vm.c revision 1.141 1 /* $NetBSD: vm.c,v 1.141 2013/04/29 17:31:05 pooka Exp $ */
2
3 /*
4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.141 2013/04/29 17:31:05 pooka Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/vmem.h>
52 #include <sys/mman.h>
53 #include <sys/null.h>
54 #include <sys/vnode.h>
55
56 #include <machine/pmap.h>
57
58 #include <rump/rumpuser.h>
59
60 #include <uvm/uvm.h>
61 #include <uvm/uvm_ddb.h>
62 #include <uvm/uvm_pdpolicy.h>
63 #include <uvm/uvm_prot.h>
64 #include <uvm/uvm_readahead.h>
65
66 #include "rump_private.h"
67 #include "rump_vfs_private.h"
68
69 kmutex_t uvm_pageqlock;
70 kmutex_t uvm_swap_data_lock;
71
72 struct uvmexp uvmexp;
73 struct uvm uvm;
74
75 #ifdef __uvmexp_pagesize
76 const int * const uvmexp_pagesize = &uvmexp.pagesize;
77 const int * const uvmexp_pagemask = &uvmexp.pagemask;
78 const int * const uvmexp_pageshift = &uvmexp.pageshift;
79 #endif
80
81 struct vm_map rump_vmmap;
82
83 static struct vm_map kernel_map_store;
84 struct vm_map *kernel_map = &kernel_map_store;
85
86 static struct vm_map module_map_store;
87 extern struct vm_map *module_map;
88
89 vmem_t *kmem_arena;
90 vmem_t *kmem_va_arena;
91
92 static unsigned int pdaemon_waiters;
93 static kmutex_t pdaemonmtx;
94 static kcondvar_t pdaemoncv, oomwait;
95
96 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
97 static unsigned long curphysmem;
98 static unsigned long dddlim; /* 90% of memory limit used */
99 #define NEED_PAGEDAEMON() \
100 (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
101
102 /*
103 * Try to free two pages worth of pages from objects.
104 * If this succesfully frees a full page cache page, we'll
105 * free the released page plus PAGE_SIZE/sizeof(vm_page).
106 */
107 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
108
109 /*
110 * Keep a list of least recently used pages. Since the only way a
111 * rump kernel can "access" a page is via lookup, we put the page
112 * at the back of queue every time a lookup for it is done. If the
113 * page is in front of this global queue and we're short of memory,
114 * it's a candidate for pageout.
115 */
116 static struct pglist vmpage_lruqueue;
117 static unsigned vmpage_onqueue;
118
119 static int
120 pg_compare_key(void *ctx, const void *n, const void *key)
121 {
122 voff_t a = ((const struct vm_page *)n)->offset;
123 voff_t b = *(const voff_t *)key;
124
125 if (a < b)
126 return -1;
127 else if (a > b)
128 return 1;
129 else
130 return 0;
131 }
132
133 static int
134 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
135 {
136
137 return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
138 }
139
140 const rb_tree_ops_t uvm_page_tree_ops = {
141 .rbto_compare_nodes = pg_compare_nodes,
142 .rbto_compare_key = pg_compare_key,
143 .rbto_node_offset = offsetof(struct vm_page, rb_node),
144 .rbto_context = NULL
145 };
146
147 /*
148 * vm pages
149 */
150
151 static int
152 pgctor(void *arg, void *obj, int flags)
153 {
154 struct vm_page *pg = obj;
155
156 memset(pg, 0, sizeof(*pg));
157 pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
158 (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
159 return pg->uanon == NULL;
160 }
161
162 static void
163 pgdtor(void *arg, void *obj)
164 {
165 struct vm_page *pg = obj;
166
167 rump_hyperfree(pg->uanon, PAGE_SIZE);
168 }
169
170 static struct pool_cache pagecache;
171
172 /*
173 * Called with the object locked. We don't support anons.
174 */
175 struct vm_page *
176 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
177 int flags, int strat, int free_list)
178 {
179 struct vm_page *pg;
180
181 KASSERT(uobj && mutex_owned(uobj->vmobjlock));
182 KASSERT(anon == NULL);
183
184 pg = pool_cache_get(&pagecache, PR_NOWAIT);
185 if (__predict_false(pg == NULL)) {
186 return NULL;
187 }
188
189 pg->offset = off;
190 pg->uobject = uobj;
191
192 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
193 if (flags & UVM_PGA_ZERO) {
194 uvm_pagezero(pg);
195 }
196
197 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
198 (void)rb_tree_insert_node(&uobj->rb_tree, pg);
199
200 /*
201 * Don't put anons on the LRU page queue. We can't flush them
202 * (there's no concept of swap in a rump kernel), so no reason
203 * to bother with them.
204 */
205 if (!UVM_OBJ_IS_AOBJ(uobj)) {
206 atomic_inc_uint(&vmpage_onqueue);
207 mutex_enter(&uvm_pageqlock);
208 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
209 mutex_exit(&uvm_pageqlock);
210 }
211
212 uobj->uo_npages++;
213
214 return pg;
215 }
216
217 /*
218 * Release a page.
219 *
220 * Called with the vm object locked.
221 */
222 void
223 uvm_pagefree(struct vm_page *pg)
224 {
225 struct uvm_object *uobj = pg->uobject;
226
227 KASSERT(mutex_owned(&uvm_pageqlock));
228 KASSERT(mutex_owned(uobj->vmobjlock));
229
230 if (pg->flags & PG_WANTED)
231 wakeup(pg);
232
233 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
234
235 uobj->uo_npages--;
236 rb_tree_remove_node(&uobj->rb_tree, pg);
237
238 if (!UVM_OBJ_IS_AOBJ(uobj)) {
239 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
240 atomic_dec_uint(&vmpage_onqueue);
241 }
242
243 pool_cache_put(&pagecache, pg);
244 }
245
246 void
247 uvm_pagezero(struct vm_page *pg)
248 {
249
250 pg->flags &= ~PG_CLEAN;
251 memset((void *)pg->uanon, 0, PAGE_SIZE);
252 }
253
254 /*
255 * uvm_page_locked_p: return true if object associated with page is
256 * locked. this is a weak check for runtime assertions only.
257 */
258
259 bool
260 uvm_page_locked_p(struct vm_page *pg)
261 {
262
263 return mutex_owned(pg->uobject->vmobjlock);
264 }
265
266 /*
267 * Misc routines
268 */
269
270 static kmutex_t pagermtx;
271
272 void
273 uvm_init(void)
274 {
275 char buf[64];
276
277 if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
278 unsigned long tmp;
279 char *ep;
280 int mult;
281
282 tmp = strtoul(buf, &ep, 10);
283 if (strlen(ep) > 1)
284 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
285
286 /* mini-dehumanize-number */
287 mult = 1;
288 switch (*ep) {
289 case 'k':
290 mult = 1024;
291 break;
292 case 'm':
293 mult = 1024*1024;
294 break;
295 case 'g':
296 mult = 1024*1024*1024;
297 break;
298 case 0:
299 break;
300 default:
301 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
302 }
303 rump_physmemlimit = tmp * mult;
304
305 if (rump_physmemlimit / mult != tmp)
306 panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
307 /* it's not like we'd get far with, say, 1 byte, but ... */
308 if (rump_physmemlimit == 0)
309 panic("uvm_init: no memory");
310
311 #define HUMANIZE_BYTES 9
312 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
313 format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
314 #undef HUMANIZE_BYTES
315 dddlim = 9 * (rump_physmemlimit / 10);
316 } else {
317 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
318 }
319 aprint_verbose("total memory = %s\n", buf);
320
321 TAILQ_INIT(&vmpage_lruqueue);
322
323 uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
324
325 #ifndef __uvmexp_pagesize
326 uvmexp.pagesize = PAGE_SIZE;
327 uvmexp.pagemask = PAGE_MASK;
328 uvmexp.pageshift = PAGE_SHIFT;
329 #else
330 #define FAKE_PAGE_SHIFT 12
331 uvmexp.pageshift = FAKE_PAGE_SHIFT;
332 uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
333 uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
334 #undef FAKE_PAGE_SHIFT
335 #endif
336
337 mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
338 mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, IPL_NONE);
339 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
340
341 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
342 cv_init(&pdaemoncv, "pdaemon");
343 cv_init(&oomwait, "oomwait");
344
345 module_map = &module_map_store;
346
347 kernel_map->pmap = pmap_kernel();
348
349 pool_subsystem_init();
350
351 kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
352 NULL, NULL, NULL,
353 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
354
355 vmem_subsystem_init(kmem_arena);
356
357 kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
358 vmem_alloc, vmem_free, kmem_arena,
359 8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
360
361 pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
362 "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
363 }
364
365 void
366 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
367 {
368
369 vm->vm_map.pmap = pmap_kernel();
370 vm->vm_refcnt = 1;
371 }
372
373 void
374 uvm_pagewire(struct vm_page *pg)
375 {
376
377 /* nada */
378 }
379
380 void
381 uvm_pageunwire(struct vm_page *pg)
382 {
383
384 /* nada */
385 }
386
387 /* where's your schmonz now? */
388 #define PUNLIMIT(a) \
389 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
390 void
391 uvm_init_limits(struct proc *p)
392 {
393
394 PUNLIMIT(RLIMIT_STACK);
395 PUNLIMIT(RLIMIT_DATA);
396 PUNLIMIT(RLIMIT_RSS);
397 PUNLIMIT(RLIMIT_AS);
398 /* nice, cascade */
399 }
400 #undef PUNLIMIT
401
402 /*
403 * This satisfies the "disgusting mmap hack" used by proplib.
404 * We probably should grow some more assertables to make sure we're
405 * not satisfying anything we shouldn't be satisfying.
406 */
407 int
408 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
409 vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
410 {
411 void *uaddr;
412 int error;
413
414 if (prot != (VM_PROT_READ | VM_PROT_WRITE))
415 panic("uvm_mmap() variant unsupported");
416 if (flags != (MAP_PRIVATE | MAP_ANON))
417 panic("uvm_mmap() variant unsupported");
418
419 /* no reason in particular, but cf. uvm_default_mapaddr() */
420 if (*addr != 0)
421 panic("uvm_mmap() variant unsupported");
422
423 if (RUMP_LOCALPROC_P(curproc)) {
424 uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
425 } else {
426 error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
427 size, &uaddr);
428 }
429 if (uaddr == NULL)
430 return error;
431
432 *addr = (vaddr_t)uaddr;
433 return 0;
434 }
435
436 struct pagerinfo {
437 vaddr_t pgr_kva;
438 int pgr_npages;
439 struct vm_page **pgr_pgs;
440 bool pgr_read;
441
442 LIST_ENTRY(pagerinfo) pgr_entries;
443 };
444 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
445
446 /*
447 * Pager "map" in routine. Instead of mapping, we allocate memory
448 * and copy page contents there. Not optimal or even strictly
449 * correct (the caller might modify the page contents after mapping
450 * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
451 */
452 vaddr_t
453 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
454 {
455 struct pagerinfo *pgri;
456 vaddr_t curkva;
457 int i;
458
459 /* allocate structures */
460 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
461 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
462 pgri->pgr_npages = npages;
463 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
464 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
465
466 /* copy contents to "mapped" memory */
467 for (i = 0, curkva = pgri->pgr_kva;
468 i < npages;
469 i++, curkva += PAGE_SIZE) {
470 /*
471 * We need to copy the previous contents of the pages to
472 * the window even if we are reading from the
473 * device, since the device might not fill the contents of
474 * the full mapped range and we will end up corrupting
475 * data when we unmap the window.
476 */
477 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
478 pgri->pgr_pgs[i] = pgs[i];
479 }
480
481 mutex_enter(&pagermtx);
482 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
483 mutex_exit(&pagermtx);
484
485 return pgri->pgr_kva;
486 }
487
488 /*
489 * map out the pager window. return contents from VA to page storage
490 * and free structures.
491 *
492 * Note: does not currently support partial frees
493 */
494 void
495 uvm_pagermapout(vaddr_t kva, int npages)
496 {
497 struct pagerinfo *pgri;
498 vaddr_t curkva;
499 int i;
500
501 mutex_enter(&pagermtx);
502 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
503 if (pgri->pgr_kva == kva)
504 break;
505 }
506 KASSERT(pgri);
507 if (pgri->pgr_npages != npages)
508 panic("uvm_pagermapout: partial unmapping not supported");
509 LIST_REMOVE(pgri, pgr_entries);
510 mutex_exit(&pagermtx);
511
512 if (pgri->pgr_read) {
513 for (i = 0, curkva = pgri->pgr_kva;
514 i < pgri->pgr_npages;
515 i++, curkva += PAGE_SIZE) {
516 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
517 }
518 }
519
520 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
521 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
522 kmem_free(pgri, sizeof(*pgri));
523 }
524
525 /*
526 * convert va in pager window to page structure.
527 * XXX: how expensive is this (global lock, list traversal)?
528 */
529 struct vm_page *
530 uvm_pageratop(vaddr_t va)
531 {
532 struct pagerinfo *pgri;
533 struct vm_page *pg = NULL;
534 int i;
535
536 mutex_enter(&pagermtx);
537 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
538 if (pgri->pgr_kva <= va
539 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
540 break;
541 }
542 if (pgri) {
543 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
544 pg = pgri->pgr_pgs[i];
545 }
546 mutex_exit(&pagermtx);
547
548 return pg;
549 }
550
551 /*
552 * Called with the vm object locked.
553 *
554 * Put vnode object pages at the end of the access queue to indicate
555 * they have been recently accessed and should not be immediate
556 * candidates for pageout. Do not do this for lookups done by
557 * the pagedaemon to mimic pmap_kentered mappings which don't track
558 * access information.
559 */
560 struct vm_page *
561 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
562 {
563 struct vm_page *pg;
564 bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
565
566 pg = rb_tree_find_node(&uobj->rb_tree, &off);
567 if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
568 mutex_enter(&uvm_pageqlock);
569 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
570 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
571 mutex_exit(&uvm_pageqlock);
572 }
573
574 return pg;
575 }
576
577 void
578 uvm_page_unbusy(struct vm_page **pgs, int npgs)
579 {
580 struct vm_page *pg;
581 int i;
582
583 KASSERT(npgs > 0);
584 KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
585
586 for (i = 0; i < npgs; i++) {
587 pg = pgs[i];
588 if (pg == NULL)
589 continue;
590
591 KASSERT(pg->flags & PG_BUSY);
592 if (pg->flags & PG_WANTED)
593 wakeup(pg);
594 if (pg->flags & PG_RELEASED)
595 uvm_pagefree(pg);
596 else
597 pg->flags &= ~(PG_WANTED|PG_BUSY);
598 }
599 }
600
601 void
602 uvm_estimatepageable(int *active, int *inactive)
603 {
604
605 /* XXX: guessing game */
606 *active = 1024;
607 *inactive = 1024;
608 }
609
610 bool
611 vm_map_starved_p(struct vm_map *map)
612 {
613
614 if (map->flags & VM_MAP_WANTVA)
615 return true;
616
617 return false;
618 }
619
620 int
621 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
622 {
623
624 panic("%s: unimplemented", __func__);
625 }
626
627 void
628 uvm_unloan(void *v, int npages, int flags)
629 {
630
631 panic("%s: unimplemented", __func__);
632 }
633
634 int
635 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
636 struct vm_page **opp)
637 {
638
639 return EBUSY;
640 }
641
642 struct vm_page *
643 uvm_loanbreak(struct vm_page *pg)
644 {
645
646 panic("%s: unimplemented", __func__);
647 }
648
649 void
650 ubc_purge(struct uvm_object *uobj)
651 {
652
653 }
654
655 #ifdef DEBUGPRINT
656 void
657 uvm_object_printit(struct uvm_object *uobj, bool full,
658 void (*pr)(const char *, ...))
659 {
660
661 pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
662 }
663 #endif
664
665 vaddr_t
666 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
667 {
668
669 return 0;
670 }
671
672 int
673 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
674 vm_prot_t prot, bool set_max)
675 {
676
677 return EOPNOTSUPP;
678 }
679
680 /*
681 * UVM km
682 */
683
684 vaddr_t
685 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
686 {
687 void *rv, *desired = NULL;
688 int alignbit, error;
689
690 #ifdef __x86_64__
691 /*
692 * On amd64, allocate all module memory from the lowest 2GB.
693 * This is because NetBSD kernel modules are compiled
694 * with -mcmodel=kernel and reserve only 4 bytes for
695 * offsets. If we load code compiled with -mcmodel=kernel
696 * anywhere except the lowest or highest 2GB, it will not
697 * work. Since userspace does not have access to the highest
698 * 2GB, use the lowest 2GB.
699 *
700 * Note: this assumes the rump kernel resides in
701 * the lowest 2GB as well.
702 *
703 * Note2: yes, it's a quick hack, but since this the only
704 * place where we care about the map we're allocating from,
705 * just use a simple "if" instead of coming up with a fancy
706 * generic solution.
707 */
708 if (map == module_map) {
709 desired = (void *)(0x80000000 - size);
710 }
711 #endif
712
713 if (__predict_false(map == module_map)) {
714 alignbit = 0;
715 if (align) {
716 alignbit = ffs(align)-1;
717 }
718 rv = rumpuser_anonmmap(desired, size, alignbit,
719 flags & UVM_KMF_EXEC, &error);
720 } else {
721 rv = rumpuser_malloc(size, align);
722 }
723
724 if (rv == NULL) {
725 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
726 return 0;
727 else
728 panic("uvm_km_alloc failed");
729 }
730
731 if (flags & UVM_KMF_ZERO)
732 memset(rv, 0, size);
733
734 return (vaddr_t)rv;
735 }
736
737 void
738 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
739 {
740
741 if (__predict_false(map == module_map))
742 rumpuser_unmap((void *)vaddr, size);
743 else
744 rumpuser_free((void *)vaddr, size);
745 }
746
747 struct vm_map *
748 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
749 vsize_t size, int pageable, bool fixed, struct vm_map *submap)
750 {
751
752 return (struct vm_map *)417416;
753 }
754
755 int
756 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
757 vmem_addr_t *addr)
758 {
759 vaddr_t va;
760 va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
761 (flags & VM_SLEEP), "kmalloc");
762
763 if (va) {
764 *addr = va;
765 return 0;
766 } else {
767 return ENOMEM;
768 }
769 }
770
771 void
772 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
773 {
774
775 rump_hyperfree((void *)addr, size);
776 }
777
778 /*
779 * VM space locking routines. We don't really have to do anything,
780 * since the pages are always "wired" (both local and remote processes).
781 */
782 int
783 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
784 {
785
786 return 0;
787 }
788
789 void
790 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
791 {
792
793 }
794
795 /*
796 * For the local case the buffer mappers don't need to do anything.
797 * For the remote case we need to reserve space and copy data in or
798 * out, depending on B_READ/B_WRITE.
799 */
800 int
801 vmapbuf(struct buf *bp, vsize_t len)
802 {
803 int error = 0;
804
805 bp->b_saveaddr = bp->b_data;
806
807 /* remote case */
808 if (!RUMP_LOCALPROC_P(curproc)) {
809 bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
810 if (BUF_ISWRITE(bp)) {
811 error = copyin(bp->b_saveaddr, bp->b_data, len);
812 if (error) {
813 rump_hyperfree(bp->b_data, len);
814 bp->b_data = bp->b_saveaddr;
815 bp->b_saveaddr = 0;
816 }
817 }
818 }
819
820 return error;
821 }
822
823 void
824 vunmapbuf(struct buf *bp, vsize_t len)
825 {
826
827 /* remote case */
828 if (!RUMP_LOCALPROC_P(bp->b_proc)) {
829 if (BUF_ISREAD(bp)) {
830 bp->b_error = copyout_proc(bp->b_proc,
831 bp->b_data, bp->b_saveaddr, len);
832 }
833 rump_hyperfree(bp->b_data, len);
834 }
835
836 bp->b_data = bp->b_saveaddr;
837 bp->b_saveaddr = 0;
838 }
839
840 void
841 uvmspace_addref(struct vmspace *vm)
842 {
843
844 /*
845 * No dynamically allocated vmspaces exist.
846 */
847 }
848
849 void
850 uvmspace_free(struct vmspace *vm)
851 {
852
853 /* nothing for now */
854 }
855
856 /*
857 * page life cycle stuff. it really doesn't exist, so just stubs.
858 */
859
860 void
861 uvm_pageactivate(struct vm_page *pg)
862 {
863
864 /* nada */
865 }
866
867 void
868 uvm_pagedeactivate(struct vm_page *pg)
869 {
870
871 /* nada */
872 }
873
874 void
875 uvm_pagedequeue(struct vm_page *pg)
876 {
877
878 /* nada*/
879 }
880
881 void
882 uvm_pageenqueue(struct vm_page *pg)
883 {
884
885 /* nada */
886 }
887
888 void
889 uvmpdpol_anfree(struct vm_anon *an)
890 {
891
892 /* nada */
893 }
894
895 /*
896 * Physical address accessors.
897 */
898
899 struct vm_page *
900 uvm_phys_to_vm_page(paddr_t pa)
901 {
902
903 return NULL;
904 }
905
906 paddr_t
907 uvm_vm_page_to_phys(const struct vm_page *pg)
908 {
909
910 return 0;
911 }
912
913 /*
914 * Routines related to the Page Baroness.
915 */
916
917 void
918 uvm_wait(const char *msg)
919 {
920
921 if (__predict_false(curlwp == uvm.pagedaemon_lwp))
922 panic("pagedaemon out of memory");
923 if (__predict_false(rump_threads == 0))
924 panic("pagedaemon missing (RUMP_THREADS = 0)");
925
926 mutex_enter(&pdaemonmtx);
927 pdaemon_waiters++;
928 cv_signal(&pdaemoncv);
929 cv_wait(&oomwait, &pdaemonmtx);
930 mutex_exit(&pdaemonmtx);
931 }
932
933 void
934 uvm_pageout_start(int npages)
935 {
936
937 mutex_enter(&pdaemonmtx);
938 uvmexp.paging += npages;
939 mutex_exit(&pdaemonmtx);
940 }
941
942 void
943 uvm_pageout_done(int npages)
944 {
945
946 if (!npages)
947 return;
948
949 mutex_enter(&pdaemonmtx);
950 KASSERT(uvmexp.paging >= npages);
951 uvmexp.paging -= npages;
952
953 if (pdaemon_waiters) {
954 pdaemon_waiters = 0;
955 cv_broadcast(&oomwait);
956 }
957 mutex_exit(&pdaemonmtx);
958 }
959
960 static bool
961 processpage(struct vm_page *pg, bool *lockrunning)
962 {
963 struct uvm_object *uobj;
964
965 uobj = pg->uobject;
966 if (mutex_tryenter(uobj->vmobjlock)) {
967 if ((pg->flags & PG_BUSY) == 0) {
968 mutex_exit(&uvm_pageqlock);
969 uobj->pgops->pgo_put(uobj, pg->offset,
970 pg->offset + PAGE_SIZE,
971 PGO_CLEANIT|PGO_FREE);
972 KASSERT(!mutex_owned(uobj->vmobjlock));
973 return true;
974 } else {
975 mutex_exit(uobj->vmobjlock);
976 }
977 } else if (*lockrunning == false && ncpu > 1) {
978 CPU_INFO_ITERATOR cii;
979 struct cpu_info *ci;
980 struct lwp *l;
981
982 l = mutex_owner(uobj->vmobjlock);
983 for (CPU_INFO_FOREACH(cii, ci)) {
984 if (ci->ci_curlwp == l) {
985 *lockrunning = true;
986 break;
987 }
988 }
989 }
990
991 return false;
992 }
993
994 /*
995 * The Diabolical pageDaemon Director (DDD).
996 *
997 * This routine can always use better heuristics.
998 */
999 void
1000 uvm_pageout(void *arg)
1001 {
1002 struct vm_page *pg;
1003 struct pool *pp, *pp_first;
1004 int cleaned, skip, skipped;
1005 bool succ;
1006 bool lockrunning;
1007
1008 mutex_enter(&pdaemonmtx);
1009 for (;;) {
1010 if (!NEED_PAGEDAEMON()) {
1011 kernel_map->flags &= ~VM_MAP_WANTVA;
1012 }
1013
1014 if (pdaemon_waiters) {
1015 pdaemon_waiters = 0;
1016 cv_broadcast(&oomwait);
1017 }
1018
1019 cv_wait(&pdaemoncv, &pdaemonmtx);
1020 uvmexp.pdwoke++;
1021
1022 /* tell the world that we are hungry */
1023 kernel_map->flags |= VM_MAP_WANTVA;
1024 mutex_exit(&pdaemonmtx);
1025
1026 /*
1027 * step one: reclaim the page cache. this should give
1028 * us the biggest earnings since whole pages are released
1029 * into backing memory.
1030 */
1031 pool_cache_reclaim(&pagecache);
1032 if (!NEED_PAGEDAEMON()) {
1033 mutex_enter(&pdaemonmtx);
1034 continue;
1035 }
1036
1037 /*
1038 * Ok, so that didn't help. Next, try to hunt memory
1039 * by pushing out vnode pages. The pages might contain
1040 * useful cached data, but we need the memory.
1041 */
1042 cleaned = 0;
1043 skip = 0;
1044 lockrunning = false;
1045 again:
1046 mutex_enter(&uvm_pageqlock);
1047 while (cleaned < PAGEDAEMON_OBJCHUNK) {
1048 skipped = 0;
1049 TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1050
1051 /*
1052 * skip over pages we _might_ have tried
1053 * to handle earlier. they might not be
1054 * exactly the same ones, but I'm not too
1055 * concerned.
1056 */
1057 while (skipped++ < skip)
1058 continue;
1059
1060 if (processpage(pg, &lockrunning)) {
1061 cleaned++;
1062 goto again;
1063 }
1064
1065 skip++;
1066 }
1067 break;
1068 }
1069 mutex_exit(&uvm_pageqlock);
1070
1071 /*
1072 * Ok, someone is running with an object lock held.
1073 * We want to yield the host CPU to make sure the
1074 * thread is not parked on the host. Since sched_yield()
1075 * doesn't appear to do anything on NetBSD, nanosleep
1076 * for the smallest possible time and hope we're back in
1077 * the game soon.
1078 */
1079 if (cleaned == 0 && lockrunning) {
1080 rumpuser_clock_sleep(0, 1, RUMPUSER_CLOCK_RELWALL);
1081
1082 lockrunning = false;
1083 skip = 0;
1084
1085 /* and here we go again */
1086 goto again;
1087 }
1088
1089 /*
1090 * And of course we need to reclaim the page cache
1091 * again to actually release memory.
1092 */
1093 pool_cache_reclaim(&pagecache);
1094 if (!NEED_PAGEDAEMON()) {
1095 mutex_enter(&pdaemonmtx);
1096 continue;
1097 }
1098
1099 /*
1100 * And then drain the pools. Wipe them out ... all of them.
1101 */
1102 for (pp_first = NULL;;) {
1103 if (rump_vfs_drainbufs)
1104 rump_vfs_drainbufs(10 /* XXX: estimate! */);
1105
1106 succ = pool_drain(&pp);
1107 if (succ || pp == pp_first)
1108 break;
1109
1110 if (pp_first == NULL)
1111 pp_first = pp;
1112 }
1113
1114 /*
1115 * Need to use PYEC on our bag of tricks.
1116 * Unfortunately, the wife just borrowed it.
1117 */
1118
1119 mutex_enter(&pdaemonmtx);
1120 if (!succ && cleaned == 0 && pdaemon_waiters &&
1121 uvmexp.paging == 0) {
1122 rumpuser_dprintf("pagedaemoness: failed to reclaim "
1123 "memory ... sleeping (deadlock?)\n");
1124 cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
1125 }
1126 }
1127
1128 panic("you can swap out any time you like, but you can never leave");
1129 }
1130
1131 void
1132 uvm_kick_pdaemon()
1133 {
1134
1135 /*
1136 * Wake up the diabolical pagedaemon director if we are over
1137 * 90% of the memory limit. This is a complete and utter
1138 * stetson-harrison decision which you are allowed to finetune.
1139 * Don't bother locking. If we have some unflushed caches,
1140 * other waker-uppers will deal with the issue.
1141 */
1142 if (NEED_PAGEDAEMON()) {
1143 cv_signal(&pdaemoncv);
1144 }
1145 }
1146
1147 void *
1148 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1149 {
1150 unsigned long newmem;
1151 void *rv;
1152
1153 uvm_kick_pdaemon(); /* ouch */
1154
1155 /* first we must be within the limit */
1156 limitagain:
1157 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1158 newmem = atomic_add_long_nv(&curphysmem, howmuch);
1159 if (newmem > rump_physmemlimit) {
1160 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1161 if (!waitok) {
1162 return NULL;
1163 }
1164 uvm_wait(wmsg);
1165 goto limitagain;
1166 }
1167 }
1168
1169 /* second, we must get something from the backend */
1170 again:
1171 rv = rumpuser_malloc(howmuch, alignment);
1172 if (__predict_false(rv == NULL && waitok)) {
1173 uvm_wait(wmsg);
1174 goto again;
1175 }
1176
1177 return rv;
1178 }
1179
1180 void
1181 rump_hyperfree(void *what, size_t size)
1182 {
1183
1184 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1185 atomic_add_long(&curphysmem, -size);
1186 }
1187 rumpuser_free(what, size);
1188 }
1189