Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.169.2.1
      1 /*	$NetBSD: vm.c,v 1.169.2.1 2016/07/26 03:24:24 pgoyette Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.169.2.1 2016/07/26 03:24:24 pgoyette Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/vmem.h>
     52 #include <sys/mman.h>
     53 #include <sys/null.h>
     54 #include <sys/vnode.h>
     55 
     56 #include <machine/pmap.h>
     57 
     58 #include <uvm/uvm.h>
     59 #include <uvm/uvm_ddb.h>
     60 #include <uvm/uvm_pdpolicy.h>
     61 #include <uvm/uvm_prot.h>
     62 #include <uvm/uvm_readahead.h>
     63 #include <uvm/uvm_device.h>
     64 
     65 #include <rump-sys/kern.h>
     66 #include <rump-sys/vfs.h>
     67 
     68 #include <rump/rumpuser.h>
     69 
     70 kmutex_t uvm_pageqlock; /* non-free page lock */
     71 kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
     72 kmutex_t uvm_swap_data_lock;
     73 
     74 struct uvmexp uvmexp;
     75 struct uvm uvm;
     76 
     77 #ifdef __uvmexp_pagesize
     78 const int * const uvmexp_pagesize = &uvmexp.pagesize;
     79 const int * const uvmexp_pagemask = &uvmexp.pagemask;
     80 const int * const uvmexp_pageshift = &uvmexp.pageshift;
     81 #endif
     82 
     83 static struct vm_map kernel_map_store;
     84 struct vm_map *kernel_map = &kernel_map_store;
     85 
     86 static struct vm_map module_map_store;
     87 extern struct vm_map *module_map;
     88 
     89 static struct pmap pmap_kernel;
     90 struct pmap rump_pmap_local;
     91 struct pmap *const kernel_pmap_ptr = &pmap_kernel;
     92 
     93 vmem_t *kmem_arena;
     94 vmem_t *kmem_va_arena;
     95 
     96 static unsigned int pdaemon_waiters;
     97 static kmutex_t pdaemonmtx;
     98 static kcondvar_t pdaemoncv, oomwait;
     99 
    100 /* all local non-proc0 processes share this vmspace */
    101 struct vmspace *rump_vmspace_local;
    102 
    103 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
    104 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
    105 static unsigned long curphysmem;
    106 static unsigned long dddlim;		/* 90% of memory limit used */
    107 #define NEED_PAGEDAEMON() \
    108     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    109 #define PDRESERVE (2*MAXPHYS)
    110 
    111 /*
    112  * Try to free two pages worth of pages from objects.
    113  * If this succesfully frees a full page cache page, we'll
    114  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    115  */
    116 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    117 
    118 /*
    119  * Keep a list of least recently used pages.  Since the only way a
    120  * rump kernel can "access" a page is via lookup, we put the page
    121  * at the back of queue every time a lookup for it is done.  If the
    122  * page is in front of this global queue and we're short of memory,
    123  * it's a candidate for pageout.
    124  */
    125 static struct pglist vmpage_lruqueue;
    126 static unsigned vmpage_onqueue;
    127 
    128 static int
    129 pg_compare_key(void *ctx, const void *n, const void *key)
    130 {
    131 	voff_t a = ((const struct vm_page *)n)->offset;
    132 	voff_t b = *(const voff_t *)key;
    133 
    134 	if (a < b)
    135 		return -1;
    136 	else if (a > b)
    137 		return 1;
    138 	else
    139 		return 0;
    140 }
    141 
    142 static int
    143 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
    144 {
    145 
    146 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
    147 }
    148 
    149 const rb_tree_ops_t uvm_page_tree_ops = {
    150 	.rbto_compare_nodes = pg_compare_nodes,
    151 	.rbto_compare_key = pg_compare_key,
    152 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    153 	.rbto_context = NULL
    154 };
    155 
    156 /*
    157  * vm pages
    158  */
    159 
    160 static int
    161 pgctor(void *arg, void *obj, int flags)
    162 {
    163 	struct vm_page *pg = obj;
    164 
    165 	memset(pg, 0, sizeof(*pg));
    166 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    167 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    168 	return pg->uanon == NULL;
    169 }
    170 
    171 static void
    172 pgdtor(void *arg, void *obj)
    173 {
    174 	struct vm_page *pg = obj;
    175 
    176 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    177 }
    178 
    179 static struct pool_cache pagecache;
    180 
    181 /*
    182  * Called with the object locked.  We don't support anons.
    183  */
    184 struct vm_page *
    185 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    186 	int flags, int strat, int free_list)
    187 {
    188 	struct vm_page *pg;
    189 
    190 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
    191 	KASSERT(anon == NULL);
    192 
    193 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    194 	if (__predict_false(pg == NULL)) {
    195 		return NULL;
    196 	}
    197 
    198 	pg->offset = off;
    199 	pg->uobject = uobj;
    200 
    201 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    202 	if (flags & UVM_PGA_ZERO) {
    203 		uvm_pagezero(pg);
    204 	}
    205 
    206 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    207 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
    208 
    209 	/*
    210 	 * Don't put anons on the LRU page queue.  We can't flush them
    211 	 * (there's no concept of swap in a rump kernel), so no reason
    212 	 * to bother with them.
    213 	 */
    214 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    215 		atomic_inc_uint(&vmpage_onqueue);
    216 		mutex_enter(&uvm_pageqlock);
    217 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    218 		mutex_exit(&uvm_pageqlock);
    219 	}
    220 
    221 	uobj->uo_npages++;
    222 
    223 	return pg;
    224 }
    225 
    226 /*
    227  * Release a page.
    228  *
    229  * Called with the vm object locked.
    230  */
    231 void
    232 uvm_pagefree(struct vm_page *pg)
    233 {
    234 	struct uvm_object *uobj = pg->uobject;
    235 
    236 	KASSERT(mutex_owned(&uvm_pageqlock));
    237 	KASSERT(mutex_owned(uobj->vmobjlock));
    238 
    239 	if (pg->flags & PG_WANTED)
    240 		wakeup(pg);
    241 
    242 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    243 
    244 	uobj->uo_npages--;
    245 	rb_tree_remove_node(&uobj->rb_tree, pg);
    246 
    247 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    248 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    249 		atomic_dec_uint(&vmpage_onqueue);
    250 	}
    251 
    252 	pool_cache_put(&pagecache, pg);
    253 }
    254 
    255 void
    256 uvm_pagezero(struct vm_page *pg)
    257 {
    258 
    259 	pg->flags &= ~PG_CLEAN;
    260 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    261 }
    262 
    263 /*
    264  * uvm_page_locked_p: return true if object associated with page is
    265  * locked.  this is a weak check for runtime assertions only.
    266  */
    267 
    268 bool
    269 uvm_page_locked_p(struct vm_page *pg)
    270 {
    271 
    272 	return mutex_owned(pg->uobject->vmobjlock);
    273 }
    274 
    275 /*
    276  * Misc routines
    277  */
    278 
    279 static kmutex_t pagermtx;
    280 
    281 void
    282 uvm_init(void)
    283 {
    284 	char buf[64];
    285 
    286 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    287 		unsigned long tmp;
    288 		char *ep;
    289 		int mult;
    290 
    291 		tmp = strtoul(buf, &ep, 10);
    292 		if (strlen(ep) > 1)
    293 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    294 
    295 		/* mini-dehumanize-number */
    296 		mult = 1;
    297 		switch (*ep) {
    298 		case 'k':
    299 			mult = 1024;
    300 			break;
    301 		case 'm':
    302 			mult = 1024*1024;
    303 			break;
    304 		case 'g':
    305 			mult = 1024*1024*1024;
    306 			break;
    307 		case 0:
    308 			break;
    309 		default:
    310 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    311 		}
    312 		rump_physmemlimit = tmp * mult;
    313 
    314 		if (rump_physmemlimit / mult != tmp)
    315 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    316 
    317 		/* reserve some memory for the pager */
    318 		if (rump_physmemlimit <= PDRESERVE)
    319 			panic("uvm_init: system reserves %d bytes of mem, "
    320 			    "only %lu bytes given",
    321 			    PDRESERVE, rump_physmemlimit);
    322 		pdlimit = rump_physmemlimit;
    323 		rump_physmemlimit -= PDRESERVE;
    324 
    325 		if (pdlimit < 1024*1024)
    326 			printf("uvm_init: WARNING: <1MB RAM limit, "
    327 			    "hope you know what you're doing\n");
    328 
    329 #define HUMANIZE_BYTES 9
    330 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    331 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    332 #undef HUMANIZE_BYTES
    333 		dddlim = 9 * (rump_physmemlimit / 10);
    334 	} else {
    335 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    336 	}
    337 	aprint_verbose("total memory = %s\n", buf);
    338 
    339 	TAILQ_INIT(&vmpage_lruqueue);
    340 
    341 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
    342 		uvmexp.npages = physmem;
    343 	} else {
    344 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
    345 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
    346 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
    347 	}
    348 	/*
    349 	 * uvmexp.free is not used internally or updated.  The reason is
    350 	 * that the memory hypercall allocator is allowed to allocate
    351 	 * non-page sized chunks.  We use a byte count in curphysmem
    352 	 * instead.
    353 	 */
    354 	uvmexp.free = uvmexp.npages;
    355 
    356 #ifndef __uvmexp_pagesize
    357 	uvmexp.pagesize = PAGE_SIZE;
    358 	uvmexp.pagemask = PAGE_MASK;
    359 	uvmexp.pageshift = PAGE_SHIFT;
    360 #else
    361 #define FAKE_PAGE_SHIFT 12
    362 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    363 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    364 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    365 #undef FAKE_PAGE_SHIFT
    366 #endif
    367 
    368 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    369 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, IPL_NONE);
    370 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    371 
    372 	/* just to appease linkage */
    373 	mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
    374 
    375 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    376 	cv_init(&pdaemoncv, "pdaemon");
    377 	cv_init(&oomwait, "oomwait");
    378 
    379 	module_map = &module_map_store;
    380 
    381 	kernel_map->pmap = pmap_kernel();
    382 
    383 	pool_subsystem_init();
    384 
    385 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    386 	    NULL, NULL, NULL,
    387 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    388 
    389 	vmem_subsystem_init(kmem_arena);
    390 
    391 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    392 	    vmem_alloc, vmem_free, kmem_arena,
    393 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    394 
    395 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    396 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    397 
    398 	/* create vmspace used by local clients */
    399 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
    400 	uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
    401 }
    402 
    403 void
    404 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    405     bool topdown)
    406 {
    407 
    408 	vm->vm_map.pmap = pmap;
    409 	vm->vm_refcnt = 1;
    410 }
    411 
    412 void
    413 uvm_pagewire(struct vm_page *pg)
    414 {
    415 
    416 	/* nada */
    417 }
    418 
    419 void
    420 uvm_pageunwire(struct vm_page *pg)
    421 {
    422 
    423 	/* nada */
    424 }
    425 
    426 /* where's your schmonz now? */
    427 #define PUNLIMIT(a)	\
    428 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    429 void
    430 uvm_init_limits(struct proc *p)
    431 {
    432 
    433 #ifndef DFLSSIZ
    434 #define DFLSSIZ (16*1024*1024)
    435 #endif
    436 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    437 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    438 	PUNLIMIT(RLIMIT_DATA);
    439 	PUNLIMIT(RLIMIT_RSS);
    440 	PUNLIMIT(RLIMIT_AS);
    441 	/* nice, cascade */
    442 }
    443 #undef PUNLIMIT
    444 
    445 /*
    446  * This satisfies the "disgusting mmap hack" used by proplib.
    447  */
    448 int
    449 uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
    450 {
    451 	int error;
    452 
    453 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    454 	if (*addrp != NULL)
    455 		panic("uvm_mmap() variant unsupported");
    456 
    457 	if (RUMP_LOCALPROC_P(curproc)) {
    458 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
    459 	} else {
    460 		error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
    461 		    size, addrp);
    462 	}
    463 	return error;
    464 }
    465 
    466 /*
    467  * Stubs for things referenced from vfs_vnode.c but not used.
    468  */
    469 const dev_t zerodev;
    470 
    471 struct uvm_object *
    472 udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
    473 {
    474 	return NULL;
    475 }
    476 
    477 struct pagerinfo {
    478 	vaddr_t pgr_kva;
    479 	int pgr_npages;
    480 	struct vm_page **pgr_pgs;
    481 	bool pgr_read;
    482 
    483 	LIST_ENTRY(pagerinfo) pgr_entries;
    484 };
    485 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    486 
    487 /*
    488  * Pager "map" in routine.  Instead of mapping, we allocate memory
    489  * and copy page contents there.  The reason for copying instead of
    490  * mapping is simple: we do not assume we are running on virtual
    491  * memory.  Even if we could emulate virtual memory in some envs
    492  * such as userspace, copying is much faster than trying to awkardly
    493  * cope with remapping (see "Design and Implementation" pp.95-98).
    494  * The downside of the approach is that the pager requires MAXPHYS
    495  * free memory to perform paging, but short of virtual memory or
    496  * making the pager do I/O in page-sized chunks we cannot do much
    497  * about that.
    498  */
    499 vaddr_t
    500 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    501 {
    502 	struct pagerinfo *pgri;
    503 	vaddr_t curkva;
    504 	int i;
    505 
    506 	/* allocate structures */
    507 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    508 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    509 	pgri->pgr_npages = npages;
    510 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    511 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    512 
    513 	/* copy contents to "mapped" memory */
    514 	for (i = 0, curkva = pgri->pgr_kva;
    515 	    i < npages;
    516 	    i++, curkva += PAGE_SIZE) {
    517 		/*
    518 		 * We need to copy the previous contents of the pages to
    519 		 * the window even if we are reading from the
    520 		 * device, since the device might not fill the contents of
    521 		 * the full mapped range and we will end up corrupting
    522 		 * data when we unmap the window.
    523 		 */
    524 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    525 		pgri->pgr_pgs[i] = pgs[i];
    526 	}
    527 
    528 	mutex_enter(&pagermtx);
    529 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    530 	mutex_exit(&pagermtx);
    531 
    532 	return pgri->pgr_kva;
    533 }
    534 
    535 /*
    536  * map out the pager window.  return contents from VA to page storage
    537  * and free structures.
    538  *
    539  * Note: does not currently support partial frees
    540  */
    541 void
    542 uvm_pagermapout(vaddr_t kva, int npages)
    543 {
    544 	struct pagerinfo *pgri;
    545 	vaddr_t curkva;
    546 	int i;
    547 
    548 	mutex_enter(&pagermtx);
    549 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    550 		if (pgri->pgr_kva == kva)
    551 			break;
    552 	}
    553 	KASSERT(pgri);
    554 	if (pgri->pgr_npages != npages)
    555 		panic("uvm_pagermapout: partial unmapping not supported");
    556 	LIST_REMOVE(pgri, pgr_entries);
    557 	mutex_exit(&pagermtx);
    558 
    559 	if (pgri->pgr_read) {
    560 		for (i = 0, curkva = pgri->pgr_kva;
    561 		    i < pgri->pgr_npages;
    562 		    i++, curkva += PAGE_SIZE) {
    563 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    564 		}
    565 	}
    566 
    567 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    568 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    569 	kmem_free(pgri, sizeof(*pgri));
    570 }
    571 
    572 /*
    573  * convert va in pager window to page structure.
    574  * XXX: how expensive is this (global lock, list traversal)?
    575  */
    576 struct vm_page *
    577 uvm_pageratop(vaddr_t va)
    578 {
    579 	struct pagerinfo *pgri;
    580 	struct vm_page *pg = NULL;
    581 	int i;
    582 
    583 	mutex_enter(&pagermtx);
    584 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    585 		if (pgri->pgr_kva <= va
    586 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    587 			break;
    588 	}
    589 	if (pgri) {
    590 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    591 		pg = pgri->pgr_pgs[i];
    592 	}
    593 	mutex_exit(&pagermtx);
    594 
    595 	return pg;
    596 }
    597 
    598 /*
    599  * Called with the vm object locked.
    600  *
    601  * Put vnode object pages at the end of the access queue to indicate
    602  * they have been recently accessed and should not be immediate
    603  * candidates for pageout.  Do not do this for lookups done by
    604  * the pagedaemon to mimic pmap_kentered mappings which don't track
    605  * access information.
    606  */
    607 struct vm_page *
    608 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    609 {
    610 	struct vm_page *pg;
    611 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    612 
    613 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
    614 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    615 		mutex_enter(&uvm_pageqlock);
    616 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    617 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    618 		mutex_exit(&uvm_pageqlock);
    619 	}
    620 
    621 	return pg;
    622 }
    623 
    624 void
    625 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    626 {
    627 	struct vm_page *pg;
    628 	int i;
    629 
    630 	KASSERT(npgs > 0);
    631 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
    632 
    633 	for (i = 0; i < npgs; i++) {
    634 		pg = pgs[i];
    635 		if (pg == NULL)
    636 			continue;
    637 
    638 		KASSERT(pg->flags & PG_BUSY);
    639 		if (pg->flags & PG_WANTED)
    640 			wakeup(pg);
    641 		if (pg->flags & PG_RELEASED)
    642 			uvm_pagefree(pg);
    643 		else
    644 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    645 	}
    646 }
    647 
    648 void
    649 uvm_estimatepageable(int *active, int *inactive)
    650 {
    651 
    652 	/* XXX: guessing game */
    653 	*active = 1024;
    654 	*inactive = 1024;
    655 }
    656 
    657 bool
    658 vm_map_starved_p(struct vm_map *map)
    659 {
    660 
    661 	if (map->flags & VM_MAP_WANTVA)
    662 		return true;
    663 
    664 	return false;
    665 }
    666 
    667 int
    668 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    669 {
    670 
    671 	panic("%s: unimplemented", __func__);
    672 }
    673 
    674 void
    675 uvm_unloan(void *v, int npages, int flags)
    676 {
    677 
    678 	panic("%s: unimplemented", __func__);
    679 }
    680 
    681 int
    682 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    683 	struct vm_page **opp)
    684 {
    685 
    686 	return EBUSY;
    687 }
    688 
    689 struct vm_page *
    690 uvm_loanbreak(struct vm_page *pg)
    691 {
    692 
    693 	panic("%s: unimplemented", __func__);
    694 }
    695 
    696 void
    697 ubc_purge(struct uvm_object *uobj)
    698 {
    699 
    700 }
    701 
    702 vaddr_t
    703 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
    704 {
    705 
    706 	return 0;
    707 }
    708 
    709 int
    710 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    711 	vm_prot_t prot, bool set_max)
    712 {
    713 
    714 	return EOPNOTSUPP;
    715 }
    716 
    717 /*
    718  * UVM km
    719  */
    720 
    721 vaddr_t
    722 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    723 {
    724 	void *rv, *desired = NULL;
    725 	int alignbit, error;
    726 
    727 #ifdef __x86_64__
    728 	/*
    729 	 * On amd64, allocate all module memory from the lowest 2GB.
    730 	 * This is because NetBSD kernel modules are compiled
    731 	 * with -mcmodel=kernel and reserve only 4 bytes for
    732 	 * offsets.  If we load code compiled with -mcmodel=kernel
    733 	 * anywhere except the lowest or highest 2GB, it will not
    734 	 * work.  Since userspace does not have access to the highest
    735 	 * 2GB, use the lowest 2GB.
    736 	 *
    737 	 * Note: this assumes the rump kernel resides in
    738 	 * the lowest 2GB as well.
    739 	 *
    740 	 * Note2: yes, it's a quick hack, but since this the only
    741 	 * place where we care about the map we're allocating from,
    742 	 * just use a simple "if" instead of coming up with a fancy
    743 	 * generic solution.
    744 	 */
    745 	if (map == module_map) {
    746 		desired = (void *)(0x80000000 - size);
    747 	}
    748 #endif
    749 
    750 	if (__predict_false(map == module_map)) {
    751 		alignbit = 0;
    752 		if (align) {
    753 			alignbit = ffs(align)-1;
    754 		}
    755 		error = rumpuser_anonmmap(desired, size, alignbit,
    756 		    flags & UVM_KMF_EXEC, &rv);
    757 	} else {
    758 		error = rumpuser_malloc(size, align, &rv);
    759 	}
    760 
    761 	if (error) {
    762 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    763 			return 0;
    764 		else
    765 			panic("uvm_km_alloc failed");
    766 	}
    767 
    768 	if (flags & UVM_KMF_ZERO)
    769 		memset(rv, 0, size);
    770 
    771 	return (vaddr_t)rv;
    772 }
    773 
    774 void
    775 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    776 {
    777 
    778 	if (__predict_false(map == module_map))
    779 		rumpuser_unmap((void *)vaddr, size);
    780 	else
    781 		rumpuser_free((void *)vaddr, size);
    782 }
    783 
    784 int
    785 uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
    786 {
    787 	return 0;
    788 }
    789 
    790 struct vm_map *
    791 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    792 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    793 {
    794 
    795 	return (struct vm_map *)417416;
    796 }
    797 
    798 int
    799 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    800     vmem_addr_t *addr)
    801 {
    802 	vaddr_t va;
    803 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    804 	    (flags & VM_SLEEP), "kmalloc");
    805 
    806 	if (va) {
    807 		*addr = va;
    808 		return 0;
    809 	} else {
    810 		return ENOMEM;
    811 	}
    812 }
    813 
    814 void
    815 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    816 {
    817 
    818 	rump_hyperfree((void *)addr, size);
    819 }
    820 
    821 /*
    822  * VM space locking routines.  We don't really have to do anything,
    823  * since the pages are always "wired" (both local and remote processes).
    824  */
    825 int
    826 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    827 {
    828 
    829 	return 0;
    830 }
    831 
    832 void
    833 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    834 {
    835 
    836 }
    837 
    838 /*
    839  * For the local case the buffer mappers don't need to do anything.
    840  * For the remote case we need to reserve space and copy data in or
    841  * out, depending on B_READ/B_WRITE.
    842  */
    843 int
    844 vmapbuf(struct buf *bp, vsize_t len)
    845 {
    846 	int error = 0;
    847 
    848 	bp->b_saveaddr = bp->b_data;
    849 
    850 	/* remote case */
    851 	if (!RUMP_LOCALPROC_P(curproc)) {
    852 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    853 		if (BUF_ISWRITE(bp)) {
    854 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    855 			if (error) {
    856 				rump_hyperfree(bp->b_data, len);
    857 				bp->b_data = bp->b_saveaddr;
    858 				bp->b_saveaddr = 0;
    859 			}
    860 		}
    861 	}
    862 
    863 	return error;
    864 }
    865 
    866 void
    867 vunmapbuf(struct buf *bp, vsize_t len)
    868 {
    869 
    870 	/* remote case */
    871 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    872 		if (BUF_ISREAD(bp)) {
    873 			bp->b_error = copyout_proc(bp->b_proc,
    874 			    bp->b_data, bp->b_saveaddr, len);
    875 		}
    876 		rump_hyperfree(bp->b_data, len);
    877 	}
    878 
    879 	bp->b_data = bp->b_saveaddr;
    880 	bp->b_saveaddr = 0;
    881 }
    882 
    883 void
    884 uvmspace_addref(struct vmspace *vm)
    885 {
    886 
    887 	/*
    888 	 * No dynamically allocated vmspaces exist.
    889 	 */
    890 }
    891 
    892 void
    893 uvmspace_free(struct vmspace *vm)
    894 {
    895 
    896 	/* nothing for now */
    897 }
    898 
    899 /*
    900  * page life cycle stuff.  it really doesn't exist, so just stubs.
    901  */
    902 
    903 void
    904 uvm_pageactivate(struct vm_page *pg)
    905 {
    906 
    907 	/* nada */
    908 }
    909 
    910 void
    911 uvm_pagedeactivate(struct vm_page *pg)
    912 {
    913 
    914 	/* nada */
    915 }
    916 
    917 void
    918 uvm_pagedequeue(struct vm_page *pg)
    919 {
    920 
    921 	/* nada*/
    922 }
    923 
    924 void
    925 uvm_pageenqueue(struct vm_page *pg)
    926 {
    927 
    928 	/* nada */
    929 }
    930 
    931 void
    932 uvmpdpol_anfree(struct vm_anon *an)
    933 {
    934 
    935 	/* nada */
    936 }
    937 
    938 /*
    939  * Physical address accessors.
    940  */
    941 
    942 struct vm_page *
    943 uvm_phys_to_vm_page(paddr_t pa)
    944 {
    945 
    946 	return NULL;
    947 }
    948 
    949 paddr_t
    950 uvm_vm_page_to_phys(const struct vm_page *pg)
    951 {
    952 
    953 	return 0;
    954 }
    955 
    956 vaddr_t
    957 uvm_uarea_alloc(void)
    958 {
    959 
    960 	/* non-zero */
    961 	return (vaddr_t)11;
    962 }
    963 
    964 void
    965 uvm_uarea_free(vaddr_t uarea)
    966 {
    967 
    968 	/* nata, so creamy */
    969 }
    970 
    971 /*
    972  * Routines related to the Page Baroness.
    973  */
    974 
    975 void
    976 uvm_wait(const char *msg)
    977 {
    978 
    979 	if (__predict_false(rump_threads == 0))
    980 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    981 
    982 	if (curlwp == uvm.pagedaemon_lwp) {
    983 		/* is it possible for us to later get memory? */
    984 		if (!uvmexp.paging)
    985 			panic("pagedaemon out of memory");
    986 	}
    987 
    988 	mutex_enter(&pdaemonmtx);
    989 	pdaemon_waiters++;
    990 	cv_signal(&pdaemoncv);
    991 	cv_wait(&oomwait, &pdaemonmtx);
    992 	mutex_exit(&pdaemonmtx);
    993 }
    994 
    995 void
    996 uvm_pageout_start(int npages)
    997 {
    998 
    999 	mutex_enter(&pdaemonmtx);
   1000 	uvmexp.paging += npages;
   1001 	mutex_exit(&pdaemonmtx);
   1002 }
   1003 
   1004 void
   1005 uvm_pageout_done(int npages)
   1006 {
   1007 
   1008 	if (!npages)
   1009 		return;
   1010 
   1011 	mutex_enter(&pdaemonmtx);
   1012 	KASSERT(uvmexp.paging >= npages);
   1013 	uvmexp.paging -= npages;
   1014 
   1015 	if (pdaemon_waiters) {
   1016 		pdaemon_waiters = 0;
   1017 		cv_broadcast(&oomwait);
   1018 	}
   1019 	mutex_exit(&pdaemonmtx);
   1020 }
   1021 
   1022 static bool
   1023 processpage(struct vm_page *pg, bool *lockrunning)
   1024 {
   1025 	struct uvm_object *uobj;
   1026 
   1027 	uobj = pg->uobject;
   1028 	if (mutex_tryenter(uobj->vmobjlock)) {
   1029 		if ((pg->flags & PG_BUSY) == 0) {
   1030 			mutex_exit(&uvm_pageqlock);
   1031 			uobj->pgops->pgo_put(uobj, pg->offset,
   1032 			    pg->offset + PAGE_SIZE,
   1033 			    PGO_CLEANIT|PGO_FREE);
   1034 			KASSERT(!mutex_owned(uobj->vmobjlock));
   1035 			return true;
   1036 		} else {
   1037 			mutex_exit(uobj->vmobjlock);
   1038 		}
   1039 	} else if (*lockrunning == false && ncpu > 1) {
   1040 		CPU_INFO_ITERATOR cii;
   1041 		struct cpu_info *ci;
   1042 		struct lwp *l;
   1043 
   1044 		l = mutex_owner(uobj->vmobjlock);
   1045 		for (CPU_INFO_FOREACH(cii, ci)) {
   1046 			if (ci->ci_curlwp == l) {
   1047 				*lockrunning = true;
   1048 				break;
   1049 			}
   1050 		}
   1051 	}
   1052 
   1053 	return false;
   1054 }
   1055 
   1056 /*
   1057  * The Diabolical pageDaemon Director (DDD).
   1058  *
   1059  * This routine can always use better heuristics.
   1060  */
   1061 void
   1062 uvm_pageout(void *arg)
   1063 {
   1064 	struct vm_page *pg;
   1065 	struct pool *pp, *pp_first;
   1066 	int cleaned, skip, skipped;
   1067 	bool succ;
   1068 	bool lockrunning;
   1069 
   1070 	mutex_enter(&pdaemonmtx);
   1071 	for (;;) {
   1072 		if (!NEED_PAGEDAEMON()) {
   1073 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1074 		}
   1075 
   1076 		if (pdaemon_waiters) {
   1077 			pdaemon_waiters = 0;
   1078 			cv_broadcast(&oomwait);
   1079 		}
   1080 
   1081 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1082 		uvmexp.pdwoke++;
   1083 
   1084 		/* tell the world that we are hungry */
   1085 		kernel_map->flags |= VM_MAP_WANTVA;
   1086 		mutex_exit(&pdaemonmtx);
   1087 
   1088 		/*
   1089 		 * step one: reclaim the page cache.  this should give
   1090 		 * us the biggest earnings since whole pages are released
   1091 		 * into backing memory.
   1092 		 */
   1093 		pool_cache_reclaim(&pagecache);
   1094 		if (!NEED_PAGEDAEMON()) {
   1095 			mutex_enter(&pdaemonmtx);
   1096 			continue;
   1097 		}
   1098 
   1099 		/*
   1100 		 * Ok, so that didn't help.  Next, try to hunt memory
   1101 		 * by pushing out vnode pages.  The pages might contain
   1102 		 * useful cached data, but we need the memory.
   1103 		 */
   1104 		cleaned = 0;
   1105 		skip = 0;
   1106 		lockrunning = false;
   1107  again:
   1108 		mutex_enter(&uvm_pageqlock);
   1109 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1110 			skipped = 0;
   1111 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1112 
   1113 				/*
   1114 				 * skip over pages we _might_ have tried
   1115 				 * to handle earlier.  they might not be
   1116 				 * exactly the same ones, but I'm not too
   1117 				 * concerned.
   1118 				 */
   1119 				while (skipped++ < skip)
   1120 					continue;
   1121 
   1122 				if (processpage(pg, &lockrunning)) {
   1123 					cleaned++;
   1124 					goto again;
   1125 				}
   1126 
   1127 				skip++;
   1128 			}
   1129 			break;
   1130 		}
   1131 		mutex_exit(&uvm_pageqlock);
   1132 
   1133 		/*
   1134 		 * Ok, someone is running with an object lock held.
   1135 		 * We want to yield the host CPU to make sure the
   1136 		 * thread is not parked on the host.  Since sched_yield()
   1137 		 * doesn't appear to do anything on NetBSD, nanosleep
   1138 		 * for the smallest possible time and hope we're back in
   1139 		 * the game soon.
   1140 		 */
   1141 		if (cleaned == 0 && lockrunning) {
   1142 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
   1143 
   1144 			lockrunning = false;
   1145 			skip = 0;
   1146 
   1147 			/* and here we go again */
   1148 			goto again;
   1149 		}
   1150 
   1151 		/*
   1152 		 * And of course we need to reclaim the page cache
   1153 		 * again to actually release memory.
   1154 		 */
   1155 		pool_cache_reclaim(&pagecache);
   1156 		if (!NEED_PAGEDAEMON()) {
   1157 			mutex_enter(&pdaemonmtx);
   1158 			continue;
   1159 		}
   1160 
   1161 		/*
   1162 		 * And then drain the pools.  Wipe them out ... all of them.
   1163 		 */
   1164 		for (pp_first = NULL;;) {
   1165 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1166 
   1167 			succ = pool_drain(&pp);
   1168 			if (succ || pp == pp_first)
   1169 				break;
   1170 
   1171 			if (pp_first == NULL)
   1172 				pp_first = pp;
   1173 		}
   1174 
   1175 		/*
   1176 		 * Need to use PYEC on our bag of tricks.
   1177 		 * Unfortunately, the wife just borrowed it.
   1178 		 */
   1179 
   1180 		mutex_enter(&pdaemonmtx);
   1181 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1182 		    uvmexp.paging == 0) {
   1183 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1184 			    "memory ... sleeping (deadlock?)\n");
   1185 			kpause("pddlk", false, hz, &pdaemonmtx);
   1186 		}
   1187 	}
   1188 
   1189 	panic("you can swap out any time you like, but you can never leave");
   1190 }
   1191 
   1192 void
   1193 uvm_kick_pdaemon()
   1194 {
   1195 
   1196 	/*
   1197 	 * Wake up the diabolical pagedaemon director if we are over
   1198 	 * 90% of the memory limit.  This is a complete and utter
   1199 	 * stetson-harrison decision which you are allowed to finetune.
   1200 	 * Don't bother locking.  If we have some unflushed caches,
   1201 	 * other waker-uppers will deal with the issue.
   1202 	 */
   1203 	if (NEED_PAGEDAEMON()) {
   1204 		cv_signal(&pdaemoncv);
   1205 	}
   1206 }
   1207 
   1208 void *
   1209 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1210 {
   1211 	const unsigned long thelimit =
   1212 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1213 	unsigned long newmem;
   1214 	void *rv;
   1215 	int error;
   1216 
   1217 	uvm_kick_pdaemon(); /* ouch */
   1218 
   1219 	/* first we must be within the limit */
   1220  limitagain:
   1221 	if (thelimit != RUMPMEM_UNLIMITED) {
   1222 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1223 		if (newmem > thelimit) {
   1224 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1225 			if (!waitok) {
   1226 				return NULL;
   1227 			}
   1228 			uvm_wait(wmsg);
   1229 			goto limitagain;
   1230 		}
   1231 	}
   1232 
   1233 	/* second, we must get something from the backend */
   1234  again:
   1235 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1236 	if (__predict_false(error && waitok)) {
   1237 		uvm_wait(wmsg);
   1238 		goto again;
   1239 	}
   1240 
   1241 	return rv;
   1242 }
   1243 
   1244 void
   1245 rump_hyperfree(void *what, size_t size)
   1246 {
   1247 
   1248 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1249 		atomic_add_long(&curphysmem, -size);
   1250 	}
   1251 	rumpuser_free(what, size);
   1252 }
   1253