Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.164
      1 /*	$NetBSD: vm.c,v 1.164 2015/04/17 12:43:16 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.164 2015/04/17 12:43:16 pooka Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/vmem.h>
     52 #include <sys/mman.h>
     53 #include <sys/null.h>
     54 #include <sys/vnode.h>
     55 
     56 #include <machine/pmap.h>
     57 
     58 #include <rump/rumpuser.h>
     59 
     60 #include <uvm/uvm.h>
     61 #include <uvm/uvm_ddb.h>
     62 #include <uvm/uvm_pdpolicy.h>
     63 #include <uvm/uvm_prot.h>
     64 #include <uvm/uvm_readahead.h>
     65 #include <uvm/uvm_device.h>
     66 
     67 #include "rump_private.h"
     68 #include "rump_vfs_private.h"
     69 
     70 kmutex_t uvm_pageqlock; /* non-free page lock */
     71 kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
     72 kmutex_t uvm_swap_data_lock;
     73 
     74 struct uvmexp uvmexp;
     75 struct uvm uvm;
     76 
     77 #ifdef __uvmexp_pagesize
     78 const int * const uvmexp_pagesize = &uvmexp.pagesize;
     79 const int * const uvmexp_pagemask = &uvmexp.pagemask;
     80 const int * const uvmexp_pageshift = &uvmexp.pageshift;
     81 #endif
     82 
     83 struct vm_map rump_vmmap;
     84 
     85 static struct vm_map kernel_map_store;
     86 struct vm_map *kernel_map = &kernel_map_store;
     87 
     88 static struct vm_map module_map_store;
     89 extern struct vm_map *module_map;
     90 
     91 static struct pmap pmap_kernel;
     92 struct pmap rump_pmap_local;
     93 struct pmap *const kernel_pmap_ptr = &pmap_kernel;
     94 
     95 vmem_t *kmem_arena;
     96 vmem_t *kmem_va_arena;
     97 
     98 static unsigned int pdaemon_waiters;
     99 static kmutex_t pdaemonmtx;
    100 static kcondvar_t pdaemoncv, oomwait;
    101 
    102 /* all local non-proc0 processes share this vmspace */
    103 struct vmspace *rump_vmspace_local;
    104 
    105 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
    106 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
    107 static unsigned long curphysmem;
    108 static unsigned long dddlim;		/* 90% of memory limit used */
    109 #define NEED_PAGEDAEMON() \
    110     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    111 #define PDRESERVE (2*MAXPHYS)
    112 
    113 /*
    114  * Try to free two pages worth of pages from objects.
    115  * If this succesfully frees a full page cache page, we'll
    116  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    117  */
    118 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    119 
    120 /*
    121  * Keep a list of least recently used pages.  Since the only way a
    122  * rump kernel can "access" a page is via lookup, we put the page
    123  * at the back of queue every time a lookup for it is done.  If the
    124  * page is in front of this global queue and we're short of memory,
    125  * it's a candidate for pageout.
    126  */
    127 static struct pglist vmpage_lruqueue;
    128 static unsigned vmpage_onqueue;
    129 
    130 static int
    131 pg_compare_key(void *ctx, const void *n, const void *key)
    132 {
    133 	voff_t a = ((const struct vm_page *)n)->offset;
    134 	voff_t b = *(const voff_t *)key;
    135 
    136 	if (a < b)
    137 		return -1;
    138 	else if (a > b)
    139 		return 1;
    140 	else
    141 		return 0;
    142 }
    143 
    144 static int
    145 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
    146 {
    147 
    148 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
    149 }
    150 
    151 const rb_tree_ops_t uvm_page_tree_ops = {
    152 	.rbto_compare_nodes = pg_compare_nodes,
    153 	.rbto_compare_key = pg_compare_key,
    154 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    155 	.rbto_context = NULL
    156 };
    157 
    158 /*
    159  * vm pages
    160  */
    161 
    162 static int
    163 pgctor(void *arg, void *obj, int flags)
    164 {
    165 	struct vm_page *pg = obj;
    166 
    167 	memset(pg, 0, sizeof(*pg));
    168 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    169 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    170 	return pg->uanon == NULL;
    171 }
    172 
    173 static void
    174 pgdtor(void *arg, void *obj)
    175 {
    176 	struct vm_page *pg = obj;
    177 
    178 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    179 }
    180 
    181 static struct pool_cache pagecache;
    182 
    183 /*
    184  * Called with the object locked.  We don't support anons.
    185  */
    186 struct vm_page *
    187 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    188 	int flags, int strat, int free_list)
    189 {
    190 	struct vm_page *pg;
    191 
    192 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
    193 	KASSERT(anon == NULL);
    194 
    195 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    196 	if (__predict_false(pg == NULL)) {
    197 		return NULL;
    198 	}
    199 
    200 	pg->offset = off;
    201 	pg->uobject = uobj;
    202 
    203 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    204 	if (flags & UVM_PGA_ZERO) {
    205 		uvm_pagezero(pg);
    206 	}
    207 
    208 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    209 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
    210 
    211 	/*
    212 	 * Don't put anons on the LRU page queue.  We can't flush them
    213 	 * (there's no concept of swap in a rump kernel), so no reason
    214 	 * to bother with them.
    215 	 */
    216 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    217 		atomic_inc_uint(&vmpage_onqueue);
    218 		mutex_enter(&uvm_pageqlock);
    219 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    220 		mutex_exit(&uvm_pageqlock);
    221 	}
    222 
    223 	uobj->uo_npages++;
    224 
    225 	return pg;
    226 }
    227 
    228 /*
    229  * Release a page.
    230  *
    231  * Called with the vm object locked.
    232  */
    233 void
    234 uvm_pagefree(struct vm_page *pg)
    235 {
    236 	struct uvm_object *uobj = pg->uobject;
    237 
    238 	KASSERT(mutex_owned(&uvm_pageqlock));
    239 	KASSERT(mutex_owned(uobj->vmobjlock));
    240 
    241 	if (pg->flags & PG_WANTED)
    242 		wakeup(pg);
    243 
    244 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    245 
    246 	uobj->uo_npages--;
    247 	rb_tree_remove_node(&uobj->rb_tree, pg);
    248 
    249 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    250 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    251 		atomic_dec_uint(&vmpage_onqueue);
    252 	}
    253 
    254 	pool_cache_put(&pagecache, pg);
    255 }
    256 
    257 void
    258 uvm_pagezero(struct vm_page *pg)
    259 {
    260 
    261 	pg->flags &= ~PG_CLEAN;
    262 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    263 }
    264 
    265 /*
    266  * uvm_page_locked_p: return true if object associated with page is
    267  * locked.  this is a weak check for runtime assertions only.
    268  */
    269 
    270 bool
    271 uvm_page_locked_p(struct vm_page *pg)
    272 {
    273 
    274 	return mutex_owned(pg->uobject->vmobjlock);
    275 }
    276 
    277 /*
    278  * Misc routines
    279  */
    280 
    281 static kmutex_t pagermtx;
    282 
    283 void
    284 uvm_init(void)
    285 {
    286 	char buf[64];
    287 
    288 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    289 		unsigned long tmp;
    290 		char *ep;
    291 		int mult;
    292 
    293 		tmp = strtoul(buf, &ep, 10);
    294 		if (strlen(ep) > 1)
    295 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    296 
    297 		/* mini-dehumanize-number */
    298 		mult = 1;
    299 		switch (*ep) {
    300 		case 'k':
    301 			mult = 1024;
    302 			break;
    303 		case 'm':
    304 			mult = 1024*1024;
    305 			break;
    306 		case 'g':
    307 			mult = 1024*1024*1024;
    308 			break;
    309 		case 0:
    310 			break;
    311 		default:
    312 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    313 		}
    314 		rump_physmemlimit = tmp * mult;
    315 
    316 		if (rump_physmemlimit / mult != tmp)
    317 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    318 
    319 		/* reserve some memory for the pager */
    320 		if (rump_physmemlimit <= PDRESERVE)
    321 			panic("uvm_init: system reserves %d bytes of mem, "
    322 			    "only %lu bytes given",
    323 			    PDRESERVE, rump_physmemlimit);
    324 		pdlimit = rump_physmemlimit;
    325 		rump_physmemlimit -= PDRESERVE;
    326 
    327 		if (pdlimit < 1024*1024)
    328 			printf("uvm_init: WARNING: <1MB RAM limit, "
    329 			    "hope you know what you're doing\n");
    330 
    331 #define HUMANIZE_BYTES 9
    332 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    333 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    334 #undef HUMANIZE_BYTES
    335 		dddlim = 9 * (rump_physmemlimit / 10);
    336 	} else {
    337 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    338 	}
    339 	aprint_verbose("total memory = %s\n", buf);
    340 
    341 	TAILQ_INIT(&vmpage_lruqueue);
    342 
    343 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
    344 		uvmexp.npages = physmem;
    345 	} else {
    346 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
    347 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
    348 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
    349 	}
    350 	/*
    351 	 * uvmexp.free is not used internally or updated.  The reason is
    352 	 * that the memory hypercall allocator is allowed to allocate
    353 	 * non-page sized chunks.  We use a byte count in curphysmem
    354 	 * instead.
    355 	 */
    356 	uvmexp.free = uvmexp.npages;
    357 
    358 #ifndef __uvmexp_pagesize
    359 	uvmexp.pagesize = PAGE_SIZE;
    360 	uvmexp.pagemask = PAGE_MASK;
    361 	uvmexp.pageshift = PAGE_SHIFT;
    362 #else
    363 #define FAKE_PAGE_SHIFT 12
    364 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    365 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    366 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    367 #undef FAKE_PAGE_SHIFT
    368 #endif
    369 
    370 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    371 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, IPL_NONE);
    372 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    373 
    374 	/* just to appease linkage */
    375 	mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
    376 
    377 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    378 	cv_init(&pdaemoncv, "pdaemon");
    379 	cv_init(&oomwait, "oomwait");
    380 
    381 	module_map = &module_map_store;
    382 
    383 	kernel_map->pmap = pmap_kernel();
    384 
    385 	pool_subsystem_init();
    386 
    387 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    388 	    NULL, NULL, NULL,
    389 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    390 
    391 	vmem_subsystem_init(kmem_arena);
    392 
    393 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    394 	    vmem_alloc, vmem_free, kmem_arena,
    395 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    396 
    397 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    398 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    399 
    400 	/* create vmspace used by local clients */
    401 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
    402 	uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
    403 }
    404 
    405 void
    406 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    407     bool topdown)
    408 {
    409 
    410 	vm->vm_map.pmap = pmap;
    411 	vm->vm_refcnt = 1;
    412 }
    413 
    414 void
    415 uvm_pagewire(struct vm_page *pg)
    416 {
    417 
    418 	/* nada */
    419 }
    420 
    421 void
    422 uvm_pageunwire(struct vm_page *pg)
    423 {
    424 
    425 	/* nada */
    426 }
    427 
    428 /* where's your schmonz now? */
    429 #define PUNLIMIT(a)	\
    430 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    431 void
    432 uvm_init_limits(struct proc *p)
    433 {
    434 
    435 #ifndef DFLSSIZ
    436 #define DFLSSIZ (16*1024*1024)
    437 #endif
    438 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    439 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    440 	PUNLIMIT(RLIMIT_DATA);
    441 	PUNLIMIT(RLIMIT_RSS);
    442 	PUNLIMIT(RLIMIT_AS);
    443 	/* nice, cascade */
    444 }
    445 #undef PUNLIMIT
    446 
    447 /*
    448  * This satisfies the "disgusting mmap hack" used by proplib.
    449  */
    450 int
    451 uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
    452 {
    453 	int error;
    454 
    455 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    456 	if (*addrp != NULL)
    457 		panic("uvm_mmap() variant unsupported");
    458 
    459 	if (RUMP_LOCALPROC_P(curproc)) {
    460 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
    461 	} else {
    462 		error = rump_sysproxy_anonmmap(p->p_vmspace->vm_map.pmap,
    463 		    size, addrp);
    464 	}
    465 	return error;
    466 }
    467 
    468 /*
    469  * Stubs for things referenced from vfs_vnode.c but not used.
    470  */
    471 const dev_t zerodev;
    472 
    473 struct uvm_object *
    474 udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
    475 {
    476 	return NULL;
    477 }
    478 
    479 struct pagerinfo {
    480 	vaddr_t pgr_kva;
    481 	int pgr_npages;
    482 	struct vm_page **pgr_pgs;
    483 	bool pgr_read;
    484 
    485 	LIST_ENTRY(pagerinfo) pgr_entries;
    486 };
    487 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    488 
    489 /*
    490  * Pager "map" in routine.  Instead of mapping, we allocate memory
    491  * and copy page contents there.  The reason for copying instead of
    492  * mapping is simple: we do not assume we are running on virtual
    493  * memory.  Even if we could emulate virtual memory in some envs
    494  * such as userspace, copying is much faster than trying to awkardly
    495  * cope with remapping (see "Design and Implementation" pp.95-98).
    496  * The downside of the approach is that the pager requires MAXPHYS
    497  * free memory to perform paging, but short of virtual memory or
    498  * making the pager do I/O in page-sized chunks we cannot do much
    499  * about that.
    500  */
    501 vaddr_t
    502 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    503 {
    504 	struct pagerinfo *pgri;
    505 	vaddr_t curkva;
    506 	int i;
    507 
    508 	/* allocate structures */
    509 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    510 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    511 	pgri->pgr_npages = npages;
    512 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    513 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    514 
    515 	/* copy contents to "mapped" memory */
    516 	for (i = 0, curkva = pgri->pgr_kva;
    517 	    i < npages;
    518 	    i++, curkva += PAGE_SIZE) {
    519 		/*
    520 		 * We need to copy the previous contents of the pages to
    521 		 * the window even if we are reading from the
    522 		 * device, since the device might not fill the contents of
    523 		 * the full mapped range and we will end up corrupting
    524 		 * data when we unmap the window.
    525 		 */
    526 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    527 		pgri->pgr_pgs[i] = pgs[i];
    528 	}
    529 
    530 	mutex_enter(&pagermtx);
    531 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    532 	mutex_exit(&pagermtx);
    533 
    534 	return pgri->pgr_kva;
    535 }
    536 
    537 /*
    538  * map out the pager window.  return contents from VA to page storage
    539  * and free structures.
    540  *
    541  * Note: does not currently support partial frees
    542  */
    543 void
    544 uvm_pagermapout(vaddr_t kva, int npages)
    545 {
    546 	struct pagerinfo *pgri;
    547 	vaddr_t curkva;
    548 	int i;
    549 
    550 	mutex_enter(&pagermtx);
    551 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    552 		if (pgri->pgr_kva == kva)
    553 			break;
    554 	}
    555 	KASSERT(pgri);
    556 	if (pgri->pgr_npages != npages)
    557 		panic("uvm_pagermapout: partial unmapping not supported");
    558 	LIST_REMOVE(pgri, pgr_entries);
    559 	mutex_exit(&pagermtx);
    560 
    561 	if (pgri->pgr_read) {
    562 		for (i = 0, curkva = pgri->pgr_kva;
    563 		    i < pgri->pgr_npages;
    564 		    i++, curkva += PAGE_SIZE) {
    565 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    566 		}
    567 	}
    568 
    569 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    570 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    571 	kmem_free(pgri, sizeof(*pgri));
    572 }
    573 
    574 /*
    575  * convert va in pager window to page structure.
    576  * XXX: how expensive is this (global lock, list traversal)?
    577  */
    578 struct vm_page *
    579 uvm_pageratop(vaddr_t va)
    580 {
    581 	struct pagerinfo *pgri;
    582 	struct vm_page *pg = NULL;
    583 	int i;
    584 
    585 	mutex_enter(&pagermtx);
    586 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    587 		if (pgri->pgr_kva <= va
    588 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    589 			break;
    590 	}
    591 	if (pgri) {
    592 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    593 		pg = pgri->pgr_pgs[i];
    594 	}
    595 	mutex_exit(&pagermtx);
    596 
    597 	return pg;
    598 }
    599 
    600 /*
    601  * Called with the vm object locked.
    602  *
    603  * Put vnode object pages at the end of the access queue to indicate
    604  * they have been recently accessed and should not be immediate
    605  * candidates for pageout.  Do not do this for lookups done by
    606  * the pagedaemon to mimic pmap_kentered mappings which don't track
    607  * access information.
    608  */
    609 struct vm_page *
    610 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    611 {
    612 	struct vm_page *pg;
    613 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    614 
    615 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
    616 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    617 		mutex_enter(&uvm_pageqlock);
    618 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    619 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    620 		mutex_exit(&uvm_pageqlock);
    621 	}
    622 
    623 	return pg;
    624 }
    625 
    626 void
    627 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    628 {
    629 	struct vm_page *pg;
    630 	int i;
    631 
    632 	KASSERT(npgs > 0);
    633 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
    634 
    635 	for (i = 0; i < npgs; i++) {
    636 		pg = pgs[i];
    637 		if (pg == NULL)
    638 			continue;
    639 
    640 		KASSERT(pg->flags & PG_BUSY);
    641 		if (pg->flags & PG_WANTED)
    642 			wakeup(pg);
    643 		if (pg->flags & PG_RELEASED)
    644 			uvm_pagefree(pg);
    645 		else
    646 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    647 	}
    648 }
    649 
    650 void
    651 uvm_estimatepageable(int *active, int *inactive)
    652 {
    653 
    654 	/* XXX: guessing game */
    655 	*active = 1024;
    656 	*inactive = 1024;
    657 }
    658 
    659 bool
    660 vm_map_starved_p(struct vm_map *map)
    661 {
    662 
    663 	if (map->flags & VM_MAP_WANTVA)
    664 		return true;
    665 
    666 	return false;
    667 }
    668 
    669 int
    670 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    671 {
    672 
    673 	panic("%s: unimplemented", __func__);
    674 }
    675 
    676 void
    677 uvm_unloan(void *v, int npages, int flags)
    678 {
    679 
    680 	panic("%s: unimplemented", __func__);
    681 }
    682 
    683 int
    684 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    685 	struct vm_page **opp)
    686 {
    687 
    688 	return EBUSY;
    689 }
    690 
    691 struct vm_page *
    692 uvm_loanbreak(struct vm_page *pg)
    693 {
    694 
    695 	panic("%s: unimplemented", __func__);
    696 }
    697 
    698 void
    699 ubc_purge(struct uvm_object *uobj)
    700 {
    701 
    702 }
    703 
    704 vaddr_t
    705 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    706 {
    707 
    708 	return 0;
    709 }
    710 
    711 int
    712 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    713 	vm_prot_t prot, bool set_max)
    714 {
    715 
    716 	return EOPNOTSUPP;
    717 }
    718 
    719 /*
    720  * UVM km
    721  */
    722 
    723 vaddr_t
    724 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    725 {
    726 	void *rv, *desired = NULL;
    727 	int alignbit, error;
    728 
    729 #ifdef __x86_64__
    730 	/*
    731 	 * On amd64, allocate all module memory from the lowest 2GB.
    732 	 * This is because NetBSD kernel modules are compiled
    733 	 * with -mcmodel=kernel and reserve only 4 bytes for
    734 	 * offsets.  If we load code compiled with -mcmodel=kernel
    735 	 * anywhere except the lowest or highest 2GB, it will not
    736 	 * work.  Since userspace does not have access to the highest
    737 	 * 2GB, use the lowest 2GB.
    738 	 *
    739 	 * Note: this assumes the rump kernel resides in
    740 	 * the lowest 2GB as well.
    741 	 *
    742 	 * Note2: yes, it's a quick hack, but since this the only
    743 	 * place where we care about the map we're allocating from,
    744 	 * just use a simple "if" instead of coming up with a fancy
    745 	 * generic solution.
    746 	 */
    747 	if (map == module_map) {
    748 		desired = (void *)(0x80000000 - size);
    749 	}
    750 #endif
    751 
    752 	if (__predict_false(map == module_map)) {
    753 		alignbit = 0;
    754 		if (align) {
    755 			alignbit = ffs(align)-1;
    756 		}
    757 		error = rumpuser_anonmmap(desired, size, alignbit,
    758 		    flags & UVM_KMF_EXEC, &rv);
    759 	} else {
    760 		error = rumpuser_malloc(size, align, &rv);
    761 	}
    762 
    763 	if (error) {
    764 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    765 			return 0;
    766 		else
    767 			panic("uvm_km_alloc failed");
    768 	}
    769 
    770 	if (flags & UVM_KMF_ZERO)
    771 		memset(rv, 0, size);
    772 
    773 	return (vaddr_t)rv;
    774 }
    775 
    776 void
    777 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    778 {
    779 
    780 	if (__predict_false(map == module_map))
    781 		rumpuser_unmap((void *)vaddr, size);
    782 	else
    783 		rumpuser_free((void *)vaddr, size);
    784 }
    785 
    786 struct vm_map *
    787 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    788 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    789 {
    790 
    791 	return (struct vm_map *)417416;
    792 }
    793 
    794 int
    795 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    796     vmem_addr_t *addr)
    797 {
    798 	vaddr_t va;
    799 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    800 	    (flags & VM_SLEEP), "kmalloc");
    801 
    802 	if (va) {
    803 		*addr = va;
    804 		return 0;
    805 	} else {
    806 		return ENOMEM;
    807 	}
    808 }
    809 
    810 void
    811 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    812 {
    813 
    814 	rump_hyperfree((void *)addr, size);
    815 }
    816 
    817 /*
    818  * VM space locking routines.  We don't really have to do anything,
    819  * since the pages are always "wired" (both local and remote processes).
    820  */
    821 int
    822 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    823 {
    824 
    825 	return 0;
    826 }
    827 
    828 void
    829 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    830 {
    831 
    832 }
    833 
    834 /*
    835  * For the local case the buffer mappers don't need to do anything.
    836  * For the remote case we need to reserve space and copy data in or
    837  * out, depending on B_READ/B_WRITE.
    838  */
    839 int
    840 vmapbuf(struct buf *bp, vsize_t len)
    841 {
    842 	int error = 0;
    843 
    844 	bp->b_saveaddr = bp->b_data;
    845 
    846 	/* remote case */
    847 	if (!RUMP_LOCALPROC_P(curproc)) {
    848 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    849 		if (BUF_ISWRITE(bp)) {
    850 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    851 			if (error) {
    852 				rump_hyperfree(bp->b_data, len);
    853 				bp->b_data = bp->b_saveaddr;
    854 				bp->b_saveaddr = 0;
    855 			}
    856 		}
    857 	}
    858 
    859 	return error;
    860 }
    861 
    862 void
    863 vunmapbuf(struct buf *bp, vsize_t len)
    864 {
    865 
    866 	/* remote case */
    867 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    868 		if (BUF_ISREAD(bp)) {
    869 			bp->b_error = copyout_proc(bp->b_proc,
    870 			    bp->b_data, bp->b_saveaddr, len);
    871 		}
    872 		rump_hyperfree(bp->b_data, len);
    873 	}
    874 
    875 	bp->b_data = bp->b_saveaddr;
    876 	bp->b_saveaddr = 0;
    877 }
    878 
    879 void
    880 uvmspace_addref(struct vmspace *vm)
    881 {
    882 
    883 	/*
    884 	 * No dynamically allocated vmspaces exist.
    885 	 */
    886 }
    887 
    888 void
    889 uvmspace_free(struct vmspace *vm)
    890 {
    891 
    892 	/* nothing for now */
    893 }
    894 
    895 /*
    896  * page life cycle stuff.  it really doesn't exist, so just stubs.
    897  */
    898 
    899 void
    900 uvm_pageactivate(struct vm_page *pg)
    901 {
    902 
    903 	/* nada */
    904 }
    905 
    906 void
    907 uvm_pagedeactivate(struct vm_page *pg)
    908 {
    909 
    910 	/* nada */
    911 }
    912 
    913 void
    914 uvm_pagedequeue(struct vm_page *pg)
    915 {
    916 
    917 	/* nada*/
    918 }
    919 
    920 void
    921 uvm_pageenqueue(struct vm_page *pg)
    922 {
    923 
    924 	/* nada */
    925 }
    926 
    927 void
    928 uvmpdpol_anfree(struct vm_anon *an)
    929 {
    930 
    931 	/* nada */
    932 }
    933 
    934 /*
    935  * Physical address accessors.
    936  */
    937 
    938 struct vm_page *
    939 uvm_phys_to_vm_page(paddr_t pa)
    940 {
    941 
    942 	return NULL;
    943 }
    944 
    945 paddr_t
    946 uvm_vm_page_to_phys(const struct vm_page *pg)
    947 {
    948 
    949 	return 0;
    950 }
    951 
    952 vaddr_t
    953 uvm_uarea_alloc(void)
    954 {
    955 
    956 	/* non-zero */
    957 	return (vaddr_t)11;
    958 }
    959 
    960 void
    961 uvm_uarea_free(vaddr_t uarea)
    962 {
    963 
    964 	/* nata, so creamy */
    965 }
    966 
    967 /*
    968  * Routines related to the Page Baroness.
    969  */
    970 
    971 void
    972 uvm_wait(const char *msg)
    973 {
    974 
    975 	if (__predict_false(rump_threads == 0))
    976 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    977 
    978 	if (curlwp == uvm.pagedaemon_lwp) {
    979 		/* is it possible for us to later get memory? */
    980 		if (!uvmexp.paging)
    981 			panic("pagedaemon out of memory");
    982 	}
    983 
    984 	mutex_enter(&pdaemonmtx);
    985 	pdaemon_waiters++;
    986 	cv_signal(&pdaemoncv);
    987 	cv_wait(&oomwait, &pdaemonmtx);
    988 	mutex_exit(&pdaemonmtx);
    989 }
    990 
    991 void
    992 uvm_pageout_start(int npages)
    993 {
    994 
    995 	mutex_enter(&pdaemonmtx);
    996 	uvmexp.paging += npages;
    997 	mutex_exit(&pdaemonmtx);
    998 }
    999 
   1000 void
   1001 uvm_pageout_done(int npages)
   1002 {
   1003 
   1004 	if (!npages)
   1005 		return;
   1006 
   1007 	mutex_enter(&pdaemonmtx);
   1008 	KASSERT(uvmexp.paging >= npages);
   1009 	uvmexp.paging -= npages;
   1010 
   1011 	if (pdaemon_waiters) {
   1012 		pdaemon_waiters = 0;
   1013 		cv_broadcast(&oomwait);
   1014 	}
   1015 	mutex_exit(&pdaemonmtx);
   1016 }
   1017 
   1018 static bool
   1019 processpage(struct vm_page *pg, bool *lockrunning)
   1020 {
   1021 	struct uvm_object *uobj;
   1022 
   1023 	uobj = pg->uobject;
   1024 	if (mutex_tryenter(uobj->vmobjlock)) {
   1025 		if ((pg->flags & PG_BUSY) == 0) {
   1026 			mutex_exit(&uvm_pageqlock);
   1027 			uobj->pgops->pgo_put(uobj, pg->offset,
   1028 			    pg->offset + PAGE_SIZE,
   1029 			    PGO_CLEANIT|PGO_FREE);
   1030 			KASSERT(!mutex_owned(uobj->vmobjlock));
   1031 			return true;
   1032 		} else {
   1033 			mutex_exit(uobj->vmobjlock);
   1034 		}
   1035 	} else if (*lockrunning == false && ncpu > 1) {
   1036 		CPU_INFO_ITERATOR cii;
   1037 		struct cpu_info *ci;
   1038 		struct lwp *l;
   1039 
   1040 		l = mutex_owner(uobj->vmobjlock);
   1041 		for (CPU_INFO_FOREACH(cii, ci)) {
   1042 			if (ci->ci_curlwp == l) {
   1043 				*lockrunning = true;
   1044 				break;
   1045 			}
   1046 		}
   1047 	}
   1048 
   1049 	return false;
   1050 }
   1051 
   1052 /*
   1053  * The Diabolical pageDaemon Director (DDD).
   1054  *
   1055  * This routine can always use better heuristics.
   1056  */
   1057 void
   1058 uvm_pageout(void *arg)
   1059 {
   1060 	struct vm_page *pg;
   1061 	struct pool *pp, *pp_first;
   1062 	int cleaned, skip, skipped;
   1063 	bool succ;
   1064 	bool lockrunning;
   1065 
   1066 	mutex_enter(&pdaemonmtx);
   1067 	for (;;) {
   1068 		if (!NEED_PAGEDAEMON()) {
   1069 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1070 		}
   1071 
   1072 		if (pdaemon_waiters) {
   1073 			pdaemon_waiters = 0;
   1074 			cv_broadcast(&oomwait);
   1075 		}
   1076 
   1077 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1078 		uvmexp.pdwoke++;
   1079 
   1080 		/* tell the world that we are hungry */
   1081 		kernel_map->flags |= VM_MAP_WANTVA;
   1082 		mutex_exit(&pdaemonmtx);
   1083 
   1084 		/*
   1085 		 * step one: reclaim the page cache.  this should give
   1086 		 * us the biggest earnings since whole pages are released
   1087 		 * into backing memory.
   1088 		 */
   1089 		pool_cache_reclaim(&pagecache);
   1090 		if (!NEED_PAGEDAEMON()) {
   1091 			mutex_enter(&pdaemonmtx);
   1092 			continue;
   1093 		}
   1094 
   1095 		/*
   1096 		 * Ok, so that didn't help.  Next, try to hunt memory
   1097 		 * by pushing out vnode pages.  The pages might contain
   1098 		 * useful cached data, but we need the memory.
   1099 		 */
   1100 		cleaned = 0;
   1101 		skip = 0;
   1102 		lockrunning = false;
   1103  again:
   1104 		mutex_enter(&uvm_pageqlock);
   1105 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1106 			skipped = 0;
   1107 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1108 
   1109 				/*
   1110 				 * skip over pages we _might_ have tried
   1111 				 * to handle earlier.  they might not be
   1112 				 * exactly the same ones, but I'm not too
   1113 				 * concerned.
   1114 				 */
   1115 				while (skipped++ < skip)
   1116 					continue;
   1117 
   1118 				if (processpage(pg, &lockrunning)) {
   1119 					cleaned++;
   1120 					goto again;
   1121 				}
   1122 
   1123 				skip++;
   1124 			}
   1125 			break;
   1126 		}
   1127 		mutex_exit(&uvm_pageqlock);
   1128 
   1129 		/*
   1130 		 * Ok, someone is running with an object lock held.
   1131 		 * We want to yield the host CPU to make sure the
   1132 		 * thread is not parked on the host.  Since sched_yield()
   1133 		 * doesn't appear to do anything on NetBSD, nanosleep
   1134 		 * for the smallest possible time and hope we're back in
   1135 		 * the game soon.
   1136 		 */
   1137 		if (cleaned == 0 && lockrunning) {
   1138 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
   1139 
   1140 			lockrunning = false;
   1141 			skip = 0;
   1142 
   1143 			/* and here we go again */
   1144 			goto again;
   1145 		}
   1146 
   1147 		/*
   1148 		 * And of course we need to reclaim the page cache
   1149 		 * again to actually release memory.
   1150 		 */
   1151 		pool_cache_reclaim(&pagecache);
   1152 		if (!NEED_PAGEDAEMON()) {
   1153 			mutex_enter(&pdaemonmtx);
   1154 			continue;
   1155 		}
   1156 
   1157 		/*
   1158 		 * And then drain the pools.  Wipe them out ... all of them.
   1159 		 */
   1160 		for (pp_first = NULL;;) {
   1161 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1162 
   1163 			succ = pool_drain(&pp);
   1164 			if (succ || pp == pp_first)
   1165 				break;
   1166 
   1167 			if (pp_first == NULL)
   1168 				pp_first = pp;
   1169 		}
   1170 
   1171 		/*
   1172 		 * Need to use PYEC on our bag of tricks.
   1173 		 * Unfortunately, the wife just borrowed it.
   1174 		 */
   1175 
   1176 		mutex_enter(&pdaemonmtx);
   1177 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1178 		    uvmexp.paging == 0) {
   1179 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1180 			    "memory ... sleeping (deadlock?)\n");
   1181 			cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
   1182 		}
   1183 	}
   1184 
   1185 	panic("you can swap out any time you like, but you can never leave");
   1186 }
   1187 
   1188 void
   1189 uvm_kick_pdaemon()
   1190 {
   1191 
   1192 	/*
   1193 	 * Wake up the diabolical pagedaemon director if we are over
   1194 	 * 90% of the memory limit.  This is a complete and utter
   1195 	 * stetson-harrison decision which you are allowed to finetune.
   1196 	 * Don't bother locking.  If we have some unflushed caches,
   1197 	 * other waker-uppers will deal with the issue.
   1198 	 */
   1199 	if (NEED_PAGEDAEMON()) {
   1200 		cv_signal(&pdaemoncv);
   1201 	}
   1202 }
   1203 
   1204 void *
   1205 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1206 {
   1207 	const unsigned long thelimit =
   1208 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1209 	unsigned long newmem;
   1210 	void *rv;
   1211 	int error;
   1212 
   1213 	uvm_kick_pdaemon(); /* ouch */
   1214 
   1215 	/* first we must be within the limit */
   1216  limitagain:
   1217 	if (thelimit != RUMPMEM_UNLIMITED) {
   1218 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1219 		if (newmem > thelimit) {
   1220 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1221 			if (!waitok) {
   1222 				return NULL;
   1223 			}
   1224 			uvm_wait(wmsg);
   1225 			goto limitagain;
   1226 		}
   1227 	}
   1228 
   1229 	/* second, we must get something from the backend */
   1230  again:
   1231 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1232 	if (__predict_false(error && waitok)) {
   1233 		uvm_wait(wmsg);
   1234 		goto again;
   1235 	}
   1236 
   1237 	return rv;
   1238 }
   1239 
   1240 void
   1241 rump_hyperfree(void *what, size_t size)
   1242 {
   1243 
   1244 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1245 		atomic_add_long(&curphysmem, -size);
   1246 	}
   1247 	rumpuser_free(what, size);
   1248 }
   1249