vm.c revision 1.157 1 /* $NetBSD: vm.c,v 1.157 2014/06/13 11:48:56 pooka Exp $ */
2
3 /*
4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.157 2014/06/13 11:48:56 pooka Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/vmem.h>
52 #include <sys/mman.h>
53 #include <sys/null.h>
54 #include <sys/vnode.h>
55
56 #include <machine/pmap.h>
57
58 #include <rump/rumpuser.h>
59
60 #include <uvm/uvm.h>
61 #include <uvm/uvm_ddb.h>
62 #include <uvm/uvm_pdpolicy.h>
63 #include <uvm/uvm_prot.h>
64 #include <uvm/uvm_readahead.h>
65
66 #include "rump_private.h"
67 #include "rump_vfs_private.h"
68
69 kmutex_t uvm_pageqlock; /* non-free page lock */
70 kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
71 kmutex_t uvm_swap_data_lock;
72
73 struct uvmexp uvmexp;
74 struct uvm uvm;
75
76 #ifdef __uvmexp_pagesize
77 const int * const uvmexp_pagesize = &uvmexp.pagesize;
78 const int * const uvmexp_pagemask = &uvmexp.pagemask;
79 const int * const uvmexp_pageshift = &uvmexp.pageshift;
80 #endif
81
82 struct vm_map rump_vmmap;
83
84 static struct vm_map kernel_map_store;
85 struct vm_map *kernel_map = &kernel_map_store;
86
87 static struct vm_map module_map_store;
88 extern struct vm_map *module_map;
89
90 vmem_t *kmem_arena;
91 vmem_t *kmem_va_arena;
92
93 static unsigned int pdaemon_waiters;
94 static kmutex_t pdaemonmtx;
95 static kcondvar_t pdaemoncv, oomwait;
96
97 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
98 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
99 static unsigned long curphysmem;
100 static unsigned long dddlim; /* 90% of memory limit used */
101 #define NEED_PAGEDAEMON() \
102 (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
103
104 /*
105 * Try to free two pages worth of pages from objects.
106 * If this succesfully frees a full page cache page, we'll
107 * free the released page plus PAGE_SIZE/sizeof(vm_page).
108 */
109 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
110
111 /*
112 * Keep a list of least recently used pages. Since the only way a
113 * rump kernel can "access" a page is via lookup, we put the page
114 * at the back of queue every time a lookup for it is done. If the
115 * page is in front of this global queue and we're short of memory,
116 * it's a candidate for pageout.
117 */
118 static struct pglist vmpage_lruqueue;
119 static unsigned vmpage_onqueue;
120
121 static int
122 pg_compare_key(void *ctx, const void *n, const void *key)
123 {
124 voff_t a = ((const struct vm_page *)n)->offset;
125 voff_t b = *(const voff_t *)key;
126
127 if (a < b)
128 return -1;
129 else if (a > b)
130 return 1;
131 else
132 return 0;
133 }
134
135 static int
136 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
137 {
138
139 return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
140 }
141
142 const rb_tree_ops_t uvm_page_tree_ops = {
143 .rbto_compare_nodes = pg_compare_nodes,
144 .rbto_compare_key = pg_compare_key,
145 .rbto_node_offset = offsetof(struct vm_page, rb_node),
146 .rbto_context = NULL
147 };
148
149 /*
150 * vm pages
151 */
152
153 static int
154 pgctor(void *arg, void *obj, int flags)
155 {
156 struct vm_page *pg = obj;
157
158 memset(pg, 0, sizeof(*pg));
159 pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
160 (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
161 return pg->uanon == NULL;
162 }
163
164 static void
165 pgdtor(void *arg, void *obj)
166 {
167 struct vm_page *pg = obj;
168
169 rump_hyperfree(pg->uanon, PAGE_SIZE);
170 }
171
172 static struct pool_cache pagecache;
173
174 /*
175 * Called with the object locked. We don't support anons.
176 */
177 struct vm_page *
178 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
179 int flags, int strat, int free_list)
180 {
181 struct vm_page *pg;
182
183 KASSERT(uobj && mutex_owned(uobj->vmobjlock));
184 KASSERT(anon == NULL);
185
186 pg = pool_cache_get(&pagecache, PR_NOWAIT);
187 if (__predict_false(pg == NULL)) {
188 return NULL;
189 }
190
191 pg->offset = off;
192 pg->uobject = uobj;
193
194 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
195 if (flags & UVM_PGA_ZERO) {
196 uvm_pagezero(pg);
197 }
198
199 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
200 (void)rb_tree_insert_node(&uobj->rb_tree, pg);
201
202 /*
203 * Don't put anons on the LRU page queue. We can't flush them
204 * (there's no concept of swap in a rump kernel), so no reason
205 * to bother with them.
206 */
207 if (!UVM_OBJ_IS_AOBJ(uobj)) {
208 atomic_inc_uint(&vmpage_onqueue);
209 mutex_enter(&uvm_pageqlock);
210 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
211 mutex_exit(&uvm_pageqlock);
212 }
213
214 uobj->uo_npages++;
215
216 return pg;
217 }
218
219 /*
220 * Release a page.
221 *
222 * Called with the vm object locked.
223 */
224 void
225 uvm_pagefree(struct vm_page *pg)
226 {
227 struct uvm_object *uobj = pg->uobject;
228
229 KASSERT(mutex_owned(&uvm_pageqlock));
230 KASSERT(mutex_owned(uobj->vmobjlock));
231
232 if (pg->flags & PG_WANTED)
233 wakeup(pg);
234
235 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
236
237 uobj->uo_npages--;
238 rb_tree_remove_node(&uobj->rb_tree, pg);
239
240 if (!UVM_OBJ_IS_AOBJ(uobj)) {
241 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
242 atomic_dec_uint(&vmpage_onqueue);
243 }
244
245 pool_cache_put(&pagecache, pg);
246 }
247
248 void
249 uvm_pagezero(struct vm_page *pg)
250 {
251
252 pg->flags &= ~PG_CLEAN;
253 memset((void *)pg->uanon, 0, PAGE_SIZE);
254 }
255
256 /*
257 * uvm_page_locked_p: return true if object associated with page is
258 * locked. this is a weak check for runtime assertions only.
259 */
260
261 bool
262 uvm_page_locked_p(struct vm_page *pg)
263 {
264
265 return mutex_owned(pg->uobject->vmobjlock);
266 }
267
268 /*
269 * Misc routines
270 */
271
272 static kmutex_t pagermtx;
273
274 void
275 uvm_init(void)
276 {
277 char buf[64];
278
279 if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
280 unsigned long tmp;
281 char *ep;
282 int mult;
283
284 tmp = strtoul(buf, &ep, 10);
285 if (strlen(ep) > 1)
286 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
287
288 /* mini-dehumanize-number */
289 mult = 1;
290 switch (*ep) {
291 case 'k':
292 mult = 1024;
293 break;
294 case 'm':
295 mult = 1024*1024;
296 break;
297 case 'g':
298 mult = 1024*1024*1024;
299 break;
300 case 0:
301 break;
302 default:
303 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
304 }
305 rump_physmemlimit = tmp * mult;
306
307 if (rump_physmemlimit / mult != tmp)
308 panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
309
310 /* reserve some memory for the pager */
311 pdlimit = rump_physmemlimit;
312 rump_physmemlimit -= 2*MAXPHYS;
313
314 if (pdlimit < 1024*1024)
315 printf("uvm_init: WARNING: <1MB RAM limit, "
316 "hope you know what you're doing\n");
317
318 #define HUMANIZE_BYTES 9
319 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
320 format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
321 #undef HUMANIZE_BYTES
322 dddlim = 9 * (rump_physmemlimit / 10);
323 } else {
324 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
325 }
326 aprint_verbose("total memory = %s\n", buf);
327
328 TAILQ_INIT(&vmpage_lruqueue);
329
330 if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
331 uvmexp.npages = physmem;
332 } else {
333 uvmexp.npages = pdlimit >> PAGE_SHIFT;
334 uvmexp.reserve_pagedaemon
335 = (pdlimit-rump_physmemlimit) >> PAGE_SHIFT;
336 uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
337 }
338 /*
339 * uvmexp.free is not used internally or updated. The reason is
340 * that the memory hypercall allocator is allowed to allocate
341 * non-page sized chunks. We use a byte count in curphysmem
342 * instead.
343 */
344 uvmexp.free = uvmexp.npages;
345
346 #ifndef __uvmexp_pagesize
347 uvmexp.pagesize = PAGE_SIZE;
348 uvmexp.pagemask = PAGE_MASK;
349 uvmexp.pageshift = PAGE_SHIFT;
350 #else
351 #define FAKE_PAGE_SHIFT 12
352 uvmexp.pageshift = FAKE_PAGE_SHIFT;
353 uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
354 uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
355 #undef FAKE_PAGE_SHIFT
356 #endif
357
358 mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
359 mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, IPL_NONE);
360 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
361
362 /* just to appease linkage */
363 mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
364
365 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
366 cv_init(&pdaemoncv, "pdaemon");
367 cv_init(&oomwait, "oomwait");
368
369 module_map = &module_map_store;
370
371 kernel_map->pmap = pmap_kernel();
372
373 pool_subsystem_init();
374
375 kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
376 NULL, NULL, NULL,
377 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
378
379 vmem_subsystem_init(kmem_arena);
380
381 kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
382 vmem_alloc, vmem_free, kmem_arena,
383 8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
384
385 pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
386 "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
387 }
388
389 void
390 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
391 bool topdown)
392 {
393
394 vm->vm_map.pmap = pmap_kernel();
395 vm->vm_refcnt = 1;
396 }
397
398 void
399 uvm_pagewire(struct vm_page *pg)
400 {
401
402 /* nada */
403 }
404
405 void
406 uvm_pageunwire(struct vm_page *pg)
407 {
408
409 /* nada */
410 }
411
412 /* where's your schmonz now? */
413 #define PUNLIMIT(a) \
414 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
415 void
416 uvm_init_limits(struct proc *p)
417 {
418
419 #ifndef DFLSSIZ
420 #define DFLSSIZ (16*1024*1024)
421 #endif
422 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
423 p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
424 PUNLIMIT(RLIMIT_DATA);
425 PUNLIMIT(RLIMIT_RSS);
426 PUNLIMIT(RLIMIT_AS);
427 /* nice, cascade */
428 }
429 #undef PUNLIMIT
430
431 /*
432 * This satisfies the "disgusting mmap hack" used by proplib.
433 * We probably should grow some more assertables to make sure we're
434 * not satisfying anything we shouldn't be satisfying.
435 */
436 int
437 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
438 vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
439 {
440 void *uaddr;
441 int error;
442
443 if (prot != (VM_PROT_READ | VM_PROT_WRITE))
444 panic("uvm_mmap() variant unsupported");
445 if (flags != (MAP_PRIVATE | MAP_ANON))
446 panic("uvm_mmap() variant unsupported");
447
448 /* no reason in particular, but cf. uvm_default_mapaddr() */
449 if (*addr != 0)
450 panic("uvm_mmap() variant unsupported");
451
452 if (RUMP_LOCALPROC_P(curproc)) {
453 error = rumpuser_anonmmap(NULL, size, 0, 0, &uaddr);
454 } else {
455 error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
456 size, &uaddr);
457 }
458 if (error)
459 return error;
460
461 *addr = (vaddr_t)uaddr;
462 return 0;
463 }
464
465 struct pagerinfo {
466 vaddr_t pgr_kva;
467 int pgr_npages;
468 struct vm_page **pgr_pgs;
469 bool pgr_read;
470
471 LIST_ENTRY(pagerinfo) pgr_entries;
472 };
473 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
474
475 /*
476 * Pager "map" in routine. Instead of mapping, we allocate memory
477 * and copy page contents there. Not optimal or even strictly
478 * correct (the caller might modify the page contents after mapping
479 * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
480 */
481 vaddr_t
482 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
483 {
484 struct pagerinfo *pgri;
485 vaddr_t curkva;
486 int i;
487
488 /* allocate structures */
489 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
490 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
491 pgri->pgr_npages = npages;
492 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
493 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
494
495 /* copy contents to "mapped" memory */
496 for (i = 0, curkva = pgri->pgr_kva;
497 i < npages;
498 i++, curkva += PAGE_SIZE) {
499 /*
500 * We need to copy the previous contents of the pages to
501 * the window even if we are reading from the
502 * device, since the device might not fill the contents of
503 * the full mapped range and we will end up corrupting
504 * data when we unmap the window.
505 */
506 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
507 pgri->pgr_pgs[i] = pgs[i];
508 }
509
510 mutex_enter(&pagermtx);
511 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
512 mutex_exit(&pagermtx);
513
514 return pgri->pgr_kva;
515 }
516
517 /*
518 * map out the pager window. return contents from VA to page storage
519 * and free structures.
520 *
521 * Note: does not currently support partial frees
522 */
523 void
524 uvm_pagermapout(vaddr_t kva, int npages)
525 {
526 struct pagerinfo *pgri;
527 vaddr_t curkva;
528 int i;
529
530 mutex_enter(&pagermtx);
531 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
532 if (pgri->pgr_kva == kva)
533 break;
534 }
535 KASSERT(pgri);
536 if (pgri->pgr_npages != npages)
537 panic("uvm_pagermapout: partial unmapping not supported");
538 LIST_REMOVE(pgri, pgr_entries);
539 mutex_exit(&pagermtx);
540
541 if (pgri->pgr_read) {
542 for (i = 0, curkva = pgri->pgr_kva;
543 i < pgri->pgr_npages;
544 i++, curkva += PAGE_SIZE) {
545 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
546 }
547 }
548
549 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
550 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
551 kmem_free(pgri, sizeof(*pgri));
552 }
553
554 /*
555 * convert va in pager window to page structure.
556 * XXX: how expensive is this (global lock, list traversal)?
557 */
558 struct vm_page *
559 uvm_pageratop(vaddr_t va)
560 {
561 struct pagerinfo *pgri;
562 struct vm_page *pg = NULL;
563 int i;
564
565 mutex_enter(&pagermtx);
566 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
567 if (pgri->pgr_kva <= va
568 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
569 break;
570 }
571 if (pgri) {
572 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
573 pg = pgri->pgr_pgs[i];
574 }
575 mutex_exit(&pagermtx);
576
577 return pg;
578 }
579
580 /*
581 * Called with the vm object locked.
582 *
583 * Put vnode object pages at the end of the access queue to indicate
584 * they have been recently accessed and should not be immediate
585 * candidates for pageout. Do not do this for lookups done by
586 * the pagedaemon to mimic pmap_kentered mappings which don't track
587 * access information.
588 */
589 struct vm_page *
590 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
591 {
592 struct vm_page *pg;
593 bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
594
595 pg = rb_tree_find_node(&uobj->rb_tree, &off);
596 if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
597 mutex_enter(&uvm_pageqlock);
598 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
599 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
600 mutex_exit(&uvm_pageqlock);
601 }
602
603 return pg;
604 }
605
606 void
607 uvm_page_unbusy(struct vm_page **pgs, int npgs)
608 {
609 struct vm_page *pg;
610 int i;
611
612 KASSERT(npgs > 0);
613 KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
614
615 for (i = 0; i < npgs; i++) {
616 pg = pgs[i];
617 if (pg == NULL)
618 continue;
619
620 KASSERT(pg->flags & PG_BUSY);
621 if (pg->flags & PG_WANTED)
622 wakeup(pg);
623 if (pg->flags & PG_RELEASED)
624 uvm_pagefree(pg);
625 else
626 pg->flags &= ~(PG_WANTED|PG_BUSY);
627 }
628 }
629
630 void
631 uvm_estimatepageable(int *active, int *inactive)
632 {
633
634 /* XXX: guessing game */
635 *active = 1024;
636 *inactive = 1024;
637 }
638
639 bool
640 vm_map_starved_p(struct vm_map *map)
641 {
642
643 if (map->flags & VM_MAP_WANTVA)
644 return true;
645
646 return false;
647 }
648
649 int
650 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
651 {
652
653 panic("%s: unimplemented", __func__);
654 }
655
656 void
657 uvm_unloan(void *v, int npages, int flags)
658 {
659
660 panic("%s: unimplemented", __func__);
661 }
662
663 int
664 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
665 struct vm_page **opp)
666 {
667
668 return EBUSY;
669 }
670
671 struct vm_page *
672 uvm_loanbreak(struct vm_page *pg)
673 {
674
675 panic("%s: unimplemented", __func__);
676 }
677
678 void
679 ubc_purge(struct uvm_object *uobj)
680 {
681
682 }
683
684 vaddr_t
685 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
686 {
687
688 return 0;
689 }
690
691 int
692 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
693 vm_prot_t prot, bool set_max)
694 {
695
696 return EOPNOTSUPP;
697 }
698
699 /*
700 * UVM km
701 */
702
703 vaddr_t
704 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
705 {
706 void *rv, *desired = NULL;
707 int alignbit, error;
708
709 #ifdef __x86_64__
710 /*
711 * On amd64, allocate all module memory from the lowest 2GB.
712 * This is because NetBSD kernel modules are compiled
713 * with -mcmodel=kernel and reserve only 4 bytes for
714 * offsets. If we load code compiled with -mcmodel=kernel
715 * anywhere except the lowest or highest 2GB, it will not
716 * work. Since userspace does not have access to the highest
717 * 2GB, use the lowest 2GB.
718 *
719 * Note: this assumes the rump kernel resides in
720 * the lowest 2GB as well.
721 *
722 * Note2: yes, it's a quick hack, but since this the only
723 * place where we care about the map we're allocating from,
724 * just use a simple "if" instead of coming up with a fancy
725 * generic solution.
726 */
727 if (map == module_map) {
728 desired = (void *)(0x80000000 - size);
729 }
730 #endif
731
732 if (__predict_false(map == module_map)) {
733 alignbit = 0;
734 if (align) {
735 alignbit = ffs(align)-1;
736 }
737 error = rumpuser_anonmmap(desired, size, alignbit,
738 flags & UVM_KMF_EXEC, &rv);
739 } else {
740 error = rumpuser_malloc(size, align, &rv);
741 }
742
743 if (error) {
744 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
745 return 0;
746 else
747 panic("uvm_km_alloc failed");
748 }
749
750 if (flags & UVM_KMF_ZERO)
751 memset(rv, 0, size);
752
753 return (vaddr_t)rv;
754 }
755
756 void
757 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
758 {
759
760 if (__predict_false(map == module_map))
761 rumpuser_unmap((void *)vaddr, size);
762 else
763 rumpuser_free((void *)vaddr, size);
764 }
765
766 struct vm_map *
767 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
768 vsize_t size, int pageable, bool fixed, struct vm_map *submap)
769 {
770
771 return (struct vm_map *)417416;
772 }
773
774 int
775 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
776 vmem_addr_t *addr)
777 {
778 vaddr_t va;
779 va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
780 (flags & VM_SLEEP), "kmalloc");
781
782 if (va) {
783 *addr = va;
784 return 0;
785 } else {
786 return ENOMEM;
787 }
788 }
789
790 void
791 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
792 {
793
794 rump_hyperfree((void *)addr, size);
795 }
796
797 /*
798 * VM space locking routines. We don't really have to do anything,
799 * since the pages are always "wired" (both local and remote processes).
800 */
801 int
802 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
803 {
804
805 return 0;
806 }
807
808 void
809 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
810 {
811
812 }
813
814 /*
815 * For the local case the buffer mappers don't need to do anything.
816 * For the remote case we need to reserve space and copy data in or
817 * out, depending on B_READ/B_WRITE.
818 */
819 int
820 vmapbuf(struct buf *bp, vsize_t len)
821 {
822 int error = 0;
823
824 bp->b_saveaddr = bp->b_data;
825
826 /* remote case */
827 if (!RUMP_LOCALPROC_P(curproc)) {
828 bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
829 if (BUF_ISWRITE(bp)) {
830 error = copyin(bp->b_saveaddr, bp->b_data, len);
831 if (error) {
832 rump_hyperfree(bp->b_data, len);
833 bp->b_data = bp->b_saveaddr;
834 bp->b_saveaddr = 0;
835 }
836 }
837 }
838
839 return error;
840 }
841
842 void
843 vunmapbuf(struct buf *bp, vsize_t len)
844 {
845
846 /* remote case */
847 if (!RUMP_LOCALPROC_P(bp->b_proc)) {
848 if (BUF_ISREAD(bp)) {
849 bp->b_error = copyout_proc(bp->b_proc,
850 bp->b_data, bp->b_saveaddr, len);
851 }
852 rump_hyperfree(bp->b_data, len);
853 }
854
855 bp->b_data = bp->b_saveaddr;
856 bp->b_saveaddr = 0;
857 }
858
859 void
860 uvmspace_addref(struct vmspace *vm)
861 {
862
863 /*
864 * No dynamically allocated vmspaces exist.
865 */
866 }
867
868 void
869 uvmspace_free(struct vmspace *vm)
870 {
871
872 /* nothing for now */
873 }
874
875 /*
876 * page life cycle stuff. it really doesn't exist, so just stubs.
877 */
878
879 void
880 uvm_pageactivate(struct vm_page *pg)
881 {
882
883 /* nada */
884 }
885
886 void
887 uvm_pagedeactivate(struct vm_page *pg)
888 {
889
890 /* nada */
891 }
892
893 void
894 uvm_pagedequeue(struct vm_page *pg)
895 {
896
897 /* nada*/
898 }
899
900 void
901 uvm_pageenqueue(struct vm_page *pg)
902 {
903
904 /* nada */
905 }
906
907 void
908 uvmpdpol_anfree(struct vm_anon *an)
909 {
910
911 /* nada */
912 }
913
914 /*
915 * Physical address accessors.
916 */
917
918 struct vm_page *
919 uvm_phys_to_vm_page(paddr_t pa)
920 {
921
922 return NULL;
923 }
924
925 paddr_t
926 uvm_vm_page_to_phys(const struct vm_page *pg)
927 {
928
929 return 0;
930 }
931
932 vaddr_t
933 uvm_uarea_alloc(void)
934 {
935
936 /* non-zero */
937 return (vaddr_t)11;
938 }
939
940 void
941 uvm_uarea_free(vaddr_t uarea)
942 {
943
944 /* nata, so creamy */
945 }
946
947 /*
948 * Routines related to the Page Baroness.
949 */
950
951 void
952 uvm_wait(const char *msg)
953 {
954
955 if (__predict_false(rump_threads == 0))
956 panic("pagedaemon missing (RUMP_THREADS = 0)");
957
958 if (curlwp == uvm.pagedaemon_lwp) {
959 /* is it possible for us to later get memory? */
960 if (!uvmexp.paging)
961 panic("pagedaemon out of memory");
962 }
963
964 mutex_enter(&pdaemonmtx);
965 pdaemon_waiters++;
966 cv_signal(&pdaemoncv);
967 cv_wait(&oomwait, &pdaemonmtx);
968 mutex_exit(&pdaemonmtx);
969 }
970
971 void
972 uvm_pageout_start(int npages)
973 {
974
975 mutex_enter(&pdaemonmtx);
976 uvmexp.paging += npages;
977 mutex_exit(&pdaemonmtx);
978 }
979
980 void
981 uvm_pageout_done(int npages)
982 {
983
984 if (!npages)
985 return;
986
987 mutex_enter(&pdaemonmtx);
988 KASSERT(uvmexp.paging >= npages);
989 uvmexp.paging -= npages;
990
991 if (pdaemon_waiters) {
992 pdaemon_waiters = 0;
993 cv_broadcast(&oomwait);
994 }
995 mutex_exit(&pdaemonmtx);
996 }
997
998 static bool
999 processpage(struct vm_page *pg, bool *lockrunning)
1000 {
1001 struct uvm_object *uobj;
1002
1003 uobj = pg->uobject;
1004 if (mutex_tryenter(uobj->vmobjlock)) {
1005 if ((pg->flags & PG_BUSY) == 0) {
1006 mutex_exit(&uvm_pageqlock);
1007 uobj->pgops->pgo_put(uobj, pg->offset,
1008 pg->offset + PAGE_SIZE,
1009 PGO_CLEANIT|PGO_FREE);
1010 KASSERT(!mutex_owned(uobj->vmobjlock));
1011 return true;
1012 } else {
1013 mutex_exit(uobj->vmobjlock);
1014 }
1015 } else if (*lockrunning == false && ncpu > 1) {
1016 CPU_INFO_ITERATOR cii;
1017 struct cpu_info *ci;
1018 struct lwp *l;
1019
1020 l = mutex_owner(uobj->vmobjlock);
1021 for (CPU_INFO_FOREACH(cii, ci)) {
1022 if (ci->ci_curlwp == l) {
1023 *lockrunning = true;
1024 break;
1025 }
1026 }
1027 }
1028
1029 return false;
1030 }
1031
1032 /*
1033 * The Diabolical pageDaemon Director (DDD).
1034 *
1035 * This routine can always use better heuristics.
1036 */
1037 void
1038 uvm_pageout(void *arg)
1039 {
1040 struct vm_page *pg;
1041 struct pool *pp, *pp_first;
1042 int cleaned, skip, skipped;
1043 bool succ;
1044 bool lockrunning;
1045
1046 mutex_enter(&pdaemonmtx);
1047 for (;;) {
1048 if (!NEED_PAGEDAEMON()) {
1049 kernel_map->flags &= ~VM_MAP_WANTVA;
1050 }
1051
1052 if (pdaemon_waiters) {
1053 pdaemon_waiters = 0;
1054 cv_broadcast(&oomwait);
1055 }
1056
1057 cv_wait(&pdaemoncv, &pdaemonmtx);
1058 uvmexp.pdwoke++;
1059
1060 /* tell the world that we are hungry */
1061 kernel_map->flags |= VM_MAP_WANTVA;
1062 mutex_exit(&pdaemonmtx);
1063
1064 /*
1065 * step one: reclaim the page cache. this should give
1066 * us the biggest earnings since whole pages are released
1067 * into backing memory.
1068 */
1069 pool_cache_reclaim(&pagecache);
1070 if (!NEED_PAGEDAEMON()) {
1071 mutex_enter(&pdaemonmtx);
1072 continue;
1073 }
1074
1075 /*
1076 * Ok, so that didn't help. Next, try to hunt memory
1077 * by pushing out vnode pages. The pages might contain
1078 * useful cached data, but we need the memory.
1079 */
1080 cleaned = 0;
1081 skip = 0;
1082 lockrunning = false;
1083 again:
1084 mutex_enter(&uvm_pageqlock);
1085 while (cleaned < PAGEDAEMON_OBJCHUNK) {
1086 skipped = 0;
1087 TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1088
1089 /*
1090 * skip over pages we _might_ have tried
1091 * to handle earlier. they might not be
1092 * exactly the same ones, but I'm not too
1093 * concerned.
1094 */
1095 while (skipped++ < skip)
1096 continue;
1097
1098 if (processpage(pg, &lockrunning)) {
1099 cleaned++;
1100 goto again;
1101 }
1102
1103 skip++;
1104 }
1105 break;
1106 }
1107 mutex_exit(&uvm_pageqlock);
1108
1109 /*
1110 * Ok, someone is running with an object lock held.
1111 * We want to yield the host CPU to make sure the
1112 * thread is not parked on the host. Since sched_yield()
1113 * doesn't appear to do anything on NetBSD, nanosleep
1114 * for the smallest possible time and hope we're back in
1115 * the game soon.
1116 */
1117 if (cleaned == 0 && lockrunning) {
1118 rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
1119
1120 lockrunning = false;
1121 skip = 0;
1122
1123 /* and here we go again */
1124 goto again;
1125 }
1126
1127 /*
1128 * And of course we need to reclaim the page cache
1129 * again to actually release memory.
1130 */
1131 pool_cache_reclaim(&pagecache);
1132 if (!NEED_PAGEDAEMON()) {
1133 mutex_enter(&pdaemonmtx);
1134 continue;
1135 }
1136
1137 /*
1138 * And then drain the pools. Wipe them out ... all of them.
1139 */
1140 for (pp_first = NULL;;) {
1141 rump_vfs_drainbufs(10 /* XXX: estimate! */);
1142
1143 succ = pool_drain(&pp);
1144 if (succ || pp == pp_first)
1145 break;
1146
1147 if (pp_first == NULL)
1148 pp_first = pp;
1149 }
1150
1151 /*
1152 * Need to use PYEC on our bag of tricks.
1153 * Unfortunately, the wife just borrowed it.
1154 */
1155
1156 mutex_enter(&pdaemonmtx);
1157 if (!succ && cleaned == 0 && pdaemon_waiters &&
1158 uvmexp.paging == 0) {
1159 rumpuser_dprintf("pagedaemoness: failed to reclaim "
1160 "memory ... sleeping (deadlock?)\n");
1161 cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
1162 }
1163 }
1164
1165 panic("you can swap out any time you like, but you can never leave");
1166 }
1167
1168 void
1169 uvm_kick_pdaemon()
1170 {
1171
1172 /*
1173 * Wake up the diabolical pagedaemon director if we are over
1174 * 90% of the memory limit. This is a complete and utter
1175 * stetson-harrison decision which you are allowed to finetune.
1176 * Don't bother locking. If we have some unflushed caches,
1177 * other waker-uppers will deal with the issue.
1178 */
1179 if (NEED_PAGEDAEMON()) {
1180 cv_signal(&pdaemoncv);
1181 }
1182 }
1183
1184 void *
1185 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1186 {
1187 const unsigned long thelimit =
1188 curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
1189 unsigned long newmem;
1190 void *rv;
1191 int error;
1192
1193 uvm_kick_pdaemon(); /* ouch */
1194
1195 /* first we must be within the limit */
1196 limitagain:
1197 if (thelimit != RUMPMEM_UNLIMITED) {
1198 newmem = atomic_add_long_nv(&curphysmem, howmuch);
1199 if (newmem > thelimit) {
1200 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1201 if (!waitok) {
1202 return NULL;
1203 }
1204 uvm_wait(wmsg);
1205 goto limitagain;
1206 }
1207 }
1208
1209 /* second, we must get something from the backend */
1210 again:
1211 error = rumpuser_malloc(howmuch, alignment, &rv);
1212 if (__predict_false(error && waitok)) {
1213 uvm_wait(wmsg);
1214 goto again;
1215 }
1216
1217 return rv;
1218 }
1219
1220 void
1221 rump_hyperfree(void *what, size_t size)
1222 {
1223
1224 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1225 atomic_add_long(&curphysmem, -size);
1226 }
1227 rumpuser_free(what, size);
1228 }
1229