vm.c revision 1.152 1 /* $NetBSD: vm.c,v 1.152 2014/03/11 20:32:05 pooka Exp $ */
2
3 /*
4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.152 2014/03/11 20:32:05 pooka Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/vmem.h>
52 #include <sys/mman.h>
53 #include <sys/null.h>
54 #include <sys/vnode.h>
55
56 #include <machine/pmap.h>
57
58 #include <rump/rumpuser.h>
59
60 #include <uvm/uvm.h>
61 #include <uvm/uvm_ddb.h>
62 #include <uvm/uvm_pdpolicy.h>
63 #include <uvm/uvm_prot.h>
64 #include <uvm/uvm_readahead.h>
65
66 #include "rump_private.h"
67 #include "rump_vfs_private.h"
68
69 kmutex_t uvm_pageqlock; /* non-free page lock */
70 kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
71 kmutex_t uvm_swap_data_lock;
72
73 struct uvmexp uvmexp;
74 struct uvm uvm;
75
76 #ifdef __uvmexp_pagesize
77 const int * const uvmexp_pagesize = &uvmexp.pagesize;
78 const int * const uvmexp_pagemask = &uvmexp.pagemask;
79 const int * const uvmexp_pageshift = &uvmexp.pageshift;
80 #endif
81
82 struct vm_map rump_vmmap;
83
84 static struct vm_map kernel_map_store;
85 struct vm_map *kernel_map = &kernel_map_store;
86
87 static struct vm_map module_map_store;
88 extern struct vm_map *module_map;
89
90 vmem_t *kmem_arena;
91 vmem_t *kmem_va_arena;
92
93 static unsigned int pdaemon_waiters;
94 static kmutex_t pdaemonmtx;
95 static kcondvar_t pdaemoncv, oomwait;
96
97 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
98 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
99 static unsigned long curphysmem;
100 static unsigned long dddlim; /* 90% of memory limit used */
101 #define NEED_PAGEDAEMON() \
102 (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
103
104 /*
105 * Try to free two pages worth of pages from objects.
106 * If this succesfully frees a full page cache page, we'll
107 * free the released page plus PAGE_SIZE/sizeof(vm_page).
108 */
109 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
110
111 /*
112 * Keep a list of least recently used pages. Since the only way a
113 * rump kernel can "access" a page is via lookup, we put the page
114 * at the back of queue every time a lookup for it is done. If the
115 * page is in front of this global queue and we're short of memory,
116 * it's a candidate for pageout.
117 */
118 static struct pglist vmpage_lruqueue;
119 static unsigned vmpage_onqueue;
120
121 static int
122 pg_compare_key(void *ctx, const void *n, const void *key)
123 {
124 voff_t a = ((const struct vm_page *)n)->offset;
125 voff_t b = *(const voff_t *)key;
126
127 if (a < b)
128 return -1;
129 else if (a > b)
130 return 1;
131 else
132 return 0;
133 }
134
135 static int
136 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
137 {
138
139 return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
140 }
141
142 const rb_tree_ops_t uvm_page_tree_ops = {
143 .rbto_compare_nodes = pg_compare_nodes,
144 .rbto_compare_key = pg_compare_key,
145 .rbto_node_offset = offsetof(struct vm_page, rb_node),
146 .rbto_context = NULL
147 };
148
149 /*
150 * vm pages
151 */
152
153 static int
154 pgctor(void *arg, void *obj, int flags)
155 {
156 struct vm_page *pg = obj;
157
158 memset(pg, 0, sizeof(*pg));
159 pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
160 (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
161 return pg->uanon == NULL;
162 }
163
164 static void
165 pgdtor(void *arg, void *obj)
166 {
167 struct vm_page *pg = obj;
168
169 rump_hyperfree(pg->uanon, PAGE_SIZE);
170 }
171
172 static struct pool_cache pagecache;
173
174 /*
175 * Called with the object locked. We don't support anons.
176 */
177 struct vm_page *
178 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
179 int flags, int strat, int free_list)
180 {
181 struct vm_page *pg;
182
183 KASSERT(uobj && mutex_owned(uobj->vmobjlock));
184 KASSERT(anon == NULL);
185
186 pg = pool_cache_get(&pagecache, PR_NOWAIT);
187 if (__predict_false(pg == NULL)) {
188 return NULL;
189 }
190
191 pg->offset = off;
192 pg->uobject = uobj;
193
194 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
195 if (flags & UVM_PGA_ZERO) {
196 uvm_pagezero(pg);
197 }
198
199 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
200 (void)rb_tree_insert_node(&uobj->rb_tree, pg);
201
202 /*
203 * Don't put anons on the LRU page queue. We can't flush them
204 * (there's no concept of swap in a rump kernel), so no reason
205 * to bother with them.
206 */
207 if (!UVM_OBJ_IS_AOBJ(uobj)) {
208 atomic_inc_uint(&vmpage_onqueue);
209 mutex_enter(&uvm_pageqlock);
210 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
211 mutex_exit(&uvm_pageqlock);
212 }
213
214 uobj->uo_npages++;
215
216 return pg;
217 }
218
219 /*
220 * Release a page.
221 *
222 * Called with the vm object locked.
223 */
224 void
225 uvm_pagefree(struct vm_page *pg)
226 {
227 struct uvm_object *uobj = pg->uobject;
228
229 KASSERT(mutex_owned(&uvm_pageqlock));
230 KASSERT(mutex_owned(uobj->vmobjlock));
231
232 if (pg->flags & PG_WANTED)
233 wakeup(pg);
234
235 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
236
237 uobj->uo_npages--;
238 rb_tree_remove_node(&uobj->rb_tree, pg);
239
240 if (!UVM_OBJ_IS_AOBJ(uobj)) {
241 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
242 atomic_dec_uint(&vmpage_onqueue);
243 }
244
245 pool_cache_put(&pagecache, pg);
246 }
247
248 void
249 uvm_pagezero(struct vm_page *pg)
250 {
251
252 pg->flags &= ~PG_CLEAN;
253 memset((void *)pg->uanon, 0, PAGE_SIZE);
254 }
255
256 /*
257 * uvm_page_locked_p: return true if object associated with page is
258 * locked. this is a weak check for runtime assertions only.
259 */
260
261 bool
262 uvm_page_locked_p(struct vm_page *pg)
263 {
264
265 return mutex_owned(pg->uobject->vmobjlock);
266 }
267
268 /*
269 * Misc routines
270 */
271
272 static kmutex_t pagermtx;
273
274 void
275 uvm_init(void)
276 {
277 char buf[64];
278
279 if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
280 unsigned long tmp;
281 char *ep;
282 int mult;
283
284 tmp = strtoul(buf, &ep, 10);
285 if (strlen(ep) > 1)
286 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
287
288 /* mini-dehumanize-number */
289 mult = 1;
290 switch (*ep) {
291 case 'k':
292 mult = 1024;
293 break;
294 case 'm':
295 mult = 1024*1024;
296 break;
297 case 'g':
298 mult = 1024*1024*1024;
299 break;
300 case 0:
301 break;
302 default:
303 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
304 }
305 rump_physmemlimit = tmp * mult;
306
307 if (rump_physmemlimit / mult != tmp)
308 panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
309 /* it's not like we'd get far with, say, 1 byte, but ... */
310 if (rump_physmemlimit < 1024*1024)
311 printf("uvm_init: WARNING: <1MB RAM limit, "
312 "hope you know what you're doing\n");
313
314 /* reserve some memory for the pager */
315 pdlimit = rump_physmemlimit;
316 rump_physmemlimit -= 2*MAXPHYS;
317
318 #define HUMANIZE_BYTES 9
319 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
320 format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
321 #undef HUMANIZE_BYTES
322 dddlim = 9 * (rump_physmemlimit / 10);
323 } else {
324 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
325 }
326 aprint_verbose("total memory = %s\n", buf);
327
328 TAILQ_INIT(&vmpage_lruqueue);
329
330 uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
331
332 #ifndef __uvmexp_pagesize
333 uvmexp.pagesize = PAGE_SIZE;
334 uvmexp.pagemask = PAGE_MASK;
335 uvmexp.pageshift = PAGE_SHIFT;
336 #else
337 #define FAKE_PAGE_SHIFT 12
338 uvmexp.pageshift = FAKE_PAGE_SHIFT;
339 uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
340 uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
341 #undef FAKE_PAGE_SHIFT
342 #endif
343
344 mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
345 mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, IPL_NONE);
346 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
347
348 /* just to appease linkage */
349 mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
350
351 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
352 cv_init(&pdaemoncv, "pdaemon");
353 cv_init(&oomwait, "oomwait");
354
355 module_map = &module_map_store;
356
357 kernel_map->pmap = pmap_kernel();
358
359 pool_subsystem_init();
360
361 kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
362 NULL, NULL, NULL,
363 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
364
365 vmem_subsystem_init(kmem_arena);
366
367 kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
368 vmem_alloc, vmem_free, kmem_arena,
369 8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
370
371 pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
372 "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
373 }
374
375 void
376 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
377 bool topdown)
378 {
379
380 vm->vm_map.pmap = pmap_kernel();
381 vm->vm_refcnt = 1;
382 }
383
384 void
385 uvm_pagewire(struct vm_page *pg)
386 {
387
388 /* nada */
389 }
390
391 void
392 uvm_pageunwire(struct vm_page *pg)
393 {
394
395 /* nada */
396 }
397
398 /* where's your schmonz now? */
399 #define PUNLIMIT(a) \
400 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
401 void
402 uvm_init_limits(struct proc *p)
403 {
404
405 PUNLIMIT(RLIMIT_STACK);
406 PUNLIMIT(RLIMIT_DATA);
407 PUNLIMIT(RLIMIT_RSS);
408 PUNLIMIT(RLIMIT_AS);
409 /* nice, cascade */
410 }
411 #undef PUNLIMIT
412
413 /*
414 * This satisfies the "disgusting mmap hack" used by proplib.
415 * We probably should grow some more assertables to make sure we're
416 * not satisfying anything we shouldn't be satisfying.
417 */
418 int
419 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
420 vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
421 {
422 void *uaddr;
423 int error;
424
425 if (prot != (VM_PROT_READ | VM_PROT_WRITE))
426 panic("uvm_mmap() variant unsupported");
427 if (flags != (MAP_PRIVATE | MAP_ANON))
428 panic("uvm_mmap() variant unsupported");
429
430 /* no reason in particular, but cf. uvm_default_mapaddr() */
431 if (*addr != 0)
432 panic("uvm_mmap() variant unsupported");
433
434 if (RUMP_LOCALPROC_P(curproc)) {
435 error = rumpuser_anonmmap(NULL, size, 0, 0, &uaddr);
436 } else {
437 error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
438 size, &uaddr);
439 }
440 if (error)
441 return error;
442
443 *addr = (vaddr_t)uaddr;
444 return 0;
445 }
446
447 struct pagerinfo {
448 vaddr_t pgr_kva;
449 int pgr_npages;
450 struct vm_page **pgr_pgs;
451 bool pgr_read;
452
453 LIST_ENTRY(pagerinfo) pgr_entries;
454 };
455 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
456
457 /*
458 * Pager "map" in routine. Instead of mapping, we allocate memory
459 * and copy page contents there. Not optimal or even strictly
460 * correct (the caller might modify the page contents after mapping
461 * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
462 */
463 vaddr_t
464 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
465 {
466 struct pagerinfo *pgri;
467 vaddr_t curkva;
468 int i;
469
470 /* allocate structures */
471 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
472 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
473 pgri->pgr_npages = npages;
474 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
475 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
476
477 /* copy contents to "mapped" memory */
478 for (i = 0, curkva = pgri->pgr_kva;
479 i < npages;
480 i++, curkva += PAGE_SIZE) {
481 /*
482 * We need to copy the previous contents of the pages to
483 * the window even if we are reading from the
484 * device, since the device might not fill the contents of
485 * the full mapped range and we will end up corrupting
486 * data when we unmap the window.
487 */
488 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
489 pgri->pgr_pgs[i] = pgs[i];
490 }
491
492 mutex_enter(&pagermtx);
493 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
494 mutex_exit(&pagermtx);
495
496 return pgri->pgr_kva;
497 }
498
499 /*
500 * map out the pager window. return contents from VA to page storage
501 * and free structures.
502 *
503 * Note: does not currently support partial frees
504 */
505 void
506 uvm_pagermapout(vaddr_t kva, int npages)
507 {
508 struct pagerinfo *pgri;
509 vaddr_t curkva;
510 int i;
511
512 mutex_enter(&pagermtx);
513 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
514 if (pgri->pgr_kva == kva)
515 break;
516 }
517 KASSERT(pgri);
518 if (pgri->pgr_npages != npages)
519 panic("uvm_pagermapout: partial unmapping not supported");
520 LIST_REMOVE(pgri, pgr_entries);
521 mutex_exit(&pagermtx);
522
523 if (pgri->pgr_read) {
524 for (i = 0, curkva = pgri->pgr_kva;
525 i < pgri->pgr_npages;
526 i++, curkva += PAGE_SIZE) {
527 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
528 }
529 }
530
531 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
532 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
533 kmem_free(pgri, sizeof(*pgri));
534 }
535
536 /*
537 * convert va in pager window to page structure.
538 * XXX: how expensive is this (global lock, list traversal)?
539 */
540 struct vm_page *
541 uvm_pageratop(vaddr_t va)
542 {
543 struct pagerinfo *pgri;
544 struct vm_page *pg = NULL;
545 int i;
546
547 mutex_enter(&pagermtx);
548 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
549 if (pgri->pgr_kva <= va
550 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
551 break;
552 }
553 if (pgri) {
554 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
555 pg = pgri->pgr_pgs[i];
556 }
557 mutex_exit(&pagermtx);
558
559 return pg;
560 }
561
562 /*
563 * Called with the vm object locked.
564 *
565 * Put vnode object pages at the end of the access queue to indicate
566 * they have been recently accessed and should not be immediate
567 * candidates for pageout. Do not do this for lookups done by
568 * the pagedaemon to mimic pmap_kentered mappings which don't track
569 * access information.
570 */
571 struct vm_page *
572 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
573 {
574 struct vm_page *pg;
575 bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
576
577 pg = rb_tree_find_node(&uobj->rb_tree, &off);
578 if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
579 mutex_enter(&uvm_pageqlock);
580 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
581 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
582 mutex_exit(&uvm_pageqlock);
583 }
584
585 return pg;
586 }
587
588 void
589 uvm_page_unbusy(struct vm_page **pgs, int npgs)
590 {
591 struct vm_page *pg;
592 int i;
593
594 KASSERT(npgs > 0);
595 KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
596
597 for (i = 0; i < npgs; i++) {
598 pg = pgs[i];
599 if (pg == NULL)
600 continue;
601
602 KASSERT(pg->flags & PG_BUSY);
603 if (pg->flags & PG_WANTED)
604 wakeup(pg);
605 if (pg->flags & PG_RELEASED)
606 uvm_pagefree(pg);
607 else
608 pg->flags &= ~(PG_WANTED|PG_BUSY);
609 }
610 }
611
612 void
613 uvm_estimatepageable(int *active, int *inactive)
614 {
615
616 /* XXX: guessing game */
617 *active = 1024;
618 *inactive = 1024;
619 }
620
621 bool
622 vm_map_starved_p(struct vm_map *map)
623 {
624
625 if (map->flags & VM_MAP_WANTVA)
626 return true;
627
628 return false;
629 }
630
631 int
632 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
633 {
634
635 panic("%s: unimplemented", __func__);
636 }
637
638 void
639 uvm_unloan(void *v, int npages, int flags)
640 {
641
642 panic("%s: unimplemented", __func__);
643 }
644
645 int
646 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
647 struct vm_page **opp)
648 {
649
650 return EBUSY;
651 }
652
653 struct vm_page *
654 uvm_loanbreak(struct vm_page *pg)
655 {
656
657 panic("%s: unimplemented", __func__);
658 }
659
660 void
661 ubc_purge(struct uvm_object *uobj)
662 {
663
664 }
665
666 vaddr_t
667 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
668 {
669
670 return 0;
671 }
672
673 int
674 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
675 vm_prot_t prot, bool set_max)
676 {
677
678 return EOPNOTSUPP;
679 }
680
681 /*
682 * UVM km
683 */
684
685 vaddr_t
686 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
687 {
688 void *rv, *desired = NULL;
689 int alignbit, error;
690
691 #ifdef __x86_64__
692 /*
693 * On amd64, allocate all module memory from the lowest 2GB.
694 * This is because NetBSD kernel modules are compiled
695 * with -mcmodel=kernel and reserve only 4 bytes for
696 * offsets. If we load code compiled with -mcmodel=kernel
697 * anywhere except the lowest or highest 2GB, it will not
698 * work. Since userspace does not have access to the highest
699 * 2GB, use the lowest 2GB.
700 *
701 * Note: this assumes the rump kernel resides in
702 * the lowest 2GB as well.
703 *
704 * Note2: yes, it's a quick hack, but since this the only
705 * place where we care about the map we're allocating from,
706 * just use a simple "if" instead of coming up with a fancy
707 * generic solution.
708 */
709 if (map == module_map) {
710 desired = (void *)(0x80000000 - size);
711 }
712 #endif
713
714 if (__predict_false(map == module_map)) {
715 alignbit = 0;
716 if (align) {
717 alignbit = ffs(align)-1;
718 }
719 error = rumpuser_anonmmap(desired, size, alignbit,
720 flags & UVM_KMF_EXEC, &rv);
721 } else {
722 error = rumpuser_malloc(size, align, &rv);
723 }
724
725 if (error) {
726 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
727 return 0;
728 else
729 panic("uvm_km_alloc failed");
730 }
731
732 if (flags & UVM_KMF_ZERO)
733 memset(rv, 0, size);
734
735 return (vaddr_t)rv;
736 }
737
738 void
739 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
740 {
741
742 if (__predict_false(map == module_map))
743 rumpuser_unmap((void *)vaddr, size);
744 else
745 rumpuser_free((void *)vaddr, size);
746 }
747
748 struct vm_map *
749 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
750 vsize_t size, int pageable, bool fixed, struct vm_map *submap)
751 {
752
753 return (struct vm_map *)417416;
754 }
755
756 int
757 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
758 vmem_addr_t *addr)
759 {
760 vaddr_t va;
761 va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
762 (flags & VM_SLEEP), "kmalloc");
763
764 if (va) {
765 *addr = va;
766 return 0;
767 } else {
768 return ENOMEM;
769 }
770 }
771
772 void
773 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
774 {
775
776 rump_hyperfree((void *)addr, size);
777 }
778
779 /*
780 * VM space locking routines. We don't really have to do anything,
781 * since the pages are always "wired" (both local and remote processes).
782 */
783 int
784 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
785 {
786
787 return 0;
788 }
789
790 void
791 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
792 {
793
794 }
795
796 /*
797 * For the local case the buffer mappers don't need to do anything.
798 * For the remote case we need to reserve space and copy data in or
799 * out, depending on B_READ/B_WRITE.
800 */
801 int
802 vmapbuf(struct buf *bp, vsize_t len)
803 {
804 int error = 0;
805
806 bp->b_saveaddr = bp->b_data;
807
808 /* remote case */
809 if (!RUMP_LOCALPROC_P(curproc)) {
810 bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
811 if (BUF_ISWRITE(bp)) {
812 error = copyin(bp->b_saveaddr, bp->b_data, len);
813 if (error) {
814 rump_hyperfree(bp->b_data, len);
815 bp->b_data = bp->b_saveaddr;
816 bp->b_saveaddr = 0;
817 }
818 }
819 }
820
821 return error;
822 }
823
824 void
825 vunmapbuf(struct buf *bp, vsize_t len)
826 {
827
828 /* remote case */
829 if (!RUMP_LOCALPROC_P(bp->b_proc)) {
830 if (BUF_ISREAD(bp)) {
831 bp->b_error = copyout_proc(bp->b_proc,
832 bp->b_data, bp->b_saveaddr, len);
833 }
834 rump_hyperfree(bp->b_data, len);
835 }
836
837 bp->b_data = bp->b_saveaddr;
838 bp->b_saveaddr = 0;
839 }
840
841 void
842 uvmspace_addref(struct vmspace *vm)
843 {
844
845 /*
846 * No dynamically allocated vmspaces exist.
847 */
848 }
849
850 void
851 uvmspace_free(struct vmspace *vm)
852 {
853
854 /* nothing for now */
855 }
856
857 /*
858 * page life cycle stuff. it really doesn't exist, so just stubs.
859 */
860
861 void
862 uvm_pageactivate(struct vm_page *pg)
863 {
864
865 /* nada */
866 }
867
868 void
869 uvm_pagedeactivate(struct vm_page *pg)
870 {
871
872 /* nada */
873 }
874
875 void
876 uvm_pagedequeue(struct vm_page *pg)
877 {
878
879 /* nada*/
880 }
881
882 void
883 uvm_pageenqueue(struct vm_page *pg)
884 {
885
886 /* nada */
887 }
888
889 void
890 uvmpdpol_anfree(struct vm_anon *an)
891 {
892
893 /* nada */
894 }
895
896 /*
897 * Physical address accessors.
898 */
899
900 struct vm_page *
901 uvm_phys_to_vm_page(paddr_t pa)
902 {
903
904 return NULL;
905 }
906
907 paddr_t
908 uvm_vm_page_to_phys(const struct vm_page *pg)
909 {
910
911 return 0;
912 }
913
914 /*
915 * Routines related to the Page Baroness.
916 */
917
918 void
919 uvm_wait(const char *msg)
920 {
921
922 if (__predict_false(rump_threads == 0))
923 panic("pagedaemon missing (RUMP_THREADS = 0)");
924
925 if (curlwp == uvm.pagedaemon_lwp) {
926 /* is it possible for us to later get memory? */
927 if (!uvmexp.paging)
928 panic("pagedaemon out of memory");
929 }
930
931 mutex_enter(&pdaemonmtx);
932 pdaemon_waiters++;
933 cv_signal(&pdaemoncv);
934 cv_wait(&oomwait, &pdaemonmtx);
935 mutex_exit(&pdaemonmtx);
936 }
937
938 void
939 uvm_pageout_start(int npages)
940 {
941
942 mutex_enter(&pdaemonmtx);
943 uvmexp.paging += npages;
944 mutex_exit(&pdaemonmtx);
945 }
946
947 void
948 uvm_pageout_done(int npages)
949 {
950
951 if (!npages)
952 return;
953
954 mutex_enter(&pdaemonmtx);
955 KASSERT(uvmexp.paging >= npages);
956 uvmexp.paging -= npages;
957
958 if (pdaemon_waiters) {
959 pdaemon_waiters = 0;
960 cv_broadcast(&oomwait);
961 }
962 mutex_exit(&pdaemonmtx);
963 }
964
965 static bool
966 processpage(struct vm_page *pg, bool *lockrunning)
967 {
968 struct uvm_object *uobj;
969
970 uobj = pg->uobject;
971 if (mutex_tryenter(uobj->vmobjlock)) {
972 if ((pg->flags & PG_BUSY) == 0) {
973 mutex_exit(&uvm_pageqlock);
974 uobj->pgops->pgo_put(uobj, pg->offset,
975 pg->offset + PAGE_SIZE,
976 PGO_CLEANIT|PGO_FREE);
977 KASSERT(!mutex_owned(uobj->vmobjlock));
978 return true;
979 } else {
980 mutex_exit(uobj->vmobjlock);
981 }
982 } else if (*lockrunning == false && ncpu > 1) {
983 CPU_INFO_ITERATOR cii;
984 struct cpu_info *ci;
985 struct lwp *l;
986
987 l = mutex_owner(uobj->vmobjlock);
988 for (CPU_INFO_FOREACH(cii, ci)) {
989 if (ci->ci_curlwp == l) {
990 *lockrunning = true;
991 break;
992 }
993 }
994 }
995
996 return false;
997 }
998
999 /*
1000 * The Diabolical pageDaemon Director (DDD).
1001 *
1002 * This routine can always use better heuristics.
1003 */
1004 void
1005 uvm_pageout(void *arg)
1006 {
1007 struct vm_page *pg;
1008 struct pool *pp, *pp_first;
1009 int cleaned, skip, skipped;
1010 bool succ;
1011 bool lockrunning;
1012
1013 mutex_enter(&pdaemonmtx);
1014 for (;;) {
1015 if (!NEED_PAGEDAEMON()) {
1016 kernel_map->flags &= ~VM_MAP_WANTVA;
1017 }
1018
1019 if (pdaemon_waiters) {
1020 pdaemon_waiters = 0;
1021 cv_broadcast(&oomwait);
1022 }
1023
1024 cv_wait(&pdaemoncv, &pdaemonmtx);
1025 uvmexp.pdwoke++;
1026
1027 /* tell the world that we are hungry */
1028 kernel_map->flags |= VM_MAP_WANTVA;
1029 mutex_exit(&pdaemonmtx);
1030
1031 /*
1032 * step one: reclaim the page cache. this should give
1033 * us the biggest earnings since whole pages are released
1034 * into backing memory.
1035 */
1036 pool_cache_reclaim(&pagecache);
1037 if (!NEED_PAGEDAEMON()) {
1038 mutex_enter(&pdaemonmtx);
1039 continue;
1040 }
1041
1042 /*
1043 * Ok, so that didn't help. Next, try to hunt memory
1044 * by pushing out vnode pages. The pages might contain
1045 * useful cached data, but we need the memory.
1046 */
1047 cleaned = 0;
1048 skip = 0;
1049 lockrunning = false;
1050 again:
1051 mutex_enter(&uvm_pageqlock);
1052 while (cleaned < PAGEDAEMON_OBJCHUNK) {
1053 skipped = 0;
1054 TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1055
1056 /*
1057 * skip over pages we _might_ have tried
1058 * to handle earlier. they might not be
1059 * exactly the same ones, but I'm not too
1060 * concerned.
1061 */
1062 while (skipped++ < skip)
1063 continue;
1064
1065 if (processpage(pg, &lockrunning)) {
1066 cleaned++;
1067 goto again;
1068 }
1069
1070 skip++;
1071 }
1072 break;
1073 }
1074 mutex_exit(&uvm_pageqlock);
1075
1076 /*
1077 * Ok, someone is running with an object lock held.
1078 * We want to yield the host CPU to make sure the
1079 * thread is not parked on the host. Since sched_yield()
1080 * doesn't appear to do anything on NetBSD, nanosleep
1081 * for the smallest possible time and hope we're back in
1082 * the game soon.
1083 */
1084 if (cleaned == 0 && lockrunning) {
1085 rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
1086
1087 lockrunning = false;
1088 skip = 0;
1089
1090 /* and here we go again */
1091 goto again;
1092 }
1093
1094 /*
1095 * And of course we need to reclaim the page cache
1096 * again to actually release memory.
1097 */
1098 pool_cache_reclaim(&pagecache);
1099 if (!NEED_PAGEDAEMON()) {
1100 mutex_enter(&pdaemonmtx);
1101 continue;
1102 }
1103
1104 /*
1105 * And then drain the pools. Wipe them out ... all of them.
1106 */
1107 for (pp_first = NULL;;) {
1108 if (rump_vfs_drainbufs)
1109 rump_vfs_drainbufs(10 /* XXX: estimate! */);
1110
1111 succ = pool_drain(&pp);
1112 if (succ || pp == pp_first)
1113 break;
1114
1115 if (pp_first == NULL)
1116 pp_first = pp;
1117 }
1118
1119 /*
1120 * Need to use PYEC on our bag of tricks.
1121 * Unfortunately, the wife just borrowed it.
1122 */
1123
1124 mutex_enter(&pdaemonmtx);
1125 if (!succ && cleaned == 0 && pdaemon_waiters &&
1126 uvmexp.paging == 0) {
1127 rumpuser_dprintf("pagedaemoness: failed to reclaim "
1128 "memory ... sleeping (deadlock?)\n");
1129 cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
1130 }
1131 }
1132
1133 panic("you can swap out any time you like, but you can never leave");
1134 }
1135
1136 void
1137 uvm_kick_pdaemon()
1138 {
1139
1140 /*
1141 * Wake up the diabolical pagedaemon director if we are over
1142 * 90% of the memory limit. This is a complete and utter
1143 * stetson-harrison decision which you are allowed to finetune.
1144 * Don't bother locking. If we have some unflushed caches,
1145 * other waker-uppers will deal with the issue.
1146 */
1147 if (NEED_PAGEDAEMON()) {
1148 cv_signal(&pdaemoncv);
1149 }
1150 }
1151
1152 void *
1153 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1154 {
1155 const unsigned long thelimit =
1156 curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
1157 unsigned long newmem;
1158 void *rv;
1159 int error;
1160
1161 uvm_kick_pdaemon(); /* ouch */
1162
1163 /* first we must be within the limit */
1164 limitagain:
1165 if (thelimit != RUMPMEM_UNLIMITED) {
1166 newmem = atomic_add_long_nv(&curphysmem, howmuch);
1167 if (newmem > thelimit) {
1168 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1169 if (!waitok) {
1170 return NULL;
1171 }
1172 uvm_wait(wmsg);
1173 goto limitagain;
1174 }
1175 }
1176
1177 /* second, we must get something from the backend */
1178 again:
1179 error = rumpuser_malloc(howmuch, alignment, &rv);
1180 if (__predict_false(error && waitok)) {
1181 uvm_wait(wmsg);
1182 goto again;
1183 }
1184
1185 return rv;
1186 }
1187
1188 void
1189 rump_hyperfree(void *what, size_t size)
1190 {
1191
1192 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1193 atomic_add_long(&curphysmem, -size);
1194 }
1195 rumpuser_free(what, size);
1196 }
1197