Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.162
      1 /*	$NetBSD: vm.c,v 1.162 2015/04/03 16:40:55 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.162 2015/04/03 16:40:55 pooka Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/vmem.h>
     52 #include <sys/mman.h>
     53 #include <sys/null.h>
     54 #include <sys/vnode.h>
     55 
     56 #include <machine/pmap.h>
     57 
     58 #include <rump/rumpuser.h>
     59 
     60 #include <uvm/uvm.h>
     61 #include <uvm/uvm_ddb.h>
     62 #include <uvm/uvm_pdpolicy.h>
     63 #include <uvm/uvm_prot.h>
     64 #include <uvm/uvm_readahead.h>
     65 #include <uvm/uvm_device.h>
     66 
     67 #include "rump_private.h"
     68 #include "rump_vfs_private.h"
     69 
     70 kmutex_t uvm_pageqlock; /* non-free page lock */
     71 kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
     72 kmutex_t uvm_swap_data_lock;
     73 
     74 struct uvmexp uvmexp;
     75 struct uvm uvm;
     76 
     77 #ifdef __uvmexp_pagesize
     78 const int * const uvmexp_pagesize = &uvmexp.pagesize;
     79 const int * const uvmexp_pagemask = &uvmexp.pagemask;
     80 const int * const uvmexp_pageshift = &uvmexp.pageshift;
     81 #endif
     82 
     83 struct vm_map rump_vmmap;
     84 
     85 static struct vm_map kernel_map_store;
     86 struct vm_map *kernel_map = &kernel_map_store;
     87 
     88 static struct vm_map module_map_store;
     89 extern struct vm_map *module_map;
     90 
     91 vmem_t *kmem_arena;
     92 vmem_t *kmem_va_arena;
     93 
     94 static unsigned int pdaemon_waiters;
     95 static kmutex_t pdaemonmtx;
     96 static kcondvar_t pdaemoncv, oomwait;
     97 
     98 /* all local non-proc0 processes share this vmspace */
     99 struct vmspace *rump_vmspace_local;
    100 
    101 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
    102 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
    103 static unsigned long curphysmem;
    104 static unsigned long dddlim;		/* 90% of memory limit used */
    105 #define NEED_PAGEDAEMON() \
    106     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    107 #define PDRESERVE (2*MAXPHYS)
    108 
    109 /*
    110  * Try to free two pages worth of pages from objects.
    111  * If this succesfully frees a full page cache page, we'll
    112  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    113  */
    114 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    115 
    116 /*
    117  * Keep a list of least recently used pages.  Since the only way a
    118  * rump kernel can "access" a page is via lookup, we put the page
    119  * at the back of queue every time a lookup for it is done.  If the
    120  * page is in front of this global queue and we're short of memory,
    121  * it's a candidate for pageout.
    122  */
    123 static struct pglist vmpage_lruqueue;
    124 static unsigned vmpage_onqueue;
    125 
    126 static int
    127 pg_compare_key(void *ctx, const void *n, const void *key)
    128 {
    129 	voff_t a = ((const struct vm_page *)n)->offset;
    130 	voff_t b = *(const voff_t *)key;
    131 
    132 	if (a < b)
    133 		return -1;
    134 	else if (a > b)
    135 		return 1;
    136 	else
    137 		return 0;
    138 }
    139 
    140 static int
    141 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
    142 {
    143 
    144 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
    145 }
    146 
    147 const rb_tree_ops_t uvm_page_tree_ops = {
    148 	.rbto_compare_nodes = pg_compare_nodes,
    149 	.rbto_compare_key = pg_compare_key,
    150 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    151 	.rbto_context = NULL
    152 };
    153 
    154 /*
    155  * vm pages
    156  */
    157 
    158 static int
    159 pgctor(void *arg, void *obj, int flags)
    160 {
    161 	struct vm_page *pg = obj;
    162 
    163 	memset(pg, 0, sizeof(*pg));
    164 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    165 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    166 	return pg->uanon == NULL;
    167 }
    168 
    169 static void
    170 pgdtor(void *arg, void *obj)
    171 {
    172 	struct vm_page *pg = obj;
    173 
    174 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    175 }
    176 
    177 static struct pool_cache pagecache;
    178 
    179 /*
    180  * Called with the object locked.  We don't support anons.
    181  */
    182 struct vm_page *
    183 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    184 	int flags, int strat, int free_list)
    185 {
    186 	struct vm_page *pg;
    187 
    188 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
    189 	KASSERT(anon == NULL);
    190 
    191 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    192 	if (__predict_false(pg == NULL)) {
    193 		return NULL;
    194 	}
    195 
    196 	pg->offset = off;
    197 	pg->uobject = uobj;
    198 
    199 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    200 	if (flags & UVM_PGA_ZERO) {
    201 		uvm_pagezero(pg);
    202 	}
    203 
    204 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    205 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
    206 
    207 	/*
    208 	 * Don't put anons on the LRU page queue.  We can't flush them
    209 	 * (there's no concept of swap in a rump kernel), so no reason
    210 	 * to bother with them.
    211 	 */
    212 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    213 		atomic_inc_uint(&vmpage_onqueue);
    214 		mutex_enter(&uvm_pageqlock);
    215 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    216 		mutex_exit(&uvm_pageqlock);
    217 	}
    218 
    219 	uobj->uo_npages++;
    220 
    221 	return pg;
    222 }
    223 
    224 /*
    225  * Release a page.
    226  *
    227  * Called with the vm object locked.
    228  */
    229 void
    230 uvm_pagefree(struct vm_page *pg)
    231 {
    232 	struct uvm_object *uobj = pg->uobject;
    233 
    234 	KASSERT(mutex_owned(&uvm_pageqlock));
    235 	KASSERT(mutex_owned(uobj->vmobjlock));
    236 
    237 	if (pg->flags & PG_WANTED)
    238 		wakeup(pg);
    239 
    240 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    241 
    242 	uobj->uo_npages--;
    243 	rb_tree_remove_node(&uobj->rb_tree, pg);
    244 
    245 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    246 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    247 		atomic_dec_uint(&vmpage_onqueue);
    248 	}
    249 
    250 	pool_cache_put(&pagecache, pg);
    251 }
    252 
    253 void
    254 uvm_pagezero(struct vm_page *pg)
    255 {
    256 
    257 	pg->flags &= ~PG_CLEAN;
    258 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    259 }
    260 
    261 /*
    262  * uvm_page_locked_p: return true if object associated with page is
    263  * locked.  this is a weak check for runtime assertions only.
    264  */
    265 
    266 bool
    267 uvm_page_locked_p(struct vm_page *pg)
    268 {
    269 
    270 	return mutex_owned(pg->uobject->vmobjlock);
    271 }
    272 
    273 /*
    274  * Misc routines
    275  */
    276 
    277 static kmutex_t pagermtx;
    278 
    279 void
    280 uvm_init(void)
    281 {
    282 	char buf[64];
    283 
    284 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    285 		unsigned long tmp;
    286 		char *ep;
    287 		int mult;
    288 
    289 		tmp = strtoul(buf, &ep, 10);
    290 		if (strlen(ep) > 1)
    291 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    292 
    293 		/* mini-dehumanize-number */
    294 		mult = 1;
    295 		switch (*ep) {
    296 		case 'k':
    297 			mult = 1024;
    298 			break;
    299 		case 'm':
    300 			mult = 1024*1024;
    301 			break;
    302 		case 'g':
    303 			mult = 1024*1024*1024;
    304 			break;
    305 		case 0:
    306 			break;
    307 		default:
    308 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    309 		}
    310 		rump_physmemlimit = tmp * mult;
    311 
    312 		if (rump_physmemlimit / mult != tmp)
    313 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    314 
    315 		/* reserve some memory for the pager */
    316 		if (rump_physmemlimit <= PDRESERVE)
    317 			panic("uvm_init: system reserves %d bytes of mem, "
    318 			    "only %lu bytes given",
    319 			    PDRESERVE, rump_physmemlimit);
    320 		pdlimit = rump_physmemlimit;
    321 		rump_physmemlimit -= PDRESERVE;
    322 
    323 		if (pdlimit < 1024*1024)
    324 			printf("uvm_init: WARNING: <1MB RAM limit, "
    325 			    "hope you know what you're doing\n");
    326 
    327 #define HUMANIZE_BYTES 9
    328 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    329 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    330 #undef HUMANIZE_BYTES
    331 		dddlim = 9 * (rump_physmemlimit / 10);
    332 	} else {
    333 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    334 	}
    335 	aprint_verbose("total memory = %s\n", buf);
    336 
    337 	TAILQ_INIT(&vmpage_lruqueue);
    338 
    339 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
    340 		uvmexp.npages = physmem;
    341 	} else {
    342 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
    343 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
    344 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
    345 	}
    346 	/*
    347 	 * uvmexp.free is not used internally or updated.  The reason is
    348 	 * that the memory hypercall allocator is allowed to allocate
    349 	 * non-page sized chunks.  We use a byte count in curphysmem
    350 	 * instead.
    351 	 */
    352 	uvmexp.free = uvmexp.npages;
    353 
    354 #ifndef __uvmexp_pagesize
    355 	uvmexp.pagesize = PAGE_SIZE;
    356 	uvmexp.pagemask = PAGE_MASK;
    357 	uvmexp.pageshift = PAGE_SHIFT;
    358 #else
    359 #define FAKE_PAGE_SHIFT 12
    360 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    361 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    362 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    363 #undef FAKE_PAGE_SHIFT
    364 #endif
    365 
    366 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    367 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, IPL_NONE);
    368 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    369 
    370 	/* just to appease linkage */
    371 	mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
    372 
    373 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    374 	cv_init(&pdaemoncv, "pdaemon");
    375 	cv_init(&oomwait, "oomwait");
    376 
    377 	module_map = &module_map_store;
    378 
    379 	kernel_map->pmap = pmap_kernel();
    380 
    381 	pool_subsystem_init();
    382 
    383 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    384 	    NULL, NULL, NULL,
    385 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    386 
    387 	vmem_subsystem_init(kmem_arena);
    388 
    389 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    390 	    vmem_alloc, vmem_free, kmem_arena,
    391 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    392 
    393 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    394 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    395 
    396 	/* create vmspace used by local clients */
    397 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
    398 	uvmspace_init(rump_vmspace_local, (struct pmap *)-2, 0, 0, false);
    399 }
    400 
    401 void
    402 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    403     bool topdown)
    404 {
    405 
    406 	vm->vm_map.pmap = pmap;
    407 	vm->vm_refcnt = 1;
    408 }
    409 
    410 void
    411 uvm_pagewire(struct vm_page *pg)
    412 {
    413 
    414 	/* nada */
    415 }
    416 
    417 void
    418 uvm_pageunwire(struct vm_page *pg)
    419 {
    420 
    421 	/* nada */
    422 }
    423 
    424 /* where's your schmonz now? */
    425 #define PUNLIMIT(a)	\
    426 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    427 void
    428 uvm_init_limits(struct proc *p)
    429 {
    430 
    431 #ifndef DFLSSIZ
    432 #define DFLSSIZ (16*1024*1024)
    433 #endif
    434 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    435 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    436 	PUNLIMIT(RLIMIT_DATA);
    437 	PUNLIMIT(RLIMIT_RSS);
    438 	PUNLIMIT(RLIMIT_AS);
    439 	/* nice, cascade */
    440 }
    441 #undef PUNLIMIT
    442 
    443 /*
    444  * This satisfies the "disgusting mmap hack" used by proplib.
    445  */
    446 int
    447 uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
    448 {
    449 	int error;
    450 
    451 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    452 	if (*addrp != NULL)
    453 		panic("uvm_mmap() variant unsupported");
    454 
    455 	if (RUMP_LOCALPROC_P(curproc)) {
    456 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
    457 	} else {
    458 		error = rump_sysproxy_anonmmap(p->p_vmspace->vm_map.pmap,
    459 		    size, addrp);
    460 	}
    461 	return error;
    462 }
    463 
    464 /*
    465  * Stubs for things referenced from vfs_vnode.c but not used.
    466  */
    467 const dev_t zerodev;
    468 
    469 struct uvm_object *
    470 udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
    471 {
    472 	return NULL;
    473 }
    474 
    475 struct pagerinfo {
    476 	vaddr_t pgr_kva;
    477 	int pgr_npages;
    478 	struct vm_page **pgr_pgs;
    479 	bool pgr_read;
    480 
    481 	LIST_ENTRY(pagerinfo) pgr_entries;
    482 };
    483 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    484 
    485 /*
    486  * Pager "map" in routine.  Instead of mapping, we allocate memory
    487  * and copy page contents there.  The reason for copying instead of
    488  * mapping is simple: we do not assume we are running on virtual
    489  * memory.  Even if we could emulate virtual memory in some envs
    490  * such as userspace, copying is much faster than trying to awkardly
    491  * cope with remapping (see "Design and Implementation" pp.95-98).
    492  * The downside of the approach is that the pager requires MAXPHYS
    493  * free memory to perform paging, but short of virtual memory or
    494  * making the pager do I/O in page-sized chunks we cannot do much
    495  * about that.
    496  */
    497 vaddr_t
    498 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    499 {
    500 	struct pagerinfo *pgri;
    501 	vaddr_t curkva;
    502 	int i;
    503 
    504 	/* allocate structures */
    505 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    506 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    507 	pgri->pgr_npages = npages;
    508 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    509 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    510 
    511 	/* copy contents to "mapped" memory */
    512 	for (i = 0, curkva = pgri->pgr_kva;
    513 	    i < npages;
    514 	    i++, curkva += PAGE_SIZE) {
    515 		/*
    516 		 * We need to copy the previous contents of the pages to
    517 		 * the window even if we are reading from the
    518 		 * device, since the device might not fill the contents of
    519 		 * the full mapped range and we will end up corrupting
    520 		 * data when we unmap the window.
    521 		 */
    522 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    523 		pgri->pgr_pgs[i] = pgs[i];
    524 	}
    525 
    526 	mutex_enter(&pagermtx);
    527 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    528 	mutex_exit(&pagermtx);
    529 
    530 	return pgri->pgr_kva;
    531 }
    532 
    533 /*
    534  * map out the pager window.  return contents from VA to page storage
    535  * and free structures.
    536  *
    537  * Note: does not currently support partial frees
    538  */
    539 void
    540 uvm_pagermapout(vaddr_t kva, int npages)
    541 {
    542 	struct pagerinfo *pgri;
    543 	vaddr_t curkva;
    544 	int i;
    545 
    546 	mutex_enter(&pagermtx);
    547 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    548 		if (pgri->pgr_kva == kva)
    549 			break;
    550 	}
    551 	KASSERT(pgri);
    552 	if (pgri->pgr_npages != npages)
    553 		panic("uvm_pagermapout: partial unmapping not supported");
    554 	LIST_REMOVE(pgri, pgr_entries);
    555 	mutex_exit(&pagermtx);
    556 
    557 	if (pgri->pgr_read) {
    558 		for (i = 0, curkva = pgri->pgr_kva;
    559 		    i < pgri->pgr_npages;
    560 		    i++, curkva += PAGE_SIZE) {
    561 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    562 		}
    563 	}
    564 
    565 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    566 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    567 	kmem_free(pgri, sizeof(*pgri));
    568 }
    569 
    570 /*
    571  * convert va in pager window to page structure.
    572  * XXX: how expensive is this (global lock, list traversal)?
    573  */
    574 struct vm_page *
    575 uvm_pageratop(vaddr_t va)
    576 {
    577 	struct pagerinfo *pgri;
    578 	struct vm_page *pg = NULL;
    579 	int i;
    580 
    581 	mutex_enter(&pagermtx);
    582 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    583 		if (pgri->pgr_kva <= va
    584 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    585 			break;
    586 	}
    587 	if (pgri) {
    588 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    589 		pg = pgri->pgr_pgs[i];
    590 	}
    591 	mutex_exit(&pagermtx);
    592 
    593 	return pg;
    594 }
    595 
    596 /*
    597  * Called with the vm object locked.
    598  *
    599  * Put vnode object pages at the end of the access queue to indicate
    600  * they have been recently accessed and should not be immediate
    601  * candidates for pageout.  Do not do this for lookups done by
    602  * the pagedaemon to mimic pmap_kentered mappings which don't track
    603  * access information.
    604  */
    605 struct vm_page *
    606 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    607 {
    608 	struct vm_page *pg;
    609 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    610 
    611 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
    612 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    613 		mutex_enter(&uvm_pageqlock);
    614 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    615 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    616 		mutex_exit(&uvm_pageqlock);
    617 	}
    618 
    619 	return pg;
    620 }
    621 
    622 void
    623 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    624 {
    625 	struct vm_page *pg;
    626 	int i;
    627 
    628 	KASSERT(npgs > 0);
    629 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
    630 
    631 	for (i = 0; i < npgs; i++) {
    632 		pg = pgs[i];
    633 		if (pg == NULL)
    634 			continue;
    635 
    636 		KASSERT(pg->flags & PG_BUSY);
    637 		if (pg->flags & PG_WANTED)
    638 			wakeup(pg);
    639 		if (pg->flags & PG_RELEASED)
    640 			uvm_pagefree(pg);
    641 		else
    642 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    643 	}
    644 }
    645 
    646 void
    647 uvm_estimatepageable(int *active, int *inactive)
    648 {
    649 
    650 	/* XXX: guessing game */
    651 	*active = 1024;
    652 	*inactive = 1024;
    653 }
    654 
    655 bool
    656 vm_map_starved_p(struct vm_map *map)
    657 {
    658 
    659 	if (map->flags & VM_MAP_WANTVA)
    660 		return true;
    661 
    662 	return false;
    663 }
    664 
    665 int
    666 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    667 {
    668 
    669 	panic("%s: unimplemented", __func__);
    670 }
    671 
    672 void
    673 uvm_unloan(void *v, int npages, int flags)
    674 {
    675 
    676 	panic("%s: unimplemented", __func__);
    677 }
    678 
    679 int
    680 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    681 	struct vm_page **opp)
    682 {
    683 
    684 	return EBUSY;
    685 }
    686 
    687 struct vm_page *
    688 uvm_loanbreak(struct vm_page *pg)
    689 {
    690 
    691 	panic("%s: unimplemented", __func__);
    692 }
    693 
    694 void
    695 ubc_purge(struct uvm_object *uobj)
    696 {
    697 
    698 }
    699 
    700 vaddr_t
    701 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    702 {
    703 
    704 	return 0;
    705 }
    706 
    707 int
    708 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    709 	vm_prot_t prot, bool set_max)
    710 {
    711 
    712 	return EOPNOTSUPP;
    713 }
    714 
    715 /*
    716  * UVM km
    717  */
    718 
    719 vaddr_t
    720 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    721 {
    722 	void *rv, *desired = NULL;
    723 	int alignbit, error;
    724 
    725 #ifdef __x86_64__
    726 	/*
    727 	 * On amd64, allocate all module memory from the lowest 2GB.
    728 	 * This is because NetBSD kernel modules are compiled
    729 	 * with -mcmodel=kernel and reserve only 4 bytes for
    730 	 * offsets.  If we load code compiled with -mcmodel=kernel
    731 	 * anywhere except the lowest or highest 2GB, it will not
    732 	 * work.  Since userspace does not have access to the highest
    733 	 * 2GB, use the lowest 2GB.
    734 	 *
    735 	 * Note: this assumes the rump kernel resides in
    736 	 * the lowest 2GB as well.
    737 	 *
    738 	 * Note2: yes, it's a quick hack, but since this the only
    739 	 * place where we care about the map we're allocating from,
    740 	 * just use a simple "if" instead of coming up with a fancy
    741 	 * generic solution.
    742 	 */
    743 	if (map == module_map) {
    744 		desired = (void *)(0x80000000 - size);
    745 	}
    746 #endif
    747 
    748 	if (__predict_false(map == module_map)) {
    749 		alignbit = 0;
    750 		if (align) {
    751 			alignbit = ffs(align)-1;
    752 		}
    753 		error = rumpuser_anonmmap(desired, size, alignbit,
    754 		    flags & UVM_KMF_EXEC, &rv);
    755 	} else {
    756 		error = rumpuser_malloc(size, align, &rv);
    757 	}
    758 
    759 	if (error) {
    760 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    761 			return 0;
    762 		else
    763 			panic("uvm_km_alloc failed");
    764 	}
    765 
    766 	if (flags & UVM_KMF_ZERO)
    767 		memset(rv, 0, size);
    768 
    769 	return (vaddr_t)rv;
    770 }
    771 
    772 void
    773 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    774 {
    775 
    776 	if (__predict_false(map == module_map))
    777 		rumpuser_unmap((void *)vaddr, size);
    778 	else
    779 		rumpuser_free((void *)vaddr, size);
    780 }
    781 
    782 struct vm_map *
    783 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    784 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    785 {
    786 
    787 	return (struct vm_map *)417416;
    788 }
    789 
    790 int
    791 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    792     vmem_addr_t *addr)
    793 {
    794 	vaddr_t va;
    795 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    796 	    (flags & VM_SLEEP), "kmalloc");
    797 
    798 	if (va) {
    799 		*addr = va;
    800 		return 0;
    801 	} else {
    802 		return ENOMEM;
    803 	}
    804 }
    805 
    806 void
    807 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    808 {
    809 
    810 	rump_hyperfree((void *)addr, size);
    811 }
    812 
    813 /*
    814  * VM space locking routines.  We don't really have to do anything,
    815  * since the pages are always "wired" (both local and remote processes).
    816  */
    817 int
    818 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    819 {
    820 
    821 	return 0;
    822 }
    823 
    824 void
    825 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    826 {
    827 
    828 }
    829 
    830 /*
    831  * For the local case the buffer mappers don't need to do anything.
    832  * For the remote case we need to reserve space and copy data in or
    833  * out, depending on B_READ/B_WRITE.
    834  */
    835 int
    836 vmapbuf(struct buf *bp, vsize_t len)
    837 {
    838 	int error = 0;
    839 
    840 	bp->b_saveaddr = bp->b_data;
    841 
    842 	/* remote case */
    843 	if (!RUMP_LOCALPROC_P(curproc)) {
    844 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    845 		if (BUF_ISWRITE(bp)) {
    846 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    847 			if (error) {
    848 				rump_hyperfree(bp->b_data, len);
    849 				bp->b_data = bp->b_saveaddr;
    850 				bp->b_saveaddr = 0;
    851 			}
    852 		}
    853 	}
    854 
    855 	return error;
    856 }
    857 
    858 void
    859 vunmapbuf(struct buf *bp, vsize_t len)
    860 {
    861 
    862 	/* remote case */
    863 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    864 		if (BUF_ISREAD(bp)) {
    865 			bp->b_error = copyout_proc(bp->b_proc,
    866 			    bp->b_data, bp->b_saveaddr, len);
    867 		}
    868 		rump_hyperfree(bp->b_data, len);
    869 	}
    870 
    871 	bp->b_data = bp->b_saveaddr;
    872 	bp->b_saveaddr = 0;
    873 }
    874 
    875 void
    876 uvmspace_addref(struct vmspace *vm)
    877 {
    878 
    879 	/*
    880 	 * No dynamically allocated vmspaces exist.
    881 	 */
    882 }
    883 
    884 void
    885 uvmspace_free(struct vmspace *vm)
    886 {
    887 
    888 	/* nothing for now */
    889 }
    890 
    891 /*
    892  * page life cycle stuff.  it really doesn't exist, so just stubs.
    893  */
    894 
    895 void
    896 uvm_pageactivate(struct vm_page *pg)
    897 {
    898 
    899 	/* nada */
    900 }
    901 
    902 void
    903 uvm_pagedeactivate(struct vm_page *pg)
    904 {
    905 
    906 	/* nada */
    907 }
    908 
    909 void
    910 uvm_pagedequeue(struct vm_page *pg)
    911 {
    912 
    913 	/* nada*/
    914 }
    915 
    916 void
    917 uvm_pageenqueue(struct vm_page *pg)
    918 {
    919 
    920 	/* nada */
    921 }
    922 
    923 void
    924 uvmpdpol_anfree(struct vm_anon *an)
    925 {
    926 
    927 	/* nada */
    928 }
    929 
    930 /*
    931  * Physical address accessors.
    932  */
    933 
    934 struct vm_page *
    935 uvm_phys_to_vm_page(paddr_t pa)
    936 {
    937 
    938 	return NULL;
    939 }
    940 
    941 paddr_t
    942 uvm_vm_page_to_phys(const struct vm_page *pg)
    943 {
    944 
    945 	return 0;
    946 }
    947 
    948 vaddr_t
    949 uvm_uarea_alloc(void)
    950 {
    951 
    952 	/* non-zero */
    953 	return (vaddr_t)11;
    954 }
    955 
    956 void
    957 uvm_uarea_free(vaddr_t uarea)
    958 {
    959 
    960 	/* nata, so creamy */
    961 }
    962 
    963 /*
    964  * Routines related to the Page Baroness.
    965  */
    966 
    967 void
    968 uvm_wait(const char *msg)
    969 {
    970 
    971 	if (__predict_false(rump_threads == 0))
    972 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    973 
    974 	if (curlwp == uvm.pagedaemon_lwp) {
    975 		/* is it possible for us to later get memory? */
    976 		if (!uvmexp.paging)
    977 			panic("pagedaemon out of memory");
    978 	}
    979 
    980 	mutex_enter(&pdaemonmtx);
    981 	pdaemon_waiters++;
    982 	cv_signal(&pdaemoncv);
    983 	cv_wait(&oomwait, &pdaemonmtx);
    984 	mutex_exit(&pdaemonmtx);
    985 }
    986 
    987 void
    988 uvm_pageout_start(int npages)
    989 {
    990 
    991 	mutex_enter(&pdaemonmtx);
    992 	uvmexp.paging += npages;
    993 	mutex_exit(&pdaemonmtx);
    994 }
    995 
    996 void
    997 uvm_pageout_done(int npages)
    998 {
    999 
   1000 	if (!npages)
   1001 		return;
   1002 
   1003 	mutex_enter(&pdaemonmtx);
   1004 	KASSERT(uvmexp.paging >= npages);
   1005 	uvmexp.paging -= npages;
   1006 
   1007 	if (pdaemon_waiters) {
   1008 		pdaemon_waiters = 0;
   1009 		cv_broadcast(&oomwait);
   1010 	}
   1011 	mutex_exit(&pdaemonmtx);
   1012 }
   1013 
   1014 static bool
   1015 processpage(struct vm_page *pg, bool *lockrunning)
   1016 {
   1017 	struct uvm_object *uobj;
   1018 
   1019 	uobj = pg->uobject;
   1020 	if (mutex_tryenter(uobj->vmobjlock)) {
   1021 		if ((pg->flags & PG_BUSY) == 0) {
   1022 			mutex_exit(&uvm_pageqlock);
   1023 			uobj->pgops->pgo_put(uobj, pg->offset,
   1024 			    pg->offset + PAGE_SIZE,
   1025 			    PGO_CLEANIT|PGO_FREE);
   1026 			KASSERT(!mutex_owned(uobj->vmobjlock));
   1027 			return true;
   1028 		} else {
   1029 			mutex_exit(uobj->vmobjlock);
   1030 		}
   1031 	} else if (*lockrunning == false && ncpu > 1) {
   1032 		CPU_INFO_ITERATOR cii;
   1033 		struct cpu_info *ci;
   1034 		struct lwp *l;
   1035 
   1036 		l = mutex_owner(uobj->vmobjlock);
   1037 		for (CPU_INFO_FOREACH(cii, ci)) {
   1038 			if (ci->ci_curlwp == l) {
   1039 				*lockrunning = true;
   1040 				break;
   1041 			}
   1042 		}
   1043 	}
   1044 
   1045 	return false;
   1046 }
   1047 
   1048 /*
   1049  * The Diabolical pageDaemon Director (DDD).
   1050  *
   1051  * This routine can always use better heuristics.
   1052  */
   1053 void
   1054 uvm_pageout(void *arg)
   1055 {
   1056 	struct vm_page *pg;
   1057 	struct pool *pp, *pp_first;
   1058 	int cleaned, skip, skipped;
   1059 	bool succ;
   1060 	bool lockrunning;
   1061 
   1062 	mutex_enter(&pdaemonmtx);
   1063 	for (;;) {
   1064 		if (!NEED_PAGEDAEMON()) {
   1065 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1066 		}
   1067 
   1068 		if (pdaemon_waiters) {
   1069 			pdaemon_waiters = 0;
   1070 			cv_broadcast(&oomwait);
   1071 		}
   1072 
   1073 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1074 		uvmexp.pdwoke++;
   1075 
   1076 		/* tell the world that we are hungry */
   1077 		kernel_map->flags |= VM_MAP_WANTVA;
   1078 		mutex_exit(&pdaemonmtx);
   1079 
   1080 		/*
   1081 		 * step one: reclaim the page cache.  this should give
   1082 		 * us the biggest earnings since whole pages are released
   1083 		 * into backing memory.
   1084 		 */
   1085 		pool_cache_reclaim(&pagecache);
   1086 		if (!NEED_PAGEDAEMON()) {
   1087 			mutex_enter(&pdaemonmtx);
   1088 			continue;
   1089 		}
   1090 
   1091 		/*
   1092 		 * Ok, so that didn't help.  Next, try to hunt memory
   1093 		 * by pushing out vnode pages.  The pages might contain
   1094 		 * useful cached data, but we need the memory.
   1095 		 */
   1096 		cleaned = 0;
   1097 		skip = 0;
   1098 		lockrunning = false;
   1099  again:
   1100 		mutex_enter(&uvm_pageqlock);
   1101 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1102 			skipped = 0;
   1103 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1104 
   1105 				/*
   1106 				 * skip over pages we _might_ have tried
   1107 				 * to handle earlier.  they might not be
   1108 				 * exactly the same ones, but I'm not too
   1109 				 * concerned.
   1110 				 */
   1111 				while (skipped++ < skip)
   1112 					continue;
   1113 
   1114 				if (processpage(pg, &lockrunning)) {
   1115 					cleaned++;
   1116 					goto again;
   1117 				}
   1118 
   1119 				skip++;
   1120 			}
   1121 			break;
   1122 		}
   1123 		mutex_exit(&uvm_pageqlock);
   1124 
   1125 		/*
   1126 		 * Ok, someone is running with an object lock held.
   1127 		 * We want to yield the host CPU to make sure the
   1128 		 * thread is not parked on the host.  Since sched_yield()
   1129 		 * doesn't appear to do anything on NetBSD, nanosleep
   1130 		 * for the smallest possible time and hope we're back in
   1131 		 * the game soon.
   1132 		 */
   1133 		if (cleaned == 0 && lockrunning) {
   1134 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
   1135 
   1136 			lockrunning = false;
   1137 			skip = 0;
   1138 
   1139 			/* and here we go again */
   1140 			goto again;
   1141 		}
   1142 
   1143 		/*
   1144 		 * And of course we need to reclaim the page cache
   1145 		 * again to actually release memory.
   1146 		 */
   1147 		pool_cache_reclaim(&pagecache);
   1148 		if (!NEED_PAGEDAEMON()) {
   1149 			mutex_enter(&pdaemonmtx);
   1150 			continue;
   1151 		}
   1152 
   1153 		/*
   1154 		 * And then drain the pools.  Wipe them out ... all of them.
   1155 		 */
   1156 		for (pp_first = NULL;;) {
   1157 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1158 
   1159 			succ = pool_drain(&pp);
   1160 			if (succ || pp == pp_first)
   1161 				break;
   1162 
   1163 			if (pp_first == NULL)
   1164 				pp_first = pp;
   1165 		}
   1166 
   1167 		/*
   1168 		 * Need to use PYEC on our bag of tricks.
   1169 		 * Unfortunately, the wife just borrowed it.
   1170 		 */
   1171 
   1172 		mutex_enter(&pdaemonmtx);
   1173 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1174 		    uvmexp.paging == 0) {
   1175 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1176 			    "memory ... sleeping (deadlock?)\n");
   1177 			cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
   1178 		}
   1179 	}
   1180 
   1181 	panic("you can swap out any time you like, but you can never leave");
   1182 }
   1183 
   1184 void
   1185 uvm_kick_pdaemon()
   1186 {
   1187 
   1188 	/*
   1189 	 * Wake up the diabolical pagedaemon director if we are over
   1190 	 * 90% of the memory limit.  This is a complete and utter
   1191 	 * stetson-harrison decision which you are allowed to finetune.
   1192 	 * Don't bother locking.  If we have some unflushed caches,
   1193 	 * other waker-uppers will deal with the issue.
   1194 	 */
   1195 	if (NEED_PAGEDAEMON()) {
   1196 		cv_signal(&pdaemoncv);
   1197 	}
   1198 }
   1199 
   1200 void *
   1201 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1202 {
   1203 	const unsigned long thelimit =
   1204 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1205 	unsigned long newmem;
   1206 	void *rv;
   1207 	int error;
   1208 
   1209 	uvm_kick_pdaemon(); /* ouch */
   1210 
   1211 	/* first we must be within the limit */
   1212  limitagain:
   1213 	if (thelimit != RUMPMEM_UNLIMITED) {
   1214 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1215 		if (newmem > thelimit) {
   1216 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1217 			if (!waitok) {
   1218 				return NULL;
   1219 			}
   1220 			uvm_wait(wmsg);
   1221 			goto limitagain;
   1222 		}
   1223 	}
   1224 
   1225 	/* second, we must get something from the backend */
   1226  again:
   1227 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1228 	if (__predict_false(error && waitok)) {
   1229 		uvm_wait(wmsg);
   1230 		goto again;
   1231 	}
   1232 
   1233 	return rv;
   1234 }
   1235 
   1236 void
   1237 rump_hyperfree(void *what, size_t size)
   1238 {
   1239 
   1240 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1241 		atomic_add_long(&curphysmem, -size);
   1242 	}
   1243 	rumpuser_free(what, size);
   1244 }
   1245