Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.155
      1 /*	$NetBSD: vm.c,v 1.155 2014/04/12 20:24:46 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.155 2014/04/12 20:24:46 pooka Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/vmem.h>
     52 #include <sys/mman.h>
     53 #include <sys/null.h>
     54 #include <sys/vnode.h>
     55 
     56 #include <machine/pmap.h>
     57 
     58 #include <rump/rumpuser.h>
     59 
     60 #include <uvm/uvm.h>
     61 #include <uvm/uvm_ddb.h>
     62 #include <uvm/uvm_pdpolicy.h>
     63 #include <uvm/uvm_prot.h>
     64 #include <uvm/uvm_readahead.h>
     65 
     66 #include "rump_private.h"
     67 #include "rump_vfs_private.h"
     68 
     69 kmutex_t uvm_pageqlock; /* non-free page lock */
     70 kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
     71 kmutex_t uvm_swap_data_lock;
     72 
     73 struct uvmexp uvmexp;
     74 struct uvm uvm;
     75 
     76 #ifdef __uvmexp_pagesize
     77 const int * const uvmexp_pagesize = &uvmexp.pagesize;
     78 const int * const uvmexp_pagemask = &uvmexp.pagemask;
     79 const int * const uvmexp_pageshift = &uvmexp.pageshift;
     80 #endif
     81 
     82 struct vm_map rump_vmmap;
     83 
     84 static struct vm_map kernel_map_store;
     85 struct vm_map *kernel_map = &kernel_map_store;
     86 
     87 static struct vm_map module_map_store;
     88 extern struct vm_map *module_map;
     89 
     90 vmem_t *kmem_arena;
     91 vmem_t *kmem_va_arena;
     92 
     93 static unsigned int pdaemon_waiters;
     94 static kmutex_t pdaemonmtx;
     95 static kcondvar_t pdaemoncv, oomwait;
     96 
     97 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     98 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
     99 static unsigned long curphysmem;
    100 static unsigned long dddlim;		/* 90% of memory limit used */
    101 #define NEED_PAGEDAEMON() \
    102     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    103 
    104 /*
    105  * Try to free two pages worth of pages from objects.
    106  * If this succesfully frees a full page cache page, we'll
    107  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    108  */
    109 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    110 
    111 /*
    112  * Keep a list of least recently used pages.  Since the only way a
    113  * rump kernel can "access" a page is via lookup, we put the page
    114  * at the back of queue every time a lookup for it is done.  If the
    115  * page is in front of this global queue and we're short of memory,
    116  * it's a candidate for pageout.
    117  */
    118 static struct pglist vmpage_lruqueue;
    119 static unsigned vmpage_onqueue;
    120 
    121 static int
    122 pg_compare_key(void *ctx, const void *n, const void *key)
    123 {
    124 	voff_t a = ((const struct vm_page *)n)->offset;
    125 	voff_t b = *(const voff_t *)key;
    126 
    127 	if (a < b)
    128 		return -1;
    129 	else if (a > b)
    130 		return 1;
    131 	else
    132 		return 0;
    133 }
    134 
    135 static int
    136 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
    137 {
    138 
    139 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
    140 }
    141 
    142 const rb_tree_ops_t uvm_page_tree_ops = {
    143 	.rbto_compare_nodes = pg_compare_nodes,
    144 	.rbto_compare_key = pg_compare_key,
    145 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    146 	.rbto_context = NULL
    147 };
    148 
    149 /*
    150  * vm pages
    151  */
    152 
    153 static int
    154 pgctor(void *arg, void *obj, int flags)
    155 {
    156 	struct vm_page *pg = obj;
    157 
    158 	memset(pg, 0, sizeof(*pg));
    159 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    160 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    161 	return pg->uanon == NULL;
    162 }
    163 
    164 static void
    165 pgdtor(void *arg, void *obj)
    166 {
    167 	struct vm_page *pg = obj;
    168 
    169 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    170 }
    171 
    172 static struct pool_cache pagecache;
    173 
    174 /*
    175  * Called with the object locked.  We don't support anons.
    176  */
    177 struct vm_page *
    178 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    179 	int flags, int strat, int free_list)
    180 {
    181 	struct vm_page *pg;
    182 
    183 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
    184 	KASSERT(anon == NULL);
    185 
    186 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    187 	if (__predict_false(pg == NULL)) {
    188 		return NULL;
    189 	}
    190 
    191 	pg->offset = off;
    192 	pg->uobject = uobj;
    193 
    194 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    195 	if (flags & UVM_PGA_ZERO) {
    196 		uvm_pagezero(pg);
    197 	}
    198 
    199 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    200 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
    201 
    202 	/*
    203 	 * Don't put anons on the LRU page queue.  We can't flush them
    204 	 * (there's no concept of swap in a rump kernel), so no reason
    205 	 * to bother with them.
    206 	 */
    207 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    208 		atomic_inc_uint(&vmpage_onqueue);
    209 		mutex_enter(&uvm_pageqlock);
    210 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    211 		mutex_exit(&uvm_pageqlock);
    212 	}
    213 
    214 	uobj->uo_npages++;
    215 
    216 	return pg;
    217 }
    218 
    219 /*
    220  * Release a page.
    221  *
    222  * Called with the vm object locked.
    223  */
    224 void
    225 uvm_pagefree(struct vm_page *pg)
    226 {
    227 	struct uvm_object *uobj = pg->uobject;
    228 
    229 	KASSERT(mutex_owned(&uvm_pageqlock));
    230 	KASSERT(mutex_owned(uobj->vmobjlock));
    231 
    232 	if (pg->flags & PG_WANTED)
    233 		wakeup(pg);
    234 
    235 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    236 
    237 	uobj->uo_npages--;
    238 	rb_tree_remove_node(&uobj->rb_tree, pg);
    239 
    240 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    241 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    242 		atomic_dec_uint(&vmpage_onqueue);
    243 	}
    244 
    245 	pool_cache_put(&pagecache, pg);
    246 }
    247 
    248 void
    249 uvm_pagezero(struct vm_page *pg)
    250 {
    251 
    252 	pg->flags &= ~PG_CLEAN;
    253 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    254 }
    255 
    256 /*
    257  * uvm_page_locked_p: return true if object associated with page is
    258  * locked.  this is a weak check for runtime assertions only.
    259  */
    260 
    261 bool
    262 uvm_page_locked_p(struct vm_page *pg)
    263 {
    264 
    265 	return mutex_owned(pg->uobject->vmobjlock);
    266 }
    267 
    268 /*
    269  * Misc routines
    270  */
    271 
    272 static kmutex_t pagermtx;
    273 
    274 void
    275 uvm_init(void)
    276 {
    277 	char buf[64];
    278 
    279 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    280 		unsigned long tmp;
    281 		char *ep;
    282 		int mult;
    283 
    284 		tmp = strtoul(buf, &ep, 10);
    285 		if (strlen(ep) > 1)
    286 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    287 
    288 		/* mini-dehumanize-number */
    289 		mult = 1;
    290 		switch (*ep) {
    291 		case 'k':
    292 			mult = 1024;
    293 			break;
    294 		case 'm':
    295 			mult = 1024*1024;
    296 			break;
    297 		case 'g':
    298 			mult = 1024*1024*1024;
    299 			break;
    300 		case 0:
    301 			break;
    302 		default:
    303 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    304 		}
    305 		rump_physmemlimit = tmp * mult;
    306 
    307 		if (rump_physmemlimit / mult != tmp)
    308 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    309 		/* it's not like we'd get far with, say, 1 byte, but ... */
    310 		if (rump_physmemlimit < 1024*1024)
    311 			printf("uvm_init: WARNING: <1MB RAM limit, "
    312 			    "hope you know what you're doing\n");
    313 
    314 		/* reserve some memory for the pager */
    315 		pdlimit = rump_physmemlimit;
    316 		rump_physmemlimit -= 2*MAXPHYS;
    317 
    318 #define HUMANIZE_BYTES 9
    319 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    320 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    321 #undef HUMANIZE_BYTES
    322 		dddlim = 9 * (rump_physmemlimit / 10);
    323 	} else {
    324 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    325 	}
    326 	aprint_verbose("total memory = %s\n", buf);
    327 
    328 	TAILQ_INIT(&vmpage_lruqueue);
    329 
    330 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    331 
    332 #ifndef __uvmexp_pagesize
    333 	uvmexp.pagesize = PAGE_SIZE;
    334 	uvmexp.pagemask = PAGE_MASK;
    335 	uvmexp.pageshift = PAGE_SHIFT;
    336 #else
    337 #define FAKE_PAGE_SHIFT 12
    338 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    339 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    340 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    341 #undef FAKE_PAGE_SHIFT
    342 #endif
    343 
    344 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    345 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, IPL_NONE);
    346 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    347 
    348 	/* just to appease linkage */
    349 	mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
    350 
    351 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    352 	cv_init(&pdaemoncv, "pdaemon");
    353 	cv_init(&oomwait, "oomwait");
    354 
    355 	module_map = &module_map_store;
    356 
    357 	kernel_map->pmap = pmap_kernel();
    358 
    359 	pool_subsystem_init();
    360 
    361 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    362 	    NULL, NULL, NULL,
    363 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    364 
    365 	vmem_subsystem_init(kmem_arena);
    366 
    367 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    368 	    vmem_alloc, vmem_free, kmem_arena,
    369 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    370 
    371 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    372 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    373 }
    374 
    375 void
    376 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    377     bool topdown)
    378 {
    379 
    380 	vm->vm_map.pmap = pmap_kernel();
    381 	vm->vm_refcnt = 1;
    382 }
    383 
    384 void
    385 uvm_pagewire(struct vm_page *pg)
    386 {
    387 
    388 	/* nada */
    389 }
    390 
    391 void
    392 uvm_pageunwire(struct vm_page *pg)
    393 {
    394 
    395 	/* nada */
    396 }
    397 
    398 /* where's your schmonz now? */
    399 #define PUNLIMIT(a)	\
    400 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    401 void
    402 uvm_init_limits(struct proc *p)
    403 {
    404 
    405 #ifndef DFLSSIZ
    406 #define DFLSSIZ (16*1024*1024)
    407 #endif
    408 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    409 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    410 	PUNLIMIT(RLIMIT_DATA);
    411 	PUNLIMIT(RLIMIT_RSS);
    412 	PUNLIMIT(RLIMIT_AS);
    413 	/* nice, cascade */
    414 }
    415 #undef PUNLIMIT
    416 
    417 /*
    418  * This satisfies the "disgusting mmap hack" used by proplib.
    419  * We probably should grow some more assertables to make sure we're
    420  * not satisfying anything we shouldn't be satisfying.
    421  */
    422 int
    423 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    424 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    425 {
    426 	void *uaddr;
    427 	int error;
    428 
    429 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    430 		panic("uvm_mmap() variant unsupported");
    431 	if (flags != (MAP_PRIVATE | MAP_ANON))
    432 		panic("uvm_mmap() variant unsupported");
    433 
    434 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    435 	if (*addr != 0)
    436 		panic("uvm_mmap() variant unsupported");
    437 
    438 	if (RUMP_LOCALPROC_P(curproc)) {
    439 		error = rumpuser_anonmmap(NULL, size, 0, 0, &uaddr);
    440 	} else {
    441 		error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
    442 		    size, &uaddr);
    443 	}
    444 	if (error)
    445 		return error;
    446 
    447 	*addr = (vaddr_t)uaddr;
    448 	return 0;
    449 }
    450 
    451 struct pagerinfo {
    452 	vaddr_t pgr_kva;
    453 	int pgr_npages;
    454 	struct vm_page **pgr_pgs;
    455 	bool pgr_read;
    456 
    457 	LIST_ENTRY(pagerinfo) pgr_entries;
    458 };
    459 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    460 
    461 /*
    462  * Pager "map" in routine.  Instead of mapping, we allocate memory
    463  * and copy page contents there.  Not optimal or even strictly
    464  * correct (the caller might modify the page contents after mapping
    465  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    466  */
    467 vaddr_t
    468 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    469 {
    470 	struct pagerinfo *pgri;
    471 	vaddr_t curkva;
    472 	int i;
    473 
    474 	/* allocate structures */
    475 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    476 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    477 	pgri->pgr_npages = npages;
    478 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    479 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    480 
    481 	/* copy contents to "mapped" memory */
    482 	for (i = 0, curkva = pgri->pgr_kva;
    483 	    i < npages;
    484 	    i++, curkva += PAGE_SIZE) {
    485 		/*
    486 		 * We need to copy the previous contents of the pages to
    487 		 * the window even if we are reading from the
    488 		 * device, since the device might not fill the contents of
    489 		 * the full mapped range and we will end up corrupting
    490 		 * data when we unmap the window.
    491 		 */
    492 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    493 		pgri->pgr_pgs[i] = pgs[i];
    494 	}
    495 
    496 	mutex_enter(&pagermtx);
    497 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    498 	mutex_exit(&pagermtx);
    499 
    500 	return pgri->pgr_kva;
    501 }
    502 
    503 /*
    504  * map out the pager window.  return contents from VA to page storage
    505  * and free structures.
    506  *
    507  * Note: does not currently support partial frees
    508  */
    509 void
    510 uvm_pagermapout(vaddr_t kva, int npages)
    511 {
    512 	struct pagerinfo *pgri;
    513 	vaddr_t curkva;
    514 	int i;
    515 
    516 	mutex_enter(&pagermtx);
    517 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    518 		if (pgri->pgr_kva == kva)
    519 			break;
    520 	}
    521 	KASSERT(pgri);
    522 	if (pgri->pgr_npages != npages)
    523 		panic("uvm_pagermapout: partial unmapping not supported");
    524 	LIST_REMOVE(pgri, pgr_entries);
    525 	mutex_exit(&pagermtx);
    526 
    527 	if (pgri->pgr_read) {
    528 		for (i = 0, curkva = pgri->pgr_kva;
    529 		    i < pgri->pgr_npages;
    530 		    i++, curkva += PAGE_SIZE) {
    531 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    532 		}
    533 	}
    534 
    535 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    536 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    537 	kmem_free(pgri, sizeof(*pgri));
    538 }
    539 
    540 /*
    541  * convert va in pager window to page structure.
    542  * XXX: how expensive is this (global lock, list traversal)?
    543  */
    544 struct vm_page *
    545 uvm_pageratop(vaddr_t va)
    546 {
    547 	struct pagerinfo *pgri;
    548 	struct vm_page *pg = NULL;
    549 	int i;
    550 
    551 	mutex_enter(&pagermtx);
    552 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    553 		if (pgri->pgr_kva <= va
    554 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    555 			break;
    556 	}
    557 	if (pgri) {
    558 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    559 		pg = pgri->pgr_pgs[i];
    560 	}
    561 	mutex_exit(&pagermtx);
    562 
    563 	return pg;
    564 }
    565 
    566 /*
    567  * Called with the vm object locked.
    568  *
    569  * Put vnode object pages at the end of the access queue to indicate
    570  * they have been recently accessed and should not be immediate
    571  * candidates for pageout.  Do not do this for lookups done by
    572  * the pagedaemon to mimic pmap_kentered mappings which don't track
    573  * access information.
    574  */
    575 struct vm_page *
    576 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    577 {
    578 	struct vm_page *pg;
    579 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    580 
    581 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
    582 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    583 		mutex_enter(&uvm_pageqlock);
    584 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    585 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    586 		mutex_exit(&uvm_pageqlock);
    587 	}
    588 
    589 	return pg;
    590 }
    591 
    592 void
    593 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    594 {
    595 	struct vm_page *pg;
    596 	int i;
    597 
    598 	KASSERT(npgs > 0);
    599 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
    600 
    601 	for (i = 0; i < npgs; i++) {
    602 		pg = pgs[i];
    603 		if (pg == NULL)
    604 			continue;
    605 
    606 		KASSERT(pg->flags & PG_BUSY);
    607 		if (pg->flags & PG_WANTED)
    608 			wakeup(pg);
    609 		if (pg->flags & PG_RELEASED)
    610 			uvm_pagefree(pg);
    611 		else
    612 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    613 	}
    614 }
    615 
    616 void
    617 uvm_estimatepageable(int *active, int *inactive)
    618 {
    619 
    620 	/* XXX: guessing game */
    621 	*active = 1024;
    622 	*inactive = 1024;
    623 }
    624 
    625 bool
    626 vm_map_starved_p(struct vm_map *map)
    627 {
    628 
    629 	if (map->flags & VM_MAP_WANTVA)
    630 		return true;
    631 
    632 	return false;
    633 }
    634 
    635 int
    636 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    637 {
    638 
    639 	panic("%s: unimplemented", __func__);
    640 }
    641 
    642 void
    643 uvm_unloan(void *v, int npages, int flags)
    644 {
    645 
    646 	panic("%s: unimplemented", __func__);
    647 }
    648 
    649 int
    650 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    651 	struct vm_page **opp)
    652 {
    653 
    654 	return EBUSY;
    655 }
    656 
    657 struct vm_page *
    658 uvm_loanbreak(struct vm_page *pg)
    659 {
    660 
    661 	panic("%s: unimplemented", __func__);
    662 }
    663 
    664 void
    665 ubc_purge(struct uvm_object *uobj)
    666 {
    667 
    668 }
    669 
    670 vaddr_t
    671 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    672 {
    673 
    674 	return 0;
    675 }
    676 
    677 int
    678 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    679 	vm_prot_t prot, bool set_max)
    680 {
    681 
    682 	return EOPNOTSUPP;
    683 }
    684 
    685 /*
    686  * UVM km
    687  */
    688 
    689 vaddr_t
    690 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    691 {
    692 	void *rv, *desired = NULL;
    693 	int alignbit, error;
    694 
    695 #ifdef __x86_64__
    696 	/*
    697 	 * On amd64, allocate all module memory from the lowest 2GB.
    698 	 * This is because NetBSD kernel modules are compiled
    699 	 * with -mcmodel=kernel and reserve only 4 bytes for
    700 	 * offsets.  If we load code compiled with -mcmodel=kernel
    701 	 * anywhere except the lowest or highest 2GB, it will not
    702 	 * work.  Since userspace does not have access to the highest
    703 	 * 2GB, use the lowest 2GB.
    704 	 *
    705 	 * Note: this assumes the rump kernel resides in
    706 	 * the lowest 2GB as well.
    707 	 *
    708 	 * Note2: yes, it's a quick hack, but since this the only
    709 	 * place where we care about the map we're allocating from,
    710 	 * just use a simple "if" instead of coming up with a fancy
    711 	 * generic solution.
    712 	 */
    713 	if (map == module_map) {
    714 		desired = (void *)(0x80000000 - size);
    715 	}
    716 #endif
    717 
    718 	if (__predict_false(map == module_map)) {
    719 		alignbit = 0;
    720 		if (align) {
    721 			alignbit = ffs(align)-1;
    722 		}
    723 		error = rumpuser_anonmmap(desired, size, alignbit,
    724 		    flags & UVM_KMF_EXEC, &rv);
    725 	} else {
    726 		error = rumpuser_malloc(size, align, &rv);
    727 	}
    728 
    729 	if (error) {
    730 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    731 			return 0;
    732 		else
    733 			panic("uvm_km_alloc failed");
    734 	}
    735 
    736 	if (flags & UVM_KMF_ZERO)
    737 		memset(rv, 0, size);
    738 
    739 	return (vaddr_t)rv;
    740 }
    741 
    742 void
    743 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    744 {
    745 
    746 	if (__predict_false(map == module_map))
    747 		rumpuser_unmap((void *)vaddr, size);
    748 	else
    749 		rumpuser_free((void *)vaddr, size);
    750 }
    751 
    752 struct vm_map *
    753 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    754 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    755 {
    756 
    757 	return (struct vm_map *)417416;
    758 }
    759 
    760 int
    761 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    762     vmem_addr_t *addr)
    763 {
    764 	vaddr_t va;
    765 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    766 	    (flags & VM_SLEEP), "kmalloc");
    767 
    768 	if (va) {
    769 		*addr = va;
    770 		return 0;
    771 	} else {
    772 		return ENOMEM;
    773 	}
    774 }
    775 
    776 void
    777 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    778 {
    779 
    780 	rump_hyperfree((void *)addr, size);
    781 }
    782 
    783 /*
    784  * VM space locking routines.  We don't really have to do anything,
    785  * since the pages are always "wired" (both local and remote processes).
    786  */
    787 int
    788 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    789 {
    790 
    791 	return 0;
    792 }
    793 
    794 void
    795 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    796 {
    797 
    798 }
    799 
    800 /*
    801  * For the local case the buffer mappers don't need to do anything.
    802  * For the remote case we need to reserve space and copy data in or
    803  * out, depending on B_READ/B_WRITE.
    804  */
    805 int
    806 vmapbuf(struct buf *bp, vsize_t len)
    807 {
    808 	int error = 0;
    809 
    810 	bp->b_saveaddr = bp->b_data;
    811 
    812 	/* remote case */
    813 	if (!RUMP_LOCALPROC_P(curproc)) {
    814 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    815 		if (BUF_ISWRITE(bp)) {
    816 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    817 			if (error) {
    818 				rump_hyperfree(bp->b_data, len);
    819 				bp->b_data = bp->b_saveaddr;
    820 				bp->b_saveaddr = 0;
    821 			}
    822 		}
    823 	}
    824 
    825 	return error;
    826 }
    827 
    828 void
    829 vunmapbuf(struct buf *bp, vsize_t len)
    830 {
    831 
    832 	/* remote case */
    833 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    834 		if (BUF_ISREAD(bp)) {
    835 			bp->b_error = copyout_proc(bp->b_proc,
    836 			    bp->b_data, bp->b_saveaddr, len);
    837 		}
    838 		rump_hyperfree(bp->b_data, len);
    839 	}
    840 
    841 	bp->b_data = bp->b_saveaddr;
    842 	bp->b_saveaddr = 0;
    843 }
    844 
    845 void
    846 uvmspace_addref(struct vmspace *vm)
    847 {
    848 
    849 	/*
    850 	 * No dynamically allocated vmspaces exist.
    851 	 */
    852 }
    853 
    854 void
    855 uvmspace_free(struct vmspace *vm)
    856 {
    857 
    858 	/* nothing for now */
    859 }
    860 
    861 /*
    862  * page life cycle stuff.  it really doesn't exist, so just stubs.
    863  */
    864 
    865 void
    866 uvm_pageactivate(struct vm_page *pg)
    867 {
    868 
    869 	/* nada */
    870 }
    871 
    872 void
    873 uvm_pagedeactivate(struct vm_page *pg)
    874 {
    875 
    876 	/* nada */
    877 }
    878 
    879 void
    880 uvm_pagedequeue(struct vm_page *pg)
    881 {
    882 
    883 	/* nada*/
    884 }
    885 
    886 void
    887 uvm_pageenqueue(struct vm_page *pg)
    888 {
    889 
    890 	/* nada */
    891 }
    892 
    893 void
    894 uvmpdpol_anfree(struct vm_anon *an)
    895 {
    896 
    897 	/* nada */
    898 }
    899 
    900 /*
    901  * Physical address accessors.
    902  */
    903 
    904 struct vm_page *
    905 uvm_phys_to_vm_page(paddr_t pa)
    906 {
    907 
    908 	return NULL;
    909 }
    910 
    911 paddr_t
    912 uvm_vm_page_to_phys(const struct vm_page *pg)
    913 {
    914 
    915 	return 0;
    916 }
    917 
    918 vaddr_t
    919 uvm_uarea_alloc(void)
    920 {
    921 
    922 	/* non-zero */
    923 	return (vaddr_t)11;
    924 }
    925 
    926 void
    927 uvm_uarea_free(vaddr_t uarea)
    928 {
    929 
    930 	/* nata, so creamy */
    931 }
    932 
    933 /*
    934  * Routines related to the Page Baroness.
    935  */
    936 
    937 void
    938 uvm_wait(const char *msg)
    939 {
    940 
    941 	if (__predict_false(rump_threads == 0))
    942 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    943 
    944 	if (curlwp == uvm.pagedaemon_lwp) {
    945 		/* is it possible for us to later get memory? */
    946 		if (!uvmexp.paging)
    947 			panic("pagedaemon out of memory");
    948 	}
    949 
    950 	mutex_enter(&pdaemonmtx);
    951 	pdaemon_waiters++;
    952 	cv_signal(&pdaemoncv);
    953 	cv_wait(&oomwait, &pdaemonmtx);
    954 	mutex_exit(&pdaemonmtx);
    955 }
    956 
    957 void
    958 uvm_pageout_start(int npages)
    959 {
    960 
    961 	mutex_enter(&pdaemonmtx);
    962 	uvmexp.paging += npages;
    963 	mutex_exit(&pdaemonmtx);
    964 }
    965 
    966 void
    967 uvm_pageout_done(int npages)
    968 {
    969 
    970 	if (!npages)
    971 		return;
    972 
    973 	mutex_enter(&pdaemonmtx);
    974 	KASSERT(uvmexp.paging >= npages);
    975 	uvmexp.paging -= npages;
    976 
    977 	if (pdaemon_waiters) {
    978 		pdaemon_waiters = 0;
    979 		cv_broadcast(&oomwait);
    980 	}
    981 	mutex_exit(&pdaemonmtx);
    982 }
    983 
    984 static bool
    985 processpage(struct vm_page *pg, bool *lockrunning)
    986 {
    987 	struct uvm_object *uobj;
    988 
    989 	uobj = pg->uobject;
    990 	if (mutex_tryenter(uobj->vmobjlock)) {
    991 		if ((pg->flags & PG_BUSY) == 0) {
    992 			mutex_exit(&uvm_pageqlock);
    993 			uobj->pgops->pgo_put(uobj, pg->offset,
    994 			    pg->offset + PAGE_SIZE,
    995 			    PGO_CLEANIT|PGO_FREE);
    996 			KASSERT(!mutex_owned(uobj->vmobjlock));
    997 			return true;
    998 		} else {
    999 			mutex_exit(uobj->vmobjlock);
   1000 		}
   1001 	} else if (*lockrunning == false && ncpu > 1) {
   1002 		CPU_INFO_ITERATOR cii;
   1003 		struct cpu_info *ci;
   1004 		struct lwp *l;
   1005 
   1006 		l = mutex_owner(uobj->vmobjlock);
   1007 		for (CPU_INFO_FOREACH(cii, ci)) {
   1008 			if (ci->ci_curlwp == l) {
   1009 				*lockrunning = true;
   1010 				break;
   1011 			}
   1012 		}
   1013 	}
   1014 
   1015 	return false;
   1016 }
   1017 
   1018 /*
   1019  * The Diabolical pageDaemon Director (DDD).
   1020  *
   1021  * This routine can always use better heuristics.
   1022  */
   1023 void
   1024 uvm_pageout(void *arg)
   1025 {
   1026 	struct vm_page *pg;
   1027 	struct pool *pp, *pp_first;
   1028 	int cleaned, skip, skipped;
   1029 	bool succ;
   1030 	bool lockrunning;
   1031 
   1032 	mutex_enter(&pdaemonmtx);
   1033 	for (;;) {
   1034 		if (!NEED_PAGEDAEMON()) {
   1035 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1036 		}
   1037 
   1038 		if (pdaemon_waiters) {
   1039 			pdaemon_waiters = 0;
   1040 			cv_broadcast(&oomwait);
   1041 		}
   1042 
   1043 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1044 		uvmexp.pdwoke++;
   1045 
   1046 		/* tell the world that we are hungry */
   1047 		kernel_map->flags |= VM_MAP_WANTVA;
   1048 		mutex_exit(&pdaemonmtx);
   1049 
   1050 		/*
   1051 		 * step one: reclaim the page cache.  this should give
   1052 		 * us the biggest earnings since whole pages are released
   1053 		 * into backing memory.
   1054 		 */
   1055 		pool_cache_reclaim(&pagecache);
   1056 		if (!NEED_PAGEDAEMON()) {
   1057 			mutex_enter(&pdaemonmtx);
   1058 			continue;
   1059 		}
   1060 
   1061 		/*
   1062 		 * Ok, so that didn't help.  Next, try to hunt memory
   1063 		 * by pushing out vnode pages.  The pages might contain
   1064 		 * useful cached data, but we need the memory.
   1065 		 */
   1066 		cleaned = 0;
   1067 		skip = 0;
   1068 		lockrunning = false;
   1069  again:
   1070 		mutex_enter(&uvm_pageqlock);
   1071 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1072 			skipped = 0;
   1073 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1074 
   1075 				/*
   1076 				 * skip over pages we _might_ have tried
   1077 				 * to handle earlier.  they might not be
   1078 				 * exactly the same ones, but I'm not too
   1079 				 * concerned.
   1080 				 */
   1081 				while (skipped++ < skip)
   1082 					continue;
   1083 
   1084 				if (processpage(pg, &lockrunning)) {
   1085 					cleaned++;
   1086 					goto again;
   1087 				}
   1088 
   1089 				skip++;
   1090 			}
   1091 			break;
   1092 		}
   1093 		mutex_exit(&uvm_pageqlock);
   1094 
   1095 		/*
   1096 		 * Ok, someone is running with an object lock held.
   1097 		 * We want to yield the host CPU to make sure the
   1098 		 * thread is not parked on the host.  Since sched_yield()
   1099 		 * doesn't appear to do anything on NetBSD, nanosleep
   1100 		 * for the smallest possible time and hope we're back in
   1101 		 * the game soon.
   1102 		 */
   1103 		if (cleaned == 0 && lockrunning) {
   1104 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
   1105 
   1106 			lockrunning = false;
   1107 			skip = 0;
   1108 
   1109 			/* and here we go again */
   1110 			goto again;
   1111 		}
   1112 
   1113 		/*
   1114 		 * And of course we need to reclaim the page cache
   1115 		 * again to actually release memory.
   1116 		 */
   1117 		pool_cache_reclaim(&pagecache);
   1118 		if (!NEED_PAGEDAEMON()) {
   1119 			mutex_enter(&pdaemonmtx);
   1120 			continue;
   1121 		}
   1122 
   1123 		/*
   1124 		 * And then drain the pools.  Wipe them out ... all of them.
   1125 		 */
   1126 		for (pp_first = NULL;;) {
   1127 			if (rump_vfs_drainbufs)
   1128 				rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1129 
   1130 			succ = pool_drain(&pp);
   1131 			if (succ || pp == pp_first)
   1132 				break;
   1133 
   1134 			if (pp_first == NULL)
   1135 				pp_first = pp;
   1136 		}
   1137 
   1138 		/*
   1139 		 * Need to use PYEC on our bag of tricks.
   1140 		 * Unfortunately, the wife just borrowed it.
   1141 		 */
   1142 
   1143 		mutex_enter(&pdaemonmtx);
   1144 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1145 		    uvmexp.paging == 0) {
   1146 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1147 			    "memory ... sleeping (deadlock?)\n");
   1148 			cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
   1149 		}
   1150 	}
   1151 
   1152 	panic("you can swap out any time you like, but you can never leave");
   1153 }
   1154 
   1155 void
   1156 uvm_kick_pdaemon()
   1157 {
   1158 
   1159 	/*
   1160 	 * Wake up the diabolical pagedaemon director if we are over
   1161 	 * 90% of the memory limit.  This is a complete and utter
   1162 	 * stetson-harrison decision which you are allowed to finetune.
   1163 	 * Don't bother locking.  If we have some unflushed caches,
   1164 	 * other waker-uppers will deal with the issue.
   1165 	 */
   1166 	if (NEED_PAGEDAEMON()) {
   1167 		cv_signal(&pdaemoncv);
   1168 	}
   1169 }
   1170 
   1171 void *
   1172 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1173 {
   1174 	const unsigned long thelimit =
   1175 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1176 	unsigned long newmem;
   1177 	void *rv;
   1178 	int error;
   1179 
   1180 	uvm_kick_pdaemon(); /* ouch */
   1181 
   1182 	/* first we must be within the limit */
   1183  limitagain:
   1184 	if (thelimit != RUMPMEM_UNLIMITED) {
   1185 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1186 		if (newmem > thelimit) {
   1187 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1188 			if (!waitok) {
   1189 				return NULL;
   1190 			}
   1191 			uvm_wait(wmsg);
   1192 			goto limitagain;
   1193 		}
   1194 	}
   1195 
   1196 	/* second, we must get something from the backend */
   1197  again:
   1198 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1199 	if (__predict_false(error && waitok)) {
   1200 		uvm_wait(wmsg);
   1201 		goto again;
   1202 	}
   1203 
   1204 	return rv;
   1205 }
   1206 
   1207 void
   1208 rump_hyperfree(void *what, size_t size)
   1209 {
   1210 
   1211 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1212 		atomic_add_long(&curphysmem, -size);
   1213 	}
   1214 	rumpuser_free(what, size);
   1215 }
   1216