cv_init(&oomwait, "oomwait");
    333 
    334 	module_map = &module_map_store;
    335 
    336 	kernel_map->pmap = pmap_kernel();
    337 
    338 	pool_subsystem_init();
    339 
    340 #ifndef RUMP_UNREAL_ALLOCATORS
    341 	vmem_bootstrap();
    342 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    343 	    NULL, NULL, NULL,
    344 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    345 
    346 	vmem_init(kmem_arena);
    347 
    348 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    349 	    vmem_alloc, vmem_free, kmem_arena,
    350 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    351 #endif /* !RUMP_UNREAL_ALLOCATORS */
    352 
    353 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    354 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    355 }
    356 
    357 void
    358 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    359 {
    360 
    361 	vm->vm_map.pmap = pmap_kernel();
    362 	vm->vm_refcnt = 1;
    363 }
    364 
    365 bool
    366 uvm_page_locked_p(struct vm_page *pg)
    367 {
    368 
    369 	if (pg->uobject != NULL) {
    370 		return mutex_owned(pg->uobject->vmobjlock);
    371 	}
    372 	return true;
    373 }
    374 
    375 void
    376 uvm_pagewire(struct vm_page *pg)
    377 {
    378 
    379 	/* nada */
    380 }
    381 
    382 void
    383 uvm_pageunwire(struct vm_page *pg)
    384 {
    385 
    386 	/* nada */
    387 }
    388 
    389 /* where's your schmonz now? */
    390 #define PUNLIMIT(a)	\
    391 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    392 void
    393 uvm_init_limits(struct proc *p)
    394 {
    395 
    396 	PUNLIMIT(RLIMIT_STACK);
    397 	PUNLIMIT(RLIMIT_DATA);
    398 	PUNLIMIT(RLIMIT_RSS);
    399 	PUNLIMIT(RLIMIT_AS);
    400 	/* nice, cascade */
    401 }
    402 #undef PUNLIMIT
    403 
    404 /*
    405  * This satisfies the "disgusting mmap hack" used by proplib.
    406  * We probably should grow some more assertables to make sure we're
    407  * not satisfying anything we shouldn't be satisfying.
    408  */
    409 int
    410 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    411 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    412 {
    413 	void *uaddr;
    414 	int error;
    415 
    416 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    417 		panic("uvm_mmap() variant unsupported");
    418 	if (flags != (MAP_PRIVATE | MAP_ANON))
    419 		panic("uvm_mmap() variant unsupported");
    420 
    421 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    422 	if (*addr != 0)
    423 		panic("uvm_mmap() variant unsupported");
    424 
    425 	if (RUMP_LOCALPROC_P(curproc)) {
    426 		uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    427 	} else {
    428 		error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
    429 		    size, &uaddr);
    430 	}
    431 	if (uaddr == NULL)
    432 		return error;
    433 
    434 	*addr = (vaddr_t)uaddr;
    435 	return 0;
    436 }
    437 
    438 struct pagerinfo {
    439 	vaddr_t pgr_kva;
    440 	int pgr_npages;
    441 	struct vm_page **pgr_pgs;
    442 	bool pgr_read;
    443 
    444 	LIST_ENTRY(pagerinfo) pgr_entries;
    445 };
    446 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    447 
    448 /*
    449  * Pager "map" in routine.  Instead of mapping, we allocate memory
    450  * and copy page contents there.  Not optimal or even strictly
    451  * correct (the caller might modify the page contents after mapping
    452  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    453  */
    454 vaddr_t
    455 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    456 {
    457 	struct pagerinfo *pgri;
    458 	vaddr_t curkva;
    459 	int i;
    460 
    461 	/* allocate structures */
    462 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    463 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    464 	pgri->pgr_npages = npages;
    465 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    466 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    467 
    468 	/* copy contents to "mapped" memory */
    469 	for (i = 0, curkva = pgri->pgr_kva;
    470 	    i < npages;
    471 	    i++, curkva += PAGE_SIZE) {
    472 		/*
    473 		 * We need to copy the previous contents of the pages to
    474 		 * the window even if we are reading from the
    475 		 * device, since the device might not fill the contents of
    476 		 * the full mapped range and we will end up corrupting
    477 		 * data when we unmap the window.
    478 		 */
    479 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    480 		pgri->pgr_pgs[i] = pgs[i];
    481 	}
    482 
    483 	mutex_enter(&pagermtx);
    484 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    485 	mutex_exit(&pagermtx);
    486 
    487 	return pgri->pgr_kva;
    488 }
    489 
    490 /*
    491  * map out the pager window.  return contents from VA to page storage
    492  * and free structures.
    493  *
    494  * Note: does not currently support partial frees
    495  */
    496 void
    497 uvm_pagermapout(vaddr_t kva, int npages)
    498 {
    499 	struct pagerinfo *pgri;
    500 	vaddr_t curkva;
    501 	int i;
    502 
    503 	mutex_enter(&pagermtx);
    504 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    505 		if (pgri->pgr_kva == kva)
    506 			break;
    507 	}
    508 	KASSERT(pgri);
    509 	if (pgri->pgr_npages != npages)
    510 		panic("uvm_pagermapout: partial unmapping not supported");
    511 	LIST_REMOVE(pgri, pgr_entries);
    512 	mutex_exit(&pagermtx);
    513 
    514 	if (pgri->pgr_read) {
    515 		for (i = 0, curkva = pgri->pgr_kva;
    516 		    i < pgri->pgr_npages;
    517 		    i++, curkva += PAGE_SIZE) {
    518 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    519 		}
    520 	}
    521 
    522 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    523 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    524 	kmem_free(pgri, sizeof(*pgri));
    525 }
    526 
    527 /*
    528  * convert va in pager window to page structure.
    529  * XXX: how expensive is this (global lock, list traversal)?
    530  */
    531 struct vm_page *
    532 uvm_pageratop(vaddr_t va)
    533 {
    534 	struct pagerinfo *pgri;
    535 	struct vm_page *pg = NULL;
    536 	int i;
    537 
    538 	mutex_enter(&pagermtx);
    539 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    540 		if (pgri->pgr_kva <= va
    541 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    542 			break;
    543 	}
    544 	if (pgri) {
    545 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    546 		pg = pgri->pgr_pgs[i];
    547 	}
    548 	mutex_exit(&pagermtx);
    549 
    550 	return pg;
    551 }
    552 
    553 /*
    554  * Called with the vm object locked.
    555  *
    556  * Put vnode object pages at the end of the access queue to indicate
    557  * they have been recently accessed and should not be immediate
    558  * candidates for pageout.  Do not do this for lookups done by
    559  * the pagedaemon to mimic pmap_kentered mappings which don't track
    560  * access information.
    561  */
    562 struct vm_page *
    563 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    564 {
    565 	struct vm_page *pg;
    566 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    567 
    568 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
    569 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    570 		mutex_enter(&uvm_pageqlock);
    571 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    572 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    573 		mutex_exit(&uvm_pageqlock);
    574 	}
    575 
    576 	return pg;
    577 }
    578 
    579 void
    580 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    581 {
    582 	struct vm_page *pg;
    583 	int i;
    584 
    585 	KASSERT(npgs > 0);
    586 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
    587 
    588 	for (i = 0; i < npgs; i++) {
    589 		pg = pgs[i];
    590 		if (pg == NULL)
    591 			continue;
    592 
    593 		KASSERT(pg->flags & PG_BUSY);
    594 		if (pg->flags & PG_WANTED)
    595 			wakeup(pg);
    596 		if (pg->flags & PG_RELEASED)
    597 			uvm_pagefree(pg);
    598 		else
    599 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    600 	}
    601 }
    602 
    603 void
    604 uvm_estimatepageable(int *active, int *inactive)
    605 {
    606 
    607 	/* XXX: guessing game */
    608 	*active = 1024;
    609 	*inactive = 1024;
    610 }
    611 
    612 bool
    613 vm_map_starved_p(struct vm_map *map)
    614 {
    615 
    616 	if (map->flags & VM_MAP_WANTVA)
    617 		return true;
    618 
    619 	return false;
    620 }
    621 
    622 int
    623 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    624 {
    625 
    626 	panic("%s: unimplemented", __func__);
    627 }
    628 
    629 void
    630 uvm_unloan(void *v, int npages, int flags)
    631 {
    632 
    633 	panic("%s: unimplemented", __func__);
    634 }
    635 
    636 int
    637 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    638 	struct vm_page **opp)
    639 {
    640 
    641 	return EBUSY;
    642 }
    643 
    644 struct vm_page *
    645 uvm_loanbreak(struct vm_page *pg)
    646 {
    647 
    648 	panic("%s: unimplemented", __func__);
    649 }
    650 
    651 void
    652 ubc_purge(struct uvm_object *uobj)
    653 {
    654 
    655 }
    656 
    657 #ifdef DEBUGPRINT
    658 void
    659 uvm_object_printit(struct uvm_object *uobj, bool full,
    660 	void (*pr)(const char *, ...))
    661 {
    662 
    663 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    664 }
    665 #endif
    666 
    667 vaddr_t
    668 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    669 {
    670 
    671 	return 0;
    672 }
    673 
    674 int
    675 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    676 	vm_prot_t prot, bool set_max)
    677 {
    678 
    679 	return EOPNOTSUPP;
    680 }
    681 
    682 /*
    683  * UVM km
    684  */
    685 
    686 vaddr_t
    687 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    688 {
    689 	void *rv, *desired = NULL;
    690 	int alignbit, error;
    691 
    692 #ifdef __x86_64__
    693 	/*
    694 	 * On amd64, allocate all module memory from the lowest 2GB.
    695 	 * This is because NetBSD kernel modules are compiled
    696 	 * with -mcmodel=kernel and reserve only 4 bytes for
    697 	 * offsets.  If we load code compiled with -mcmodel=kernel
    698 	 * anywhere except the lowest or highest 2GB, it will not
    699 	 * work.  Since userspace does not have access to the highest
    700 	 * 2GB, use the lowest 2GB.
    701 	 *
    702 	 * Note: this assumes the rump kernel resides in
    703 	 * the lowest 2GB as well.
    704 	 *
    705 	 * Note2: yes, it's a quick hack, but since this the only
    706 	 * place where we care about the map we're allocating from,
    707 	 * just use a simple "if" instead of coming up with a fancy
    708 	 * generic solution.
    709 	 */
    710 	if (map == module_map) {
    711 		desired = (void *)(0x80000000 - size);
    712 	}
    713 #endif
    714 
    715 	if (__predict_false(map == module_map)) {
    716 		alignbit = 0;
    717 		if (align) {
    718 			alignbit = ffs(align)-1;
    719 		}
    720 		rv = rumpuser_anonmmap(desired, size, alignbit,
    721 		    flags & UVM_KMF_EXEC, &error);
    722 	} else {
    723 		rv = rumpuser_malloc(size, align);
    724 	}
    725 
    726 	if (rv == NULL) {
    727 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    728 			return 0;
    729 		else
    730 			panic("uvm_km_alloc failed");
    731 	}
    732 
    733 	if (flags & UVM_KMF_ZERO)
    734 		memset(rv, 0, size);
    735 
    736 	return (vaddr_t)rv;
    737 }
    738 
    739 void
    740 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    741 {
    742 
    743 	if (__predict_false(map == module_map))
    744 		rumpuser_unmap((void *)vaddr, size);
    745 	else
    746 		rumpuser_free((void *)vaddr);
    747 }
    748 
    749 struct vm_map *
    750 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    751 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    752 {
    753 
    754 	return (struct vm_map *)417416;
    755 }
    756 
    757 int
    758 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    759     vmem_addr_t *addr)
    760 {
    761 	vaddr_t va;
    762 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    763 	    (flags & VM_SLEEP), "kmalloc");
    764 
    765 	if (va) {
    766 		*addr = va;
    767 		return 0;
    768 	} else {
    769 		return ENOMEM;
    770 	}
    771 }
    772 
    773 void
    774 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    775 {
    776 
    777 	rump_hyperfree((void *)addr, size);
    778 }
    779 
    780 /*
    781  * VM space locking routines.  We don't really have to do anything,
    782  * since the pages are always "wired" (both local and remote processes).
    783  */
    784 int
    785 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    786 {
    787 
    788 	return 0;
    789 }
    790 
    791 void
    792 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    793 {
    794 
    795 }
    796 
    797 /*
    798  * For the local case the buffer mappers don't need to do anything.
    799  * For the remote case we need to reserve space and copy data in or
    800  * out, depending on B_READ/B_WRITE.
    801  */
    802 int
    803 vmapbuf(struct buf *bp, vsize_t len)
    804 {
    805 	int error = 0;
    806 
    807 	bp->b_saveaddr = bp->b_data;
    808 
    809 	/* remote case */
    810 	if (!RUMP_LOCALPROC_P(curproc)) {
    811 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    812 		if (BUF_ISWRITE(bp)) {
    813 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    814 			if (error) {
    815 				rump_hyperfree(bp->b_data, len);
    816 				bp->b_data = bp->b_saveaddr;
    817 				bp->b_saveaddr = 0;
    818 			}
    819 		}
    820 	}
    821 
    822 	return error;
    823 }
    824 
    825 void
    826 vunmapbuf(struct buf *bp, vsize_t len)
    827 {
    828 
    829 	/* remote case */
    830 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    831 		if (BUF_ISREAD(bp)) {
    832 			bp->b_error = copyout_proc(bp->b_proc,
    833 			    bp->b_data, bp->b_saveaddr, len);
    834 		}
    835 		rump_hyperfree(bp->b_data, len);
    836 	}
    837 
    838 	bp->b_data = bp->b_saveaddr;
    839 	bp->b_saveaddr = 0;
    840 }
    841 
    842 void
    843 uvmspace_addref(struct vmspace *vm)
    844 {
    845 
    846 	/*
    847 	 * No dynamically allocated vmspaces exist.
    848 	 */
    849 }
    850 
    851 void
    852 uvmspace_free(struct vmspace *vm)
    853 {
    854 
    855 	/* nothing for now */
    856 }
    857 
    858 /*
    859  * page life cycle stuff.  it really doesn't exist, so just stubs.
    860  */
    861 
    862 void
    863 uvm_pageactivate(struct vm_page *pg)
    864 {
    865 
    866 	/* nada */
    867 }
    868 
    869 void
    870 uvm_pagedeactivate(struct vm_page *pg)
    871 {
    872 
    873 	/* nada */
    874 }
    875 
    876 void
    877 uvm_pagedequeue(struct vm_page *pg)
    878 {
    879 
    880 	/* nada*/
    881 }
    882 
    883 void
    884 uvm_pageenqueue(struct vm_page *pg)
    885 {
    886 
    887 	/* nada */
    888 }
    889 
    890 void
    891 uvmpdpol_anfree(struct vm_anon *an)
    892 {
    893 
    894 	/* nada */
    895 }
    896 
    897 /*
    898  * Physical address accessors.
    899  */
    900 
    901 struct vm_page *
    902 uvm_phys_to_vm_page(paddr_t pa)
    903 {
    904 
    905 	return NULL;
    906 }
    907 
    908 paddr_t
    909 uvm_vm_page_to_phys(const struct vm_page *pg)
    910 {
    911 
    912 	return 0;
    913 }
    914 
    915 /*
    916  * Routines related to the Page Baroness.
    917  */
    918 
    919 void
    920 uvm_wait(const char *msg)
    921 {
    922 
    923 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    924 		panic("pagedaemon out of memory");
    925 	if (__predict_false(rump_threads == 0))
    926 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    927 
    928 	mutex_enter(&pdaemonmtx);
    929 	pdaemon_waiters++;
    930 	cv_signal(&pdaemoncv);
    931 	cv_wait(&oomwait, &pdaemonmtx);
    932 	mutex_exit(&pdaemonmtx);
    933 }
    934 
    935 void
    936 uvm_pageout_start(int npages)
    937 {
    938 
    939 	mutex_enter(&pdaemonmtx);
    940 	uvmexp.paging += npages;
    941 	mutex_exit(&pdaemonmtx);
    942 }
    943 
    944 void
    945 uvm_pageout_done(int npages)
    946 {
    947 
    948 	if (!npages)
    949 		return;
    950 
    951 	mutex_enter(&pdaemonmtx);
    952 	KASSERT(uvmexp.paging >= npages);
    953 	uvmexp.paging -= npages;
    954 
    955 	if (pdaemon_waiters) {
    956 		pdaemon_waiters = 0;
    957 		cv_broadcast(&oomwait);
    958 	}
    959 	mutex_exit(&pdaemonmtx);
    960 }
    961 
    962 static bool
    963 processpage(struct vm_page *pg, bool *lockrunning)
    964 {
    965 	struct uvm_object *uobj;
    966 
    967 	uobj = pg->uobject;
    968 	if (mutex_tryenter(uobj->vmobjlock)) {
    969 		if ((pg->flags & PG_BUSY) == 0) {
    970 			mutex_exit(&uvm_pageqlock);
    971 			uobj->pgops->pgo_put(uobj, pg->offset,
    972 			    pg->offset + PAGE_SIZE,
    973 			    PGO_CLEANIT|PGO_FREE);
    974 			KASSERT(!mutex_owned(uobj->vmobjlock));
    975 			return true;
    976 		} else {
    977 			mutex_exit(uobj->vmobjlock);
    978 		}
    979 	} else if (*lockrunning == false && ncpu > 1) {
    980 		CPU_INFO_ITERATOR cii;
    981 		struct cpu_info *ci;
    982 		struct lwp *l;
    983 
    984 		l = mutex_owner(uobj->vmobjlock);
    985 		for (CPU_INFO_FOREACH(cii, ci)) {
    986 			if (ci->ci_curlwp == l) {
    987 				*lockrunning = true;
    988 				break;
    989 			}
    990 		}
    991 	}
    992 
    993 	return false;
    994 }
    995 
    996 /*
    997  * The Diabolical pageDaemon Director (DDD).
    998  *
    999  * This routine can always use better heuristics.
   1000  */
   1001 void
   1002 uvm_pageout(void *arg)
   1003 {
   1004 	struct vm_page *pg;
   1005 	struct pool *pp, *pp_first;
   1006 	int cleaned, skip, skipped;
   1007 	bool succ;
   1008 	bool lockrunning;
   1009 
   1010 	mutex_enter(&pdaemonmtx);
   1011 	for (;;) {
   1012 		if (!NEED_PAGEDAEMON()) {
   1013 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1014 		}
   1015 
   1016 		if (pdaemon_waiters) {
   1017 			pdaemon_waiters = 0;
   1018 			cv_broadcast(&oomwait);
   1019 		}
   1020 
   1021 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1022 		uvmexp.pdwoke++;
   1023 
   1024 		/* tell the world that we are hungry */
   1025 		kernel_map->flags |= VM_MAP_WANTVA;
   1026 		mutex_exit(&pdaemonmtx);
   1027 
   1028 		/*
   1029 		 * step one: reclaim the page cache.  this should give
   1030 		 * us the biggest earnings since whole pages are released
   1031 		 * into backing memory.
   1032 		 */
   1033 		pool_cache_reclaim(&pagecache);
   1034 		if (!NEED_PAGEDAEMON()) {
   1035 			mutex_enter(&pdaemonmtx);
   1036 			continue;
   1037 		}
   1038 
   1039 		/*
   1040 		 * Ok, so that didn't help.  Next, try to hunt memory
   1041 		 * by pushing out vnode pages.  The pages might contain
   1042 		 * useful cached data, but we need the memory.
   1043 		 */
   1044 		cleaned = 0;
   1045 		skip = 0;
   1046 		lockrunning = false;
   1047  again:
   1048 		mutex_enter(&uvm_pageqlock);
   1049 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1050 			skipped = 0;
   1051 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1052 
   1053 				/*
   1054 				 * skip over pages we _might_ have tried
   1055 				 * to handle earlier.  they might not be
   1056 				 * exactly the same ones, but I'm not too
   1057 				 * concerned.
   1058 				 */
   1059 				while (skipped++ < skip)
   1060 					continue;
   1061 
   1062 				if (processpage(pg, &lockrunning)) {
   1063 					cleaned++;
   1064 					goto again;
   1065 				}
   1066 
   1067 				skip++;
   1068 			}
   1069 			break;
   1070 		}
   1071 		mutex_exit(&uvm_pageqlock);
   1072 
   1073 		/*
   1074 		 * Ok, someone is running with an object lock held.
   1075 		 * We want to yield the host CPU to make sure the
   1076 		 * thread is not parked on the host.  Since sched_yield()
   1077 		 * doesn't appear to do anything on NetBSD, nanosleep
   1078 		 * for the smallest possible time and hope we're back in
   1079 		 * the game soon.
   1080 		 */
   1081 		if (cleaned == 0 && lockrunning) {
   1082 			uint64_t sec, nsec;
   1083 
   1084 			sec = 0;
   1085 			nsec = 1;
   1086 			rumpuser_nanosleep(&sec, &nsec, NULL);
   1087 
   1088 			lockrunning = false;
   1089 			skip = 0;
   1090 
   1091 			/* and here we go again */
   1092 			goto again;
   1093 		}
   1094 
   1095 		/*
   1096 		 * And of course we need to reclaim the page cache
   1097 		 * again to actually release memory.
   1098 		 */
   1099 		pool_cache_reclaim(&pagecache);
   1100 		if (!NEED_PAGEDAEMON()) {
   1101 			mutex_enter(&pdaemonmtx);
   1102 			continue;
   1103 		}
   1104 
   1105 		/*
   1106 		 * And then drain the pools.  Wipe them out ... all of them.
   1107 		 */
   1108 		for (pp_first = NULL;;) {
   1109 			rump_vfs_drainbufs(10 /* XXX: estimate better */);
   1110 
   1111 			succ = pool_drain(&pp);
   1112 			if (succ || pp == pp_first)
   1113 				break;
   1114 
   1115 			if (pp_first == NULL)
   1116 				pp_first = pp;
   1117 		}
   1118 
   1119 		/*
   1120 		 * Need to use PYEC on our bag of tricks.
   1121 		 * Unfortunately, the wife just borrowed it.
   1122 		 */
   1123 
   1124 		mutex_enter(&pdaemonmtx);
   1125 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1126 		    uvmexp.paging == 0) {
   1127 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1128 			    "memory ... sleeping (deadlock?)\n");
   1129 			cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
   1130 		}
   1131 	}
   1132 
   1133 	panic("you can swap out any time you like, but you can never leave");
   1134 }
   1135 
   1136 void
   1137 uvm_kick_pdaemon()
   1138 {
   1139 
   1140 	/*
   1141 	 * Wake up the diabolical pagedaemon director if we are over
   1142 	 * 90% of the memory limit.  This is a complete and utter
   1143 	 * stetson-harrison decision which you are allowed to finetune.
   1144 	 * Don't bother locking.  If we have some unflushed caches,
   1145 	 * other waker-uppers will deal with the issue.
   1146 	 */
   1147 	if (NEED_PAGEDAEMON()) {
   1148 		cv_signal(&pdaemoncv);
   1149 	}
   1150 }
   1151 
   1152 void *
   1153 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1154 {
   1155 	unsigned long newmem;
   1156 	void *rv;
   1157 
   1158 	uvm_kick_pdaemon(); /* ouch */
   1159 
   1160 	/* first we must be within the limit */
   1161  limitagain:
   1162 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1163 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1164 		if (newmem > rump_physmemlimit) {
   1165 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1166 			if (!waitok) {
   1167 				return NULL;
   1168 			}
   1169 			uvm_wait(wmsg);
   1170 			goto limitagain;
   1171 		}
   1172 	}
   1173 
   1174 	/* second, we must get something from the backend */
   1175  again:
   1176 	rv = rumpuser_malloc(howmuch, alignment);
   1177 	if (__predict_false(rv == NULL && waitok)) {
   1178 		uvm_wait(wmsg);
   1179 		goto again;
   1180 	}
   1181 
   1182 	return rv;
   1183 }
   1184 
   1185 void
   1186 rump_hyperfree(void *what, size_t size)
   1187 {
   1188 
   1189 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1190 		atomic_add_long(&curphysmem, -size);
   1191 	}
   1192 	rumpuser_free(what);
   1193 }
   1194