Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.161
      1 /*	$NetBSD: vm.c,v 1.161 2015/01/03 17:23:51 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.161 2015/01/03 17:23:51 pooka Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/vmem.h>
     52 #include <sys/mman.h>
     53 #include <sys/null.h>
     54 #include <sys/vnode.h>
     55 
     56 #include <machine/pmap.h>
     57 
     58 #include <rump/rumpuser.h>
     59 
     60 #include <uvm/uvm.h>
     61 #include <uvm/uvm_ddb.h>
     62 #include <uvm/uvm_pdpolicy.h>
     63 #include <uvm/uvm_prot.h>
     64 #include <uvm/uvm_readahead.h>
     65 #include <uvm/uvm_device.h>
     66 
     67 #include "rump_private.h"
     68 #include "rump_vfs_private.h"
     69 
     70 kmutex_t uvm_pageqlock; /* non-free page lock */
     71 kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
     72 kmutex_t uvm_swap_data_lock;
     73 
     74 struct uvmexp uvmexp;
     75 struct uvm uvm;
     76 
     77 #ifdef __uvmexp_pagesize
     78 const int * const uvmexp_pagesize = &uvmexp.pagesize;
     79 const int * const uvmexp_pagemask = &uvmexp.pagemask;
     80 const int * const uvmexp_pageshift = &uvmexp.pageshift;
     81 #endif
     82 
     83 struct vm_map rump_vmmap;
     84 
     85 static struct vm_map kernel_map_store;
     86 struct vm_map *kernel_map = &kernel_map_store;
     87 
     88 static struct vm_map module_map_store;
     89 extern struct vm_map *module_map;
     90 
     91 vmem_t *kmem_arena;
     92 vmem_t *kmem_va_arena;
     93 
     94 static unsigned int pdaemon_waiters;
     95 static kmutex_t pdaemonmtx;
     96 static kcondvar_t pdaemoncv, oomwait;
     97 
     98 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     99 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
    100 static unsigned long curphysmem;
    101 static unsigned long dddlim;		/* 90% of memory limit used */
    102 #define NEED_PAGEDAEMON() \
    103     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    104 #define PDRESERVE (2*MAXPHYS)
    105 
    106 /*
    107  * Try to free two pages worth of pages from objects.
    108  * If this succesfully frees a full page cache page, we'll
    109  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    110  */
    111 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    112 
    113 /*
    114  * Keep a list of least recently used pages.  Since the only way a
    115  * rump kernel can "access" a page is via lookup, we put the page
    116  * at the back of queue every time a lookup for it is done.  If the
    117  * page is in front of this global queue and we're short of memory,
    118  * it's a candidate for pageout.
    119  */
    120 static struct pglist vmpage_lruqueue;
    121 static unsigned vmpage_onqueue;
    122 
    123 static int
    124 pg_compare_key(void *ctx, const void *n, const void *key)
    125 {
    126 	voff_t a = ((const struct vm_page *)n)->offset;
    127 	voff_t b = *(const voff_t *)key;
    128 
    129 	if (a < b)
    130 		return -1;
    131 	else if (a > b)
    132 		return 1;
    133 	else
    134 		return 0;
    135 }
    136 
    137 static int
    138 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
    139 {
    140 
    141 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
    142 }
    143 
    144 const rb_tree_ops_t uvm_page_tree_ops = {
    145 	.rbto_compare_nodes = pg_compare_nodes,
    146 	.rbto_compare_key = pg_compare_key,
    147 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    148 	.rbto_context = NULL
    149 };
    150 
    151 /*
    152  * vm pages
    153  */
    154 
    155 static int
    156 pgctor(void *arg, void *obj, int flags)
    157 {
    158 	struct vm_page *pg = obj;
    159 
    160 	memset(pg, 0, sizeof(*pg));
    161 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    162 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    163 	return pg->uanon == NULL;
    164 }
    165 
    166 static void
    167 pgdtor(void *arg, void *obj)
    168 {
    169 	struct vm_page *pg = obj;
    170 
    171 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    172 }
    173 
    174 static struct pool_cache pagecache;
    175 
    176 /*
    177  * Called with the object locked.  We don't support anons.
    178  */
    179 struct vm_page *
    180 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    181 	int flags, int strat, int free_list)
    182 {
    183 	struct vm_page *pg;
    184 
    185 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
    186 	KASSERT(anon == NULL);
    187 
    188 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    189 	if (__predict_false(pg == NULL)) {
    190 		return NULL;
    191 	}
    192 
    193 	pg->offset = off;
    194 	pg->uobject = uobj;
    195 
    196 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    197 	if (flags & UVM_PGA_ZERO) {
    198 		uvm_pagezero(pg);
    199 	}
    200 
    201 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    202 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
    203 
    204 	/*
    205 	 * Don't put anons on the LRU page queue.  We can't flush them
    206 	 * (there's no concept of swap in a rump kernel), so no reason
    207 	 * to bother with them.
    208 	 */
    209 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    210 		atomic_inc_uint(&vmpage_onqueue);
    211 		mutex_enter(&uvm_pageqlock);
    212 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    213 		mutex_exit(&uvm_pageqlock);
    214 	}
    215 
    216 	uobj->uo_npages++;
    217 
    218 	return pg;
    219 }
    220 
    221 /*
    222  * Release a page.
    223  *
    224  * Called with the vm object locked.
    225  */
    226 void
    227 uvm_pagefree(struct vm_page *pg)
    228 {
    229 	struct uvm_object *uobj = pg->uobject;
    230 
    231 	KASSERT(mutex_owned(&uvm_pageqlock));
    232 	KASSERT(mutex_owned(uobj->vmobjlock));
    233 
    234 	if (pg->flags & PG_WANTED)
    235 		wakeup(pg);
    236 
    237 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    238 
    239 	uobj->uo_npages--;
    240 	rb_tree_remove_node(&uobj->rb_tree, pg);
    241 
    242 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    243 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    244 		atomic_dec_uint(&vmpage_onqueue);
    245 	}
    246 
    247 	pool_cache_put(&pagecache, pg);
    248 }
    249 
    250 void
    251 uvm_pagezero(struct vm_page *pg)
    252 {
    253 
    254 	pg->flags &= ~PG_CLEAN;
    255 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    256 }
    257 
    258 /*
    259  * uvm_page_locked_p: return true if object associated with page is
    260  * locked.  this is a weak check for runtime assertions only.
    261  */
    262 
    263 bool
    264 uvm_page_locked_p(struct vm_page *pg)
    265 {
    266 
    267 	return mutex_owned(pg->uobject->vmobjlock);
    268 }
    269 
    270 /*
    271  * Misc routines
    272  */
    273 
    274 static kmutex_t pagermtx;
    275 
    276 void
    277 uvm_init(void)
    278 {
    279 	char buf[64];
    280 
    281 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    282 		unsigned long tmp;
    283 		char *ep;
    284 		int mult;
    285 
    286 		tmp = strtoul(buf, &ep, 10);
    287 		if (strlen(ep) > 1)
    288 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    289 
    290 		/* mini-dehumanize-number */
    291 		mult = 1;
    292 		switch (*ep) {
    293 		case 'k':
    294 			mult = 1024;
    295 			break;
    296 		case 'm':
    297 			mult = 1024*1024;
    298 			break;
    299 		case 'g':
    300 			mult = 1024*1024*1024;
    301 			break;
    302 		case 0:
    303 			break;
    304 		default:
    305 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    306 		}
    307 		rump_physmemlimit = tmp * mult;
    308 
    309 		if (rump_physmemlimit / mult != tmp)
    310 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    311 
    312 		/* reserve some memory for the pager */
    313 		if (rump_physmemlimit <= PDRESERVE)
    314 			panic("uvm_init: system reserves %d bytes of mem, "
    315 			    "only %lu bytes given",
    316 			    PDRESERVE, rump_physmemlimit);
    317 		pdlimit = rump_physmemlimit;
    318 		rump_physmemlimit -= PDRESERVE;
    319 
    320 		if (pdlimit < 1024*1024)
    321 			printf("uvm_init: WARNING: <1MB RAM limit, "
    322 			    "hope you know what you're doing\n");
    323 
    324 #define HUMANIZE_BYTES 9
    325 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    326 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    327 #undef HUMANIZE_BYTES
    328 		dddlim = 9 * (rump_physmemlimit / 10);
    329 	} else {
    330 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    331 	}
    332 	aprint_verbose("total memory = %s\n", buf);
    333 
    334 	TAILQ_INIT(&vmpage_lruqueue);
    335 
    336 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
    337 		uvmexp.npages = physmem;
    338 	} else {
    339 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
    340 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
    341 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
    342 	}
    343 	/*
    344 	 * uvmexp.free is not used internally or updated.  The reason is
    345 	 * that the memory hypercall allocator is allowed to allocate
    346 	 * non-page sized chunks.  We use a byte count in curphysmem
    347 	 * instead.
    348 	 */
    349 	uvmexp.free = uvmexp.npages;
    350 
    351 #ifndef __uvmexp_pagesize
    352 	uvmexp.pagesize = PAGE_SIZE;
    353 	uvmexp.pagemask = PAGE_MASK;
    354 	uvmexp.pageshift = PAGE_SHIFT;
    355 #else
    356 #define FAKE_PAGE_SHIFT 12
    357 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    358 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    359 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    360 #undef FAKE_PAGE_SHIFT
    361 #endif
    362 
    363 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    364 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, IPL_NONE);
    365 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    366 
    367 	/* just to appease linkage */
    368 	mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
    369 
    370 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    371 	cv_init(&pdaemoncv, "pdaemon");
    372 	cv_init(&oomwait, "oomwait");
    373 
    374 	module_map = &module_map_store;
    375 
    376 	kernel_map->pmap = pmap_kernel();
    377 
    378 	pool_subsystem_init();
    379 
    380 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    381 	    NULL, NULL, NULL,
    382 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    383 
    384 	vmem_subsystem_init(kmem_arena);
    385 
    386 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    387 	    vmem_alloc, vmem_free, kmem_arena,
    388 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    389 
    390 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    391 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    392 }
    393 
    394 void
    395 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    396     bool topdown)
    397 {
    398 
    399 	vm->vm_map.pmap = pmap_kernel();
    400 	vm->vm_refcnt = 1;
    401 }
    402 
    403 void
    404 uvm_pagewire(struct vm_page *pg)
    405 {
    406 
    407 	/* nada */
    408 }
    409 
    410 void
    411 uvm_pageunwire(struct vm_page *pg)
    412 {
    413 
    414 	/* nada */
    415 }
    416 
    417 /* where's your schmonz now? */
    418 #define PUNLIMIT(a)	\
    419 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    420 void
    421 uvm_init_limits(struct proc *p)
    422 {
    423 
    424 #ifndef DFLSSIZ
    425 #define DFLSSIZ (16*1024*1024)
    426 #endif
    427 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    428 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    429 	PUNLIMIT(RLIMIT_DATA);
    430 	PUNLIMIT(RLIMIT_RSS);
    431 	PUNLIMIT(RLIMIT_AS);
    432 	/* nice, cascade */
    433 }
    434 #undef PUNLIMIT
    435 
    436 /*
    437  * This satisfies the "disgusting mmap hack" used by proplib.
    438  */
    439 int
    440 uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
    441 {
    442 	int error;
    443 
    444 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    445 	if (*addrp != NULL)
    446 		panic("uvm_mmap() variant unsupported");
    447 
    448 	if (RUMP_LOCALPROC_P(curproc)) {
    449 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
    450 	} else {
    451 		error = rump_sysproxy_anonmmap(p->p_vmspace->vm_map.pmap,
    452 		    size, addrp);
    453 	}
    454 	return error;
    455 }
    456 
    457 /*
    458  * Stubs for things referenced from vfs_vnode.c but not used.
    459  */
    460 const dev_t zerodev;
    461 
    462 struct uvm_object *
    463 udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
    464 {
    465 	return NULL;
    466 }
    467 
    468 struct pagerinfo {
    469 	vaddr_t pgr_kva;
    470 	int pgr_npages;
    471 	struct vm_page **pgr_pgs;
    472 	bool pgr_read;
    473 
    474 	LIST_ENTRY(pagerinfo) pgr_entries;
    475 };
    476 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    477 
    478 /*
    479  * Pager "map" in routine.  Instead of mapping, we allocate memory
    480  * and copy page contents there.  The reason for copying instead of
    481  * mapping is simple: we do not assume we are running on virtual
    482  * memory.  Even if we could emulate virtual memory in some envs
    483  * such as userspace, copying is much faster than trying to awkardly
    484  * cope with remapping (see "Design and Implementation" pp.95-98).
    485  * The downside of the approach is that the pager requires MAXPHYS
    486  * free memory to perform paging, but short of virtual memory or
    487  * making the pager do I/O in page-sized chunks we cannot do much
    488  * about that.
    489  */
    490 vaddr_t
    491 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    492 {
    493 	struct pagerinfo *pgri;
    494 	vaddr_t curkva;
    495 	int i;
    496 
    497 	/* allocate structures */
    498 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    499 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    500 	pgri->pgr_npages = npages;
    501 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    502 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    503 
    504 	/* copy contents to "mapped" memory */
    505 	for (i = 0, curkva = pgri->pgr_kva;
    506 	    i < npages;
    507 	    i++, curkva += PAGE_SIZE) {
    508 		/*
    509 		 * We need to copy the previous contents of the pages to
    510 		 * the window even if we are reading from the
    511 		 * device, since the device might not fill the contents of
    512 		 * the full mapped range and we will end up corrupting
    513 		 * data when we unmap the window.
    514 		 */
    515 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    516 		pgri->pgr_pgs[i] = pgs[i];
    517 	}
    518 
    519 	mutex_enter(&pagermtx);
    520 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    521 	mutex_exit(&pagermtx);
    522 
    523 	return pgri->pgr_kva;
    524 }
    525 
    526 /*
    527  * map out the pager window.  return contents from VA to page storage
    528  * and free structures.
    529  *
    530  * Note: does not currently support partial frees
    531  */
    532 void
    533 uvm_pagermapout(vaddr_t kva, int npages)
    534 {
    535 	struct pagerinfo *pgri;
    536 	vaddr_t curkva;
    537 	int i;
    538 
    539 	mutex_enter(&pagermtx);
    540 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    541 		if (pgri->pgr_kva == kva)
    542 			break;
    543 	}
    544 	KASSERT(pgri);
    545 	if (pgri->pgr_npages != npages)
    546 		panic("uvm_pagermapout: partial unmapping not supported");
    547 	LIST_REMOVE(pgri, pgr_entries);
    548 	mutex_exit(&pagermtx);
    549 
    550 	if (pgri->pgr_read) {
    551 		for (i = 0, curkva = pgri->pgr_kva;
    552 		    i < pgri->pgr_npages;
    553 		    i++, curkva += PAGE_SIZE) {
    554 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    555 		}
    556 	}
    557 
    558 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    559 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    560 	kmem_free(pgri, sizeof(*pgri));
    561 }
    562 
    563 /*
    564  * convert va in pager window to page structure.
    565  * XXX: how expensive is this (global lock, list traversal)?
    566  */
    567 struct vm_page *
    568 uvm_pageratop(vaddr_t va)
    569 {
    570 	struct pagerinfo *pgri;
    571 	struct vm_page *pg = NULL;
    572 	int i;
    573 
    574 	mutex_enter(&pagermtx);
    575 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    576 		if (pgri->pgr_kva <= va
    577 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    578 			break;
    579 	}
    580 	if (pgri) {
    581 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    582 		pg = pgri->pgr_pgs[i];
    583 	}
    584 	mutex_exit(&pagermtx);
    585 
    586 	return pg;
    587 }
    588 
    589 /*
    590  * Called with the vm object locked.
    591  *
    592  * Put vnode object pages at the end of the access queue to indicate
    593  * they have been recently accessed and should not be immediate
    594  * candidates for pageout.  Do not do this for lookups done by
    595  * the pagedaemon to mimic pmap_kentered mappings which don't track
    596  * access information.
    597  */
    598 struct vm_page *
    599 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    600 {
    601 	struct vm_page *pg;
    602 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    603 
    604 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
    605 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    606 		mutex_enter(&uvm_pageqlock);
    607 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    608 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    609 		mutex_exit(&uvm_pageqlock);
    610 	}
    611 
    612 	return pg;
    613 }
    614 
    615 void
    616 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    617 {
    618 	struct vm_page *pg;
    619 	int i;
    620 
    621 	KASSERT(npgs > 0);
    622 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
    623 
    624 	for (i = 0; i < npgs; i++) {
    625 		pg = pgs[i];
    626 		if (pg == NULL)
    627 			continue;
    628 
    629 		KASSERT(pg->flags & PG_BUSY);
    630 		if (pg->flags & PG_WANTED)
    631 			wakeup(pg);
    632 		if (pg->flags & PG_RELEASED)
    633 			uvm_pagefree(pg);
    634 		else
    635 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    636 	}
    637 }
    638 
    639 void
    640 uvm_estimatepageable(int *active, int *inactive)
    641 {
    642 
    643 	/* XXX: guessing game */
    644 	*active = 1024;
    645 	*inactive = 1024;
    646 }
    647 
    648 bool
    649 vm_map_starved_p(struct vm_map *map)
    650 {
    651 
    652 	if (map->flags & VM_MAP_WANTVA)
    653 		return true;
    654 
    655 	return false;
    656 }
    657 
    658 int
    659 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    660 {
    661 
    662 	panic("%s: unimplemented", __func__);
    663 }
    664 
    665 void
    666 uvm_unloan(void *v, int npages, int flags)
    667 {
    668 
    669 	panic("%s: unimplemented", __func__);
    670 }
    671 
    672 int
    673 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    674 	struct vm_page **opp)
    675 {
    676 
    677 	return EBUSY;
    678 }
    679 
    680 struct vm_page *
    681 uvm_loanbreak(struct vm_page *pg)
    682 {
    683 
    684 	panic("%s: unimplemented", __func__);
    685 }
    686 
    687 void
    688 ubc_purge(struct uvm_object *uobj)
    689 {
    690 
    691 }
    692 
    693 vaddr_t
    694 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    695 {
    696 
    697 	return 0;
    698 }
    699 
    700 int
    701 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    702 	vm_prot_t prot, bool set_max)
    703 {
    704 
    705 	return EOPNOTSUPP;
    706 }
    707 
    708 /*
    709  * UVM km
    710  */
    711 
    712 vaddr_t
    713 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    714 {
    715 	void *rv, *desired = NULL;
    716 	int alignbit, error;
    717 
    718 #ifdef __x86_64__
    719 	/*
    720 	 * On amd64, allocate all module memory from the lowest 2GB.
    721 	 * This is because NetBSD kernel modules are compiled
    722 	 * with -mcmodel=kernel and reserve only 4 bytes for
    723 	 * offsets.  If we load code compiled with -mcmodel=kernel
    724 	 * anywhere except the lowest or highest 2GB, it will not
    725 	 * work.  Since userspace does not have access to the highest
    726 	 * 2GB, use the lowest 2GB.
    727 	 *
    728 	 * Note: this assumes the rump kernel resides in
    729 	 * the lowest 2GB as well.
    730 	 *
    731 	 * Note2: yes, it's a quick hack, but since this the only
    732 	 * place where we care about the map we're allocating from,
    733 	 * just use a simple "if" instead of coming up with a fancy
    734 	 * generic solution.
    735 	 */
    736 	if (map == module_map) {
    737 		desired = (void *)(0x80000000 - size);
    738 	}
    739 #endif
    740 
    741 	if (__predict_false(map == module_map)) {
    742 		alignbit = 0;
    743 		if (align) {
    744 			alignbit = ffs(align)-1;
    745 		}
    746 		error = rumpuser_anonmmap(desired, size, alignbit,
    747 		    flags & UVM_KMF_EXEC, &rv);
    748 	} else {
    749 		error = rumpuser_malloc(size, align, &rv);
    750 	}
    751 
    752 	if (error) {
    753 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    754 			return 0;
    755 		else
    756 			panic("uvm_km_alloc failed");
    757 	}
    758 
    759 	if (flags & UVM_KMF_ZERO)
    760 		memset(rv, 0, size);
    761 
    762 	return (vaddr_t)rv;
    763 }
    764 
    765 void
    766 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    767 {
    768 
    769 	if (__predict_false(map == module_map))
    770 		rumpuser_unmap((void *)vaddr, size);
    771 	else
    772 		rumpuser_free((void *)vaddr, size);
    773 }
    774 
    775 struct vm_map *
    776 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    777 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    778 {
    779 
    780 	return (struct vm_map *)417416;
    781 }
    782 
    783 int
    784 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    785     vmem_addr_t *addr)
    786 {
    787 	vaddr_t va;
    788 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    789 	    (flags & VM_SLEEP), "kmalloc");
    790 
    791 	if (va) {
    792 		*addr = va;
    793 		return 0;
    794 	} else {
    795 		return ENOMEM;
    796 	}
    797 }
    798 
    799 void
    800 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    801 {
    802 
    803 	rump_hyperfree((void *)addr, size);
    804 }
    805 
    806 /*
    807  * VM space locking routines.  We don't really have to do anything,
    808  * since the pages are always "wired" (both local and remote processes).
    809  */
    810 int
    811 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    812 {
    813 
    814 	return 0;
    815 }
    816 
    817 void
    818 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    819 {
    820 
    821 }
    822 
    823 /*
    824  * For the local case the buffer mappers don't need to do anything.
    825  * For the remote case we need to reserve space and copy data in or
    826  * out, depending on B_READ/B_WRITE.
    827  */
    828 int
    829 vmapbuf(struct buf *bp, vsize_t len)
    830 {
    831 	int error = 0;
    832 
    833 	bp->b_saveaddr = bp->b_data;
    834 
    835 	/* remote case */
    836 	if (!RUMP_LOCALPROC_P(curproc)) {
    837 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    838 		if (BUF_ISWRITE(bp)) {
    839 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    840 			if (error) {
    841 				rump_hyperfree(bp->b_data, len);
    842 				bp->b_data = bp->b_saveaddr;
    843 				bp->b_saveaddr = 0;
    844 			}
    845 		}
    846 	}
    847 
    848 	return error;
    849 }
    850 
    851 void
    852 vunmapbuf(struct buf *bp, vsize_t len)
    853 {
    854 
    855 	/* remote case */
    856 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    857 		if (BUF_ISREAD(bp)) {
    858 			bp->b_error = copyout_proc(bp->b_proc,
    859 			    bp->b_data, bp->b_saveaddr, len);
    860 		}
    861 		rump_hyperfree(bp->b_data, len);
    862 	}
    863 
    864 	bp->b_data = bp->b_saveaddr;
    865 	bp->b_saveaddr = 0;
    866 }
    867 
    868 void
    869 uvmspace_addref(struct vmspace *vm)
    870 {
    871 
    872 	/*
    873 	 * No dynamically allocated vmspaces exist.
    874 	 */
    875 }
    876 
    877 void
    878 uvmspace_free(struct vmspace *vm)
    879 {
    880 
    881 	/* nothing for now */
    882 }
    883 
    884 /*
    885  * page life cycle stuff.  it really doesn't exist, so just stubs.
    886  */
    887 
    888 void
    889 uvm_pageactivate(struct vm_page *pg)
    890 {
    891 
    892 	/* nada */
    893 }
    894 
    895 void
    896 uvm_pagedeactivate(struct vm_page *pg)
    897 {
    898 
    899 	/* nada */
    900 }
    901 
    902 void
    903 uvm_pagedequeue(struct vm_page *pg)
    904 {
    905 
    906 	/* nada*/
    907 }
    908 
    909 void
    910 uvm_pageenqueue(struct vm_page *pg)
    911 {
    912 
    913 	/* nada */
    914 }
    915 
    916 void
    917 uvmpdpol_anfree(struct vm_anon *an)
    918 {
    919 
    920 	/* nada */
    921 }
    922 
    923 /*
    924  * Physical address accessors.
    925  */
    926 
    927 struct vm_page *
    928 uvm_phys_to_vm_page(paddr_t pa)
    929 {
    930 
    931 	return NULL;
    932 }
    933 
    934 paddr_t
    935 uvm_vm_page_to_phys(const struct vm_page *pg)
    936 {
    937 
    938 	return 0;
    939 }
    940 
    941 vaddr_t
    942 uvm_uarea_alloc(void)
    943 {
    944 
    945 	/* non-zero */
    946 	return (vaddr_t)11;
    947 }
    948 
    949 void
    950 uvm_uarea_free(vaddr_t uarea)
    951 {
    952 
    953 	/* nata, so creamy */
    954 }
    955 
    956 /*
    957  * Routines related to the Page Baroness.
    958  */
    959 
    960 void
    961 uvm_wait(const char *msg)
    962 {
    963 
    964 	if (__predict_false(rump_threads == 0))
    965 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    966 
    967 	if (curlwp == uvm.pagedaemon_lwp) {
    968 		/* is it possible for us to later get memory? */
    969 		if (!uvmexp.paging)
    970 			panic("pagedaemon out of memory");
    971 	}
    972 
    973 	mutex_enter(&pdaemonmtx);
    974 	pdaemon_waiters++;
    975 	cv_signal(&pdaemoncv);
    976 	cv_wait(&oomwait, &pdaemonmtx);
    977 	mutex_exit(&pdaemonmtx);
    978 }
    979 
    980 void
    981 uvm_pageout_start(int npages)
    982 {
    983 
    984 	mutex_enter(&pdaemonmtx);
    985 	uvmexp.paging += npages;
    986 	mutex_exit(&pdaemonmtx);
    987 }
    988 
    989 void
    990 uvm_pageout_done(int npages)
    991 {
    992 
    993 	if (!npages)
    994 		return;
    995 
    996 	mutex_enter(&pdaemonmtx);
    997 	KASSERT(uvmexp.paging >= npages);
    998 	uvmexp.paging -= npages;
    999 
   1000 	if (pdaemon_waiters) {
   1001 		pdaemon_waiters = 0;
   1002 		cv_broadcast(&oomwait);
   1003 	}
   1004 	mutex_exit(&pdaemonmtx);
   1005 }
   1006 
   1007 static bool
   1008 processpage(struct vm_page *pg, bool *lockrunning)
   1009 {
   1010 	struct uvm_object *uobj;
   1011 
   1012 	uobj = pg->uobject;
   1013 	if (mutex_tryenter(uobj->vmobjlock)) {
   1014 		if ((pg->flags & PG_BUSY) == 0) {
   1015 			mutex_exit(&uvm_pageqlock);
   1016 			uobj->pgops->pgo_put(uobj, pg->offset,
   1017 			    pg->offset + PAGE_SIZE,
   1018 			    PGO_CLEANIT|PGO_FREE);
   1019 			KASSERT(!mutex_owned(uobj->vmobjlock));
   1020 			return true;
   1021 		} else {
   1022 			mutex_exit(uobj->vmobjlock);
   1023 		}
   1024 	} else if (*lockrunning == false && ncpu > 1) {
   1025 		CPU_INFO_ITERATOR cii;
   1026 		struct cpu_info *ci;
   1027 		struct lwp *l;
   1028 
   1029 		l = mutex_owner(uobj->vmobjlock);
   1030 		for (CPU_INFO_FOREACH(cii, ci)) {
   1031 			if (ci->ci_curlwp == l) {
   1032 				*lockrunning = true;
   1033 				break;
   1034 			}
   1035 		}
   1036 	}
   1037 
   1038 	return false;
   1039 }
   1040 
   1041 /*
   1042  * The Diabolical pageDaemon Director (DDD).
   1043  *
   1044  * This routine can always use better heuristics.
   1045  */
   1046 void
   1047 uvm_pageout(void *arg)
   1048 {
   1049 	struct vm_page *pg;
   1050 	struct pool *pp, *pp_first;
   1051 	int cleaned, skip, skipped;
   1052 	bool succ;
   1053 	bool lockrunning;
   1054 
   1055 	mutex_enter(&pdaemonmtx);
   1056 	for (;;) {
   1057 		if (!NEED_PAGEDAEMON()) {
   1058 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1059 		}
   1060 
   1061 		if (pdaemon_waiters) {
   1062 			pdaemon_waiters = 0;
   1063 			cv_broadcast(&oomwait);
   1064 		}
   1065 
   1066 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1067 		uvmexp.pdwoke++;
   1068 
   1069 		/* tell the world that we are hungry */
   1070 		kernel_map->flags |= VM_MAP_WANTVA;
   1071 		mutex_exit(&pdaemonmtx);
   1072 
   1073 		/*
   1074 		 * step one: reclaim the page cache.  this should give
   1075 		 * us the biggest earnings since whole pages are released
   1076 		 * into backing memory.
   1077 		 */
   1078 		pool_cache_reclaim(&pagecache);
   1079 		if (!NEED_PAGEDAEMON()) {
   1080 			mutex_enter(&pdaemonmtx);
   1081 			continue;
   1082 		}
   1083 
   1084 		/*
   1085 		 * Ok, so that didn't help.  Next, try to hunt memory
   1086 		 * by pushing out vnode pages.  The pages might contain
   1087 		 * useful cached data, but we need the memory.
   1088 		 */
   1089 		cleaned = 0;
   1090 		skip = 0;
   1091 		lockrunning = false;
   1092  again:
   1093 		mutex_enter(&uvm_pageqlock);
   1094 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1095 			skipped = 0;
   1096 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1097 
   1098 				/*
   1099 				 * skip over pages we _might_ have tried
   1100 				 * to handle earlier.  they might not be
   1101 				 * exactly the same ones, but I'm not too
   1102 				 * concerned.
   1103 				 */
   1104 				while (skipped++ < skip)
   1105 					continue;
   1106 
   1107 				if (processpage(pg, &lockrunning)) {
   1108 					cleaned++;
   1109 					goto again;
   1110 				}
   1111 
   1112 				skip++;
   1113 			}
   1114 			break;
   1115 		}
   1116 		mutex_exit(&uvm_pageqlock);
   1117 
   1118 		/*
   1119 		 * Ok, someone is running with an object lock held.
   1120 		 * We want to yield the host CPU to make sure the
   1121 		 * thread is not parked on the host.  Since sched_yield()
   1122 		 * doesn't appear to do anything on NetBSD, nanosleep
   1123 		 * for the smallest possible time and hope we're back in
   1124 		 * the game soon.
   1125 		 */
   1126 		if (cleaned == 0 && lockrunning) {
   1127 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
   1128 
   1129 			lockrunning = false;
   1130 			skip = 0;
   1131 
   1132 			/* and here we go again */
   1133 			goto again;
   1134 		}
   1135 
   1136 		/*
   1137 		 * And of course we need to reclaim the page cache
   1138 		 * again to actually release memory.
   1139 		 */
   1140 		pool_cache_reclaim(&pagecache);
   1141 		if (!NEED_PAGEDAEMON()) {
   1142 			mutex_enter(&pdaemonmtx);
   1143 			continue;
   1144 		}
   1145 
   1146 		/*
   1147 		 * And then drain the pools.  Wipe them out ... all of them.
   1148 		 */
   1149 		for (pp_first = NULL;;) {
   1150 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1151 
   1152 			succ = pool_drain(&pp);
   1153 			if (succ || pp == pp_first)
   1154 				break;
   1155 
   1156 			if (pp_first == NULL)
   1157 				pp_first = pp;
   1158 		}
   1159 
   1160 		/*
   1161 		 * Need to use PYEC on our bag of tricks.
   1162 		 * Unfortunately, the wife just borrowed it.
   1163 		 */
   1164 
   1165 		mutex_enter(&pdaemonmtx);
   1166 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1167 		    uvmexp.paging == 0) {
   1168 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1169 			    "memory ... sleeping (deadlock?)\n");
   1170 			cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
   1171 		}
   1172 	}
   1173 
   1174 	panic("you can swap out any time you like, but you can never leave");
   1175 }
   1176 
   1177 void
   1178 uvm_kick_pdaemon()
   1179 {
   1180 
   1181 	/*
   1182 	 * Wake up the diabolical pagedaemon director if we are over
   1183 	 * 90% of the memory limit.  This is a complete and utter
   1184 	 * stetson-harrison decision which you are allowed to finetune.
   1185 	 * Don't bother locking.  If we have some unflushed caches,
   1186 	 * other waker-uppers will deal with the issue.
   1187 	 */
   1188 	if (NEED_PAGEDAEMON()) {
   1189 		cv_signal(&pdaemoncv);
   1190 	}
   1191 }
   1192 
   1193 void *
   1194 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1195 {
   1196 	const unsigned long thelimit =
   1197 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1198 	unsigned long newmem;
   1199 	void *rv;
   1200 	int error;
   1201 
   1202 	uvm_kick_pdaemon(); /* ouch */
   1203 
   1204 	/* first we must be within the limit */
   1205  limitagain:
   1206 	if (thelimit != RUMPMEM_UNLIMITED) {
   1207 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1208 		if (newmem > thelimit) {
   1209 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1210 			if (!waitok) {
   1211 				return NULL;
   1212 			}
   1213 			uvm_wait(wmsg);
   1214 			goto limitagain;
   1215 		}
   1216 	}
   1217 
   1218 	/* second, we must get something from the backend */
   1219  again:
   1220 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1221 	if (__predict_false(error && waitok)) {
   1222 		uvm_wait(wmsg);
   1223 		goto again;
   1224 	}
   1225 
   1226 	return rv;
   1227 }
   1228 
   1229 void
   1230 rump_hyperfree(void *what, size_t size)
   1231 {
   1232 
   1233 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1234 		atomic_add_long(&curphysmem, -size);
   1235 	}
   1236 	rumpuser_free(what, size);
   1237 }
   1238