vm.c revision 1.155 1 /* $NetBSD: vm.c,v 1.155 2014/04/12 20:24:46 pooka Exp $ */
2
3 /*
4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.155 2014/04/12 20:24:46 pooka Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/vmem.h>
52 #include <sys/mman.h>
53 #include <sys/null.h>
54 #include <sys/vnode.h>
55
56 #include <machine/pmap.h>
57
58 #include <rump/rumpuser.h>
59
60 #include <uvm/uvm.h>
61 #include <uvm/uvm_ddb.h>
62 #include <uvm/uvm_pdpolicy.h>
63 #include <uvm/uvm_prot.h>
64 #include <uvm/uvm_readahead.h>
65
66 #include "rump_private.h"
67 #include "rump_vfs_private.h"
68
69 kmutex_t uvm_pageqlock; /* non-free page lock */
70 kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
71 kmutex_t uvm_swap_data_lock;
72
73 struct uvmexp uvmexp;
74 struct uvm uvm;
75
76 #ifdef __uvmexp_pagesize
77 const int * const uvmexp_pagesize = &uvmexp.pagesize;
78 const int * const uvmexp_pagemask = &uvmexp.pagemask;
79 const int * const uvmexp_pageshift = &uvmexp.pageshift;
80 #endif
81
82 struct vm_map rump_vmmap;
83
84 static struct vm_map kernel_map_store;
85 struct vm_map *kernel_map = &kernel_map_store;
86
87 static struct vm_map module_map_store;
88 extern struct vm_map *module_map;
89
90 vmem_t *kmem_arena;
91 vmem_t *kmem_va_arena;
92
93 static unsigned int pdaemon_waiters;
94 static kmutex_t pdaemonmtx;
95 static kcondvar_t pdaemoncv, oomwait;
96
97 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
98 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
99 static unsigned long curphysmem;
100 static unsigned long dddlim; /* 90% of memory limit used */
101 #define NEED_PAGEDAEMON() \
102 (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
103
104 /*
105 * Try to free two pages worth of pages from objects.
106 * If this succesfully frees a full page cache page, we'll
107 * free the released page plus PAGE_SIZE/sizeof(vm_page).
108 */
109 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
110
111 /*
112 * Keep a list of least recently used pages. Since the only way a
113 * rump kernel can "access" a page is via lookup, we put the page
114 * at the back of queue every time a lookup for it is done. If the
115 * page is in front of this global queue and we're short of memory,
116 * it's a candidate for pageout.
117 */
118 static struct pglist vmpage_lruqueue;
119 static unsigned vmpage_onqueue;
120
121 static int
122 pg_compare_key(void *ctx, const void *n, const void *key)
123 {
124 voff_t a = ((const struct vm_page *)n)->offset;
125 voff_t b = *(const voff_t *)key;
126
127 if (a < b)
128 return -1;
129 else if (a > b)
130 return 1;
131 else
132 return 0;
133 }
134
135 static int
136 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
137 {
138
139 return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
140 }
141
142 const rb_tree_ops_t uvm_page_tree_ops = {
143 .rbto_compare_nodes = pg_compare_nodes,
144 .rbto_compare_key = pg_compare_key,
145 .rbto_node_offset = offsetof(struct vm_page, rb_node),
146 .rbto_context = NULL
147 };
148
149 /*
150 * vm pages
151 */
152
153 static int
154 pgctor(void *arg, void *obj, int flags)
155 {
156 struct vm_page *pg = obj;
157
158 memset(pg, 0, sizeof(*pg));
159 pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
160 (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
161 return pg->uanon == NULL;
162 }
163
164 static void
165 pgdtor(void *arg, void *obj)
166 {
167 struct vm_page *pg = obj;
168
169 rump_hyperfree(pg->uanon, PAGE_SIZE);
170 }
171
172 static struct pool_cache pagecache;
173
174 /*
175 * Called with the object locked. We don't support anons.
176 */
177 struct vm_page *
178 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
179 int flags, int strat, int free_list)
180 {
181 struct vm_page *pg;
182
183 KASSERT(uobj && mutex_owned(uobj->vmobjlock));
184 KASSERT(anon == NULL);
185
186 pg = pool_cache_get(&pagecache, PR_NOWAIT);
187 if (__predict_false(pg == NULL)) {
188 return NULL;
189 }
190
191 pg->offset = off;
192 pg->uobject = uobj;
193
194 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
195 if (flags & UVM_PGA_ZERO) {
196 uvm_pagezero(pg);
197 }
198
199 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
200 (void)rb_tree_insert_node(&uobj->rb_tree, pg);
201
202 /*
203 * Don't put anons on the LRU page queue. We can't flush them
204 * (there's no concept of swap in a rump kernel), so no reason
205 * to bother with them.
206 */
207 if (!UVM_OBJ_IS_AOBJ(uobj)) {
208 atomic_inc_uint(&vmpage_onqueue);
209 mutex_enter(&uvm_pageqlock);
210 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
211 mutex_exit(&uvm_pageqlock);
212 }
213
214 uobj->uo_npages++;
215
216 return pg;
217 }
218
219 /*
220 * Release a page.
221 *
222 * Called with the vm object locked.
223 */
224 void
225 uvm_pagefree(struct vm_page *pg)
226 {
227 struct uvm_object *uobj = pg->uobject;
228
229 KASSERT(mutex_owned(&uvm_pageqlock));
230 KASSERT(mutex_owned(uobj->vmobjlock));
231
232 if (pg->flags & PG_WANTED)
233 wakeup(pg);
234
235 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
236
237 uobj->uo_npages--;
238 rb_tree_remove_node(&uobj->rb_tree, pg);
239
240 if (!UVM_OBJ_IS_AOBJ(uobj)) {
241 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
242 atomic_dec_uint(&vmpage_onqueue);
243 }
244
245 pool_cache_put(&pagecache, pg);
246 }
247
248 void
249 uvm_pagezero(struct vm_page *pg)
250 {
251
252 pg->flags &= ~PG_CLEAN;
253 memset((void *)pg->uanon, 0, PAGE_SIZE);
254 }
255
256 /*
257 * uvm_page_locked_p: return true if object associated with page is
258 * locked. this is a weak check for runtime assertions only.
259 */
260
261 bool
262 uvm_page_locked_p(struct vm_page *pg)
263 {
264
265 return mutex_owned(pg->uobject->vmobjlock);
266 }
267
268 /*
269 * Misc routines
270 */
271
272 static kmutex_t pagermtx;
273
274 void
275 uvm_init(void)
276 {
277 char buf[64];
278
279 if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
280 unsigned long tmp;
281 char *ep;
282 int mult;
283
284 tmp = strtoul(buf, &ep, 10);
285 if (strlen(ep) > 1)
286 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
287
288 /* mini-dehumanize-number */
289 mult = 1;
290 switch (*ep) {
291 case 'k':
292 mult = 1024;
293 break;
294 case 'm':
295 mult = 1024*1024;
296 break;
297 case 'g':
298 mult = 1024*1024*1024;
299 break;
300 case 0:
301 break;
302 default:
303 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
304 }
305 rump_physmemlimit = tmp * mult;
306
307 if (rump_physmemlimit / mult != tmp)
308 panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
309 /* it's not like we'd get far with, say, 1 byte, but ... */
310 if (rump_physmemlimit < 1024*1024)
311 printf("uvm_init: WARNING: <1MB RAM limit, "
312 "hope you know what you're doing\n");
313
314 /* reserve some memory for the pager */
315 pdlimit = rump_physmemlimit;
316 rump_physmemlimit -= 2*MAXPHYS;
317
318 #define HUMANIZE_BYTES 9
319 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
320 format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
321 #undef HUMANIZE_BYTES
322 dddlim = 9 * (rump_physmemlimit / 10);
323 } else {
324 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
325 }
326 aprint_verbose("total memory = %s\n", buf);
327
328 TAILQ_INIT(&vmpage_lruqueue);
329
330 uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
331
332 #ifndef __uvmexp_pagesize
333 uvmexp.pagesize = PAGE_SIZE;
334 uvmexp.pagemask = PAGE_MASK;
335 uvmexp.pageshift = PAGE_SHIFT;
336 #else
337 #define FAKE_PAGE_SHIFT 12
338 uvmexp.pageshift = FAKE_PAGE_SHIFT;
339 uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
340 uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
341 #undef FAKE_PAGE_SHIFT
342 #endif
343
344 mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
345 mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, IPL_NONE);
346 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
347
348 /* just to appease linkage */
349 mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
350
351 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
352 cv_init(&pdaemoncv, "pdaemon");
353 cv_init(&oomwait, "oomwait");
354
355 module_map = &module_map_store;
356
357 kernel_map->pmap = pmap_kernel();
358
359 pool_subsystem_init();
360
361 kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
362 NULL, NULL, NULL,
363 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
364
365 vmem_subsystem_init(kmem_arena);
366
367 kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
368 vmem_alloc, vmem_free, kmem_arena,
369 8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
370
371 pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
372 "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
373 }
374
375 void
376 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
377 bool topdown)
378 {
379
380 vm->vm_map.pmap = pmap_kernel();
381 vm->vm_refcnt = 1;
382 }
383
384 void
385 uvm_pagewire(struct vm_page *pg)
386 {
387
388 /* nada */
389 }
390
391 void
392 uvm_pageunwire(struct vm_page *pg)
393 {
394
395 /* nada */
396 }
397
398 /* where's your schmonz now? */
399 #define PUNLIMIT(a) \
400 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
401 void
402 uvm_init_limits(struct proc *p)
403 {
404
405 #ifndef DFLSSIZ
406 #define DFLSSIZ (16*1024*1024)
407 #endif
408 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
409 p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
410 PUNLIMIT(RLIMIT_DATA);
411 PUNLIMIT(RLIMIT_RSS);
412 PUNLIMIT(RLIMIT_AS);
413 /* nice, cascade */
414 }
415 #undef PUNLIMIT
416
417 /*
418 * This satisfies the "disgusting mmap hack" used by proplib.
419 * We probably should grow some more assertables to make sure we're
420 * not satisfying anything we shouldn't be satisfying.
421 */
422 int
423 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
424 vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
425 {
426 void *uaddr;
427 int error;
428
429 if (prot != (VM_PROT_READ | VM_PROT_WRITE))
430 panic("uvm_mmap() variant unsupported");
431 if (flags != (MAP_PRIVATE | MAP_ANON))
432 panic("uvm_mmap() variant unsupported");
433
434 /* no reason in particular, but cf. uvm_default_mapaddr() */
435 if (*addr != 0)
436 panic("uvm_mmap() variant unsupported");
437
438 if (RUMP_LOCALPROC_P(curproc)) {
439 error = rumpuser_anonmmap(NULL, size, 0, 0, &uaddr);
440 } else {
441 error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
442 size, &uaddr);
443 }
444 if (error)
445 return error;
446
447 *addr = (vaddr_t)uaddr;
448 return 0;
449 }
450
451 struct pagerinfo {
452 vaddr_t pgr_kva;
453 int pgr_npages;
454 struct vm_page **pgr_pgs;
455 bool pgr_read;
456
457 LIST_ENTRY(pagerinfo) pgr_entries;
458 };
459 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
460
461 /*
462 * Pager "map" in routine. Instead of mapping, we allocate memory
463 * and copy page contents there. Not optimal or even strictly
464 * correct (the caller might modify the page contents after mapping
465 * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
466 */
467 vaddr_t
468 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
469 {
470 struct pagerinfo *pgri;
471 vaddr_t curkva;
472 int i;
473
474 /* allocate structures */
475 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
476 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
477 pgri->pgr_npages = npages;
478 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
479 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
480
481 /* copy contents to "mapped" memory */
482 for (i = 0, curkva = pgri->pgr_kva;
483 i < npages;
484 i++, curkva += PAGE_SIZE) {
485 /*
486 * We need to copy the previous contents of the pages to
487 * the window even if we are reading from the
488 * device, since the device might not fill the contents of
489 * the full mapped range and we will end up corrupting
490 * data when we unmap the window.
491 */
492 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
493 pgri->pgr_pgs[i] = pgs[i];
494 }
495
496 mutex_enter(&pagermtx);
497 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
498 mutex_exit(&pagermtx);
499
500 return pgri->pgr_kva;
501 }
502
503 /*
504 * map out the pager window. return contents from VA to page storage
505 * and free structures.
506 *
507 * Note: does not currently support partial frees
508 */
509 void
510 uvm_pagermapout(vaddr_t kva, int npages)
511 {
512 struct pagerinfo *pgri;
513 vaddr_t curkva;
514 int i;
515
516 mutex_enter(&pagermtx);
517 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
518 if (pgri->pgr_kva == kva)
519 break;
520 }
521 KASSERT(pgri);
522 if (pgri->pgr_npages != npages)
523 panic("uvm_pagermapout: partial unmapping not supported");
524 LIST_REMOVE(pgri, pgr_entries);
525 mutex_exit(&pagermtx);
526
527 if (pgri->pgr_read) {
528 for (i = 0, curkva = pgri->pgr_kva;
529 i < pgri->pgr_npages;
530 i++, curkva += PAGE_SIZE) {
531 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
532 }
533 }
534
535 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
536 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
537 kmem_free(pgri, sizeof(*pgri));
538 }
539
540 /*
541 * convert va in pager window to page structure.
542 * XXX: how expensive is this (global lock, list traversal)?
543 */
544 struct vm_page *
545 uvm_pageratop(vaddr_t va)
546 {
547 struct pagerinfo *pgri;
548 struct vm_page *pg = NULL;
549 int i;
550
551 mutex_enter(&pagermtx);
552 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
553 if (pgri->pgr_kva <= va
554 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
555 break;
556 }
557 if (pgri) {
558 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
559 pg = pgri->pgr_pgs[i];
560 }
561 mutex_exit(&pagermtx);
562
563 return pg;
564 }
565
566 /*
567 * Called with the vm object locked.
568 *
569 * Put vnode object pages at the end of the access queue to indicate
570 * they have been recently accessed and should not be immediate
571 * candidates for pageout. Do not do this for lookups done by
572 * the pagedaemon to mimic pmap_kentered mappings which don't track
573 * access information.
574 */
575 struct vm_page *
576 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
577 {
578 struct vm_page *pg;
579 bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
580
581 pg = rb_tree_find_node(&uobj->rb_tree, &off);
582 if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
583 mutex_enter(&uvm_pageqlock);
584 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
585 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
586 mutex_exit(&uvm_pageqlock);
587 }
588
589 return pg;
590 }
591
592 void
593 uvm_page_unbusy(struct vm_page **pgs, int npgs)
594 {
595 struct vm_page *pg;
596 int i;
597
598 KASSERT(npgs > 0);
599 KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
600
601 for (i = 0; i < npgs; i++) {
602 pg = pgs[i];
603 if (pg == NULL)
604 continue;
605
606 KASSERT(pg->flags & PG_BUSY);
607 if (pg->flags & PG_WANTED)
608 wakeup(pg);
609 if (pg->flags & PG_RELEASED)
610 uvm_pagefree(pg);
611 else
612 pg->flags &= ~(PG_WANTED|PG_BUSY);
613 }
614 }
615
616 void
617 uvm_estimatepageable(int *active, int *inactive)
618 {
619
620 /* XXX: guessing game */
621 *active = 1024;
622 *inactive = 1024;
623 }
624
625 bool
626 vm_map_starved_p(struct vm_map *map)
627 {
628
629 if (map->flags & VM_MAP_WANTVA)
630 return true;
631
632 return false;
633 }
634
635 int
636 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
637 {
638
639 panic("%s: unimplemented", __func__);
640 }
641
642 void
643 uvm_unloan(void *v, int npages, int flags)
644 {
645
646 panic("%s: unimplemented", __func__);
647 }
648
649 int
650 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
651 struct vm_page **opp)
652 {
653
654 return EBUSY;
655 }
656
657 struct vm_page *
658 uvm_loanbreak(struct vm_page *pg)
659 {
660
661 panic("%s: unimplemented", __func__);
662 }
663
664 void
665 ubc_purge(struct uvm_object *uobj)
666 {
667
668 }
669
670 vaddr_t
671 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
672 {
673
674 return 0;
675 }
676
677 int
678 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
679 vm_prot_t prot, bool set_max)
680 {
681
682 return EOPNOTSUPP;
683 }
684
685 /*
686 * UVM km
687 */
688
689 vaddr_t
690 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
691 {
692 void *rv, *desired = NULL;
693 int alignbit, error;
694
695 #ifdef __x86_64__
696 /*
697 * On amd64, allocate all module memory from the lowest 2GB.
698 * This is because NetBSD kernel modules are compiled
699 * with -mcmodel=kernel and reserve only 4 bytes for
700 * offsets. If we load code compiled with -mcmodel=kernel
701 * anywhere except the lowest or highest 2GB, it will not
702 * work. Since userspace does not have access to the highest
703 * 2GB, use the lowest 2GB.
704 *
705 * Note: this assumes the rump kernel resides in
706 * the lowest 2GB as well.
707 *
708 * Note2: yes, it's a quick hack, but since this the only
709 * place where we care about the map we're allocating from,
710 * just use a simple "if" instead of coming up with a fancy
711 * generic solution.
712 */
713 if (map == module_map) {
714 desired = (void *)(0x80000000 - size);
715 }
716 #endif
717
718 if (__predict_false(map == module_map)) {
719 alignbit = 0;
720 if (align) {
721 alignbit = ffs(align)-1;
722 }
723 error = rumpuser_anonmmap(desired, size, alignbit,
724 flags & UVM_KMF_EXEC, &rv);
725 } else {
726 error = rumpuser_malloc(size, align, &rv);
727 }
728
729 if (error) {
730 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
731 return 0;
732 else
733 panic("uvm_km_alloc failed");
734 }
735
736 if (flags & UVM_KMF_ZERO)
737 memset(rv, 0, size);
738
739 return (vaddr_t)rv;
740 }
741
742 void
743 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
744 {
745
746 if (__predict_false(map == module_map))
747 rumpuser_unmap((void *)vaddr, size);
748 else
749 rumpuser_free((void *)vaddr, size);
750 }
751
752 struct vm_map *
753 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
754 vsize_t size, int pageable, bool fixed, struct vm_map *submap)
755 {
756
757 return (struct vm_map *)417416;
758 }
759
760 int
761 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
762 vmem_addr_t *addr)
763 {
764 vaddr_t va;
765 va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
766 (flags & VM_SLEEP), "kmalloc");
767
768 if (va) {
769 *addr = va;
770 return 0;
771 } else {
772 return ENOMEM;
773 }
774 }
775
776 void
777 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
778 {
779
780 rump_hyperfree((void *)addr, size);
781 }
782
783 /*
784 * VM space locking routines. We don't really have to do anything,
785 * since the pages are always "wired" (both local and remote processes).
786 */
787 int
788 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
789 {
790
791 return 0;
792 }
793
794 void
795 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
796 {
797
798 }
799
800 /*
801 * For the local case the buffer mappers don't need to do anything.
802 * For the remote case we need to reserve space and copy data in or
803 * out, depending on B_READ/B_WRITE.
804 */
805 int
806 vmapbuf(struct buf *bp, vsize_t len)
807 {
808 int error = 0;
809
810 bp->b_saveaddr = bp->b_data;
811
812 /* remote case */
813 if (!RUMP_LOCALPROC_P(curproc)) {
814 bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
815 if (BUF_ISWRITE(bp)) {
816 error = copyin(bp->b_saveaddr, bp->b_data, len);
817 if (error) {
818 rump_hyperfree(bp->b_data, len);
819 bp->b_data = bp->b_saveaddr;
820 bp->b_saveaddr = 0;
821 }
822 }
823 }
824
825 return error;
826 }
827
828 void
829 vunmapbuf(struct buf *bp, vsize_t len)
830 {
831
832 /* remote case */
833 if (!RUMP_LOCALPROC_P(bp->b_proc)) {
834 if (BUF_ISREAD(bp)) {
835 bp->b_error = copyout_proc(bp->b_proc,
836 bp->b_data, bp->b_saveaddr, len);
837 }
838 rump_hyperfree(bp->b_data, len);
839 }
840
841 bp->b_data = bp->b_saveaddr;
842 bp->b_saveaddr = 0;
843 }
844
845 void
846 uvmspace_addref(struct vmspace *vm)
847 {
848
849 /*
850 * No dynamically allocated vmspaces exist.
851 */
852 }
853
854 void
855 uvmspace_free(struct vmspace *vm)
856 {
857
858 /* nothing for now */
859 }
860
861 /*
862 * page life cycle stuff. it really doesn't exist, so just stubs.
863 */
864
865 void
866 uvm_pageactivate(struct vm_page *pg)
867 {
868
869 /* nada */
870 }
871
872 void
873 uvm_pagedeactivate(struct vm_page *pg)
874 {
875
876 /* nada */
877 }
878
879 void
880 uvm_pagedequeue(struct vm_page *pg)
881 {
882
883 /* nada*/
884 }
885
886 void
887 uvm_pageenqueue(struct vm_page *pg)
888 {
889
890 /* nada */
891 }
892
893 void
894 uvmpdpol_anfree(struct vm_anon *an)
895 {
896
897 /* nada */
898 }
899
900 /*
901 * Physical address accessors.
902 */
903
904 struct vm_page *
905 uvm_phys_to_vm_page(paddr_t pa)
906 {
907
908 return NULL;
909 }
910
911 paddr_t
912 uvm_vm_page_to_phys(const struct vm_page *pg)
913 {
914
915 return 0;
916 }
917
918 vaddr_t
919 uvm_uarea_alloc(void)
920 {
921
922 /* non-zero */
923 return (vaddr_t)11;
924 }
925
926 void
927 uvm_uarea_free(vaddr_t uarea)
928 {
929
930 /* nata, so creamy */
931 }
932
933 /*
934 * Routines related to the Page Baroness.
935 */
936
937 void
938 uvm_wait(const char *msg)
939 {
940
941 if (__predict_false(rump_threads == 0))
942 panic("pagedaemon missing (RUMP_THREADS = 0)");
943
944 if (curlwp == uvm.pagedaemon_lwp) {
945 /* is it possible for us to later get memory? */
946 if (!uvmexp.paging)
947 panic("pagedaemon out of memory");
948 }
949
950 mutex_enter(&pdaemonmtx);
951 pdaemon_waiters++;
952 cv_signal(&pdaemoncv);
953 cv_wait(&oomwait, &pdaemonmtx);
954 mutex_exit(&pdaemonmtx);
955 }
956
957 void
958 uvm_pageout_start(int npages)
959 {
960
961 mutex_enter(&pdaemonmtx);
962 uvmexp.paging += npages;
963 mutex_exit(&pdaemonmtx);
964 }
965
966 void
967 uvm_pageout_done(int npages)
968 {
969
970 if (!npages)
971 return;
972
973 mutex_enter(&pdaemonmtx);
974 KASSERT(uvmexp.paging >= npages);
975 uvmexp.paging -= npages;
976
977 if (pdaemon_waiters) {
978 pdaemon_waiters = 0;
979 cv_broadcast(&oomwait);
980 }
981 mutex_exit(&pdaemonmtx);
982 }
983
984 static bool
985 processpage(struct vm_page *pg, bool *lockrunning)
986 {
987 struct uvm_object *uobj;
988
989 uobj = pg->uobject;
990 if (mutex_tryenter(uobj->vmobjlock)) {
991 if ((pg->flags & PG_BUSY) == 0) {
992 mutex_exit(&uvm_pageqlock);
993 uobj->pgops->pgo_put(uobj, pg->offset,
994 pg->offset + PAGE_SIZE,
995 PGO_CLEANIT|PGO_FREE);
996 KASSERT(!mutex_owned(uobj->vmobjlock));
997 return true;
998 } else {
999 mutex_exit(uobj->vmobjlock);
1000 }
1001 } else if (*lockrunning == false && ncpu > 1) {
1002 CPU_INFO_ITERATOR cii;
1003 struct cpu_info *ci;
1004 struct lwp *l;
1005
1006 l = mutex_owner(uobj->vmobjlock);
1007 for (CPU_INFO_FOREACH(cii, ci)) {
1008 if (ci->ci_curlwp == l) {
1009 *lockrunning = true;
1010 break;
1011 }
1012 }
1013 }
1014
1015 return false;
1016 }
1017
1018 /*
1019 * The Diabolical pageDaemon Director (DDD).
1020 *
1021 * This routine can always use better heuristics.
1022 */
1023 void
1024 uvm_pageout(void *arg)
1025 {
1026 struct vm_page *pg;
1027 struct pool *pp, *pp_first;
1028 int cleaned, skip, skipped;
1029 bool succ;
1030 bool lockrunning;
1031
1032 mutex_enter(&pdaemonmtx);
1033 for (;;) {
1034 if (!NEED_PAGEDAEMON()) {
1035 kernel_map->flags &= ~VM_MAP_WANTVA;
1036 }
1037
1038 if (pdaemon_waiters) {
1039 pdaemon_waiters = 0;
1040 cv_broadcast(&oomwait);
1041 }
1042
1043 cv_wait(&pdaemoncv, &pdaemonmtx);
1044 uvmexp.pdwoke++;
1045
1046 /* tell the world that we are hungry */
1047 kernel_map->flags |= VM_MAP_WANTVA;
1048 mutex_exit(&pdaemonmtx);
1049
1050 /*
1051 * step one: reclaim the page cache. this should give
1052 * us the biggest earnings since whole pages are released
1053 * into backing memory.
1054 */
1055 pool_cache_reclaim(&pagecache);
1056 if (!NEED_PAGEDAEMON()) {
1057 mutex_enter(&pdaemonmtx);
1058 continue;
1059 }
1060
1061 /*
1062 * Ok, so that didn't help. Next, try to hunt memory
1063 * by pushing out vnode pages. The pages might contain
1064 * useful cached data, but we need the memory.
1065 */
1066 cleaned = 0;
1067 skip = 0;
1068 lockrunning = false;
1069 again:
1070 mutex_enter(&uvm_pageqlock);
1071 while (cleaned < PAGEDAEMON_OBJCHUNK) {
1072 skipped = 0;
1073 TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1074
1075 /*
1076 * skip over pages we _might_ have tried
1077 * to handle earlier. they might not be
1078 * exactly the same ones, but I'm not too
1079 * concerned.
1080 */
1081 while (skipped++ < skip)
1082 continue;
1083
1084 if (processpage(pg, &lockrunning)) {
1085 cleaned++;
1086 goto again;
1087 }
1088
1089 skip++;
1090 }
1091 break;
1092 }
1093 mutex_exit(&uvm_pageqlock);
1094
1095 /*
1096 * Ok, someone is running with an object lock held.
1097 * We want to yield the host CPU to make sure the
1098 * thread is not parked on the host. Since sched_yield()
1099 * doesn't appear to do anything on NetBSD, nanosleep
1100 * for the smallest possible time and hope we're back in
1101 * the game soon.
1102 */
1103 if (cleaned == 0 && lockrunning) {
1104 rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
1105
1106 lockrunning = false;
1107 skip = 0;
1108
1109 /* and here we go again */
1110 goto again;
1111 }
1112
1113 /*
1114 * And of course we need to reclaim the page cache
1115 * again to actually release memory.
1116 */
1117 pool_cache_reclaim(&pagecache);
1118 if (!NEED_PAGEDAEMON()) {
1119 mutex_enter(&pdaemonmtx);
1120 continue;
1121 }
1122
1123 /*
1124 * And then drain the pools. Wipe them out ... all of them.
1125 */
1126 for (pp_first = NULL;;) {
1127 if (rump_vfs_drainbufs)
1128 rump_vfs_drainbufs(10 /* XXX: estimate! */);
1129
1130 succ = pool_drain(&pp);
1131 if (succ || pp == pp_first)
1132 break;
1133
1134 if (pp_first == NULL)
1135 pp_first = pp;
1136 }
1137
1138 /*
1139 * Need to use PYEC on our bag of tricks.
1140 * Unfortunately, the wife just borrowed it.
1141 */
1142
1143 mutex_enter(&pdaemonmtx);
1144 if (!succ && cleaned == 0 && pdaemon_waiters &&
1145 uvmexp.paging == 0) {
1146 rumpuser_dprintf("pagedaemoness: failed to reclaim "
1147 "memory ... sleeping (deadlock?)\n");
1148 cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
1149 }
1150 }
1151
1152 panic("you can swap out any time you like, but you can never leave");
1153 }
1154
1155 void
1156 uvm_kick_pdaemon()
1157 {
1158
1159 /*
1160 * Wake up the diabolical pagedaemon director if we are over
1161 * 90% of the memory limit. This is a complete and utter
1162 * stetson-harrison decision which you are allowed to finetune.
1163 * Don't bother locking. If we have some unflushed caches,
1164 * other waker-uppers will deal with the issue.
1165 */
1166 if (NEED_PAGEDAEMON()) {
1167 cv_signal(&pdaemoncv);
1168 }
1169 }
1170
1171 void *
1172 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1173 {
1174 const unsigned long thelimit =
1175 curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
1176 unsigned long newmem;
1177 void *rv;
1178 int error;
1179
1180 uvm_kick_pdaemon(); /* ouch */
1181
1182 /* first we must be within the limit */
1183 limitagain:
1184 if (thelimit != RUMPMEM_UNLIMITED) {
1185 newmem = atomic_add_long_nv(&curphysmem, howmuch);
1186 if (newmem > thelimit) {
1187 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1188 if (!waitok) {
1189 return NULL;
1190 }
1191 uvm_wait(wmsg);
1192 goto limitagain;
1193 }
1194 }
1195
1196 /* second, we must get something from the backend */
1197 again:
1198 error = rumpuser_malloc(howmuch, alignment, &rv);
1199 if (__predict_false(error && waitok)) {
1200 uvm_wait(wmsg);
1201 goto again;
1202 }
1203
1204 return rv;
1205 }
1206
1207 void
1208 rump_hyperfree(void *what, size_t size)
1209 {
1210
1211 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1212 atomic_add_long(&curphysmem, -size);
1213 }
1214 rumpuser_free(what, size);
1215 }
1216