vm.c revision 1.169.2.1 1 /* $NetBSD: vm.c,v 1.169.2.1 2016/07/26 03:24:24 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.169.2.1 2016/07/26 03:24:24 pgoyette Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/vmem.h>
52 #include <sys/mman.h>
53 #include <sys/null.h>
54 #include <sys/vnode.h>
55
56 #include <machine/pmap.h>
57
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_ddb.h>
60 #include <uvm/uvm_pdpolicy.h>
61 #include <uvm/uvm_prot.h>
62 #include <uvm/uvm_readahead.h>
63 #include <uvm/uvm_device.h>
64
65 #include <rump-sys/kern.h>
66 #include <rump-sys/vfs.h>
67
68 #include <rump/rumpuser.h>
69
70 kmutex_t uvm_pageqlock; /* non-free page lock */
71 kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
72 kmutex_t uvm_swap_data_lock;
73
74 struct uvmexp uvmexp;
75 struct uvm uvm;
76
77 #ifdef __uvmexp_pagesize
78 const int * const uvmexp_pagesize = &uvmexp.pagesize;
79 const int * const uvmexp_pagemask = &uvmexp.pagemask;
80 const int * const uvmexp_pageshift = &uvmexp.pageshift;
81 #endif
82
83 static struct vm_map kernel_map_store;
84 struct vm_map *kernel_map = &kernel_map_store;
85
86 static struct vm_map module_map_store;
87 extern struct vm_map *module_map;
88
89 static struct pmap pmap_kernel;
90 struct pmap rump_pmap_local;
91 struct pmap *const kernel_pmap_ptr = &pmap_kernel;
92
93 vmem_t *kmem_arena;
94 vmem_t *kmem_va_arena;
95
96 static unsigned int pdaemon_waiters;
97 static kmutex_t pdaemonmtx;
98 static kcondvar_t pdaemoncv, oomwait;
99
100 /* all local non-proc0 processes share this vmspace */
101 struct vmspace *rump_vmspace_local;
102
103 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
104 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
105 static unsigned long curphysmem;
106 static unsigned long dddlim; /* 90% of memory limit used */
107 #define NEED_PAGEDAEMON() \
108 (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
109 #define PDRESERVE (2*MAXPHYS)
110
111 /*
112 * Try to free two pages worth of pages from objects.
113 * If this succesfully frees a full page cache page, we'll
114 * free the released page plus PAGE_SIZE/sizeof(vm_page).
115 */
116 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
117
118 /*
119 * Keep a list of least recently used pages. Since the only way a
120 * rump kernel can "access" a page is via lookup, we put the page
121 * at the back of queue every time a lookup for it is done. If the
122 * page is in front of this global queue and we're short of memory,
123 * it's a candidate for pageout.
124 */
125 static struct pglist vmpage_lruqueue;
126 static unsigned vmpage_onqueue;
127
128 static int
129 pg_compare_key(void *ctx, const void *n, const void *key)
130 {
131 voff_t a = ((const struct vm_page *)n)->offset;
132 voff_t b = *(const voff_t *)key;
133
134 if (a < b)
135 return -1;
136 else if (a > b)
137 return 1;
138 else
139 return 0;
140 }
141
142 static int
143 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
144 {
145
146 return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
147 }
148
149 const rb_tree_ops_t uvm_page_tree_ops = {
150 .rbto_compare_nodes = pg_compare_nodes,
151 .rbto_compare_key = pg_compare_key,
152 .rbto_node_offset = offsetof(struct vm_page, rb_node),
153 .rbto_context = NULL
154 };
155
156 /*
157 * vm pages
158 */
159
160 static int
161 pgctor(void *arg, void *obj, int flags)
162 {
163 struct vm_page *pg = obj;
164
165 memset(pg, 0, sizeof(*pg));
166 pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
167 (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
168 return pg->uanon == NULL;
169 }
170
171 static void
172 pgdtor(void *arg, void *obj)
173 {
174 struct vm_page *pg = obj;
175
176 rump_hyperfree(pg->uanon, PAGE_SIZE);
177 }
178
179 static struct pool_cache pagecache;
180
181 /*
182 * Called with the object locked. We don't support anons.
183 */
184 struct vm_page *
185 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
186 int flags, int strat, int free_list)
187 {
188 struct vm_page *pg;
189
190 KASSERT(uobj && mutex_owned(uobj->vmobjlock));
191 KASSERT(anon == NULL);
192
193 pg = pool_cache_get(&pagecache, PR_NOWAIT);
194 if (__predict_false(pg == NULL)) {
195 return NULL;
196 }
197
198 pg->offset = off;
199 pg->uobject = uobj;
200
201 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
202 if (flags & UVM_PGA_ZERO) {
203 uvm_pagezero(pg);
204 }
205
206 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
207 (void)rb_tree_insert_node(&uobj->rb_tree, pg);
208
209 /*
210 * Don't put anons on the LRU page queue. We can't flush them
211 * (there's no concept of swap in a rump kernel), so no reason
212 * to bother with them.
213 */
214 if (!UVM_OBJ_IS_AOBJ(uobj)) {
215 atomic_inc_uint(&vmpage_onqueue);
216 mutex_enter(&uvm_pageqlock);
217 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
218 mutex_exit(&uvm_pageqlock);
219 }
220
221 uobj->uo_npages++;
222
223 return pg;
224 }
225
226 /*
227 * Release a page.
228 *
229 * Called with the vm object locked.
230 */
231 void
232 uvm_pagefree(struct vm_page *pg)
233 {
234 struct uvm_object *uobj = pg->uobject;
235
236 KASSERT(mutex_owned(&uvm_pageqlock));
237 KASSERT(mutex_owned(uobj->vmobjlock));
238
239 if (pg->flags & PG_WANTED)
240 wakeup(pg);
241
242 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
243
244 uobj->uo_npages--;
245 rb_tree_remove_node(&uobj->rb_tree, pg);
246
247 if (!UVM_OBJ_IS_AOBJ(uobj)) {
248 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
249 atomic_dec_uint(&vmpage_onqueue);
250 }
251
252 pool_cache_put(&pagecache, pg);
253 }
254
255 void
256 uvm_pagezero(struct vm_page *pg)
257 {
258
259 pg->flags &= ~PG_CLEAN;
260 memset((void *)pg->uanon, 0, PAGE_SIZE);
261 }
262
263 /*
264 * uvm_page_locked_p: return true if object associated with page is
265 * locked. this is a weak check for runtime assertions only.
266 */
267
268 bool
269 uvm_page_locked_p(struct vm_page *pg)
270 {
271
272 return mutex_owned(pg->uobject->vmobjlock);
273 }
274
275 /*
276 * Misc routines
277 */
278
279 static kmutex_t pagermtx;
280
281 void
282 uvm_init(void)
283 {
284 char buf[64];
285
286 if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
287 unsigned long tmp;
288 char *ep;
289 int mult;
290
291 tmp = strtoul(buf, &ep, 10);
292 if (strlen(ep) > 1)
293 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
294
295 /* mini-dehumanize-number */
296 mult = 1;
297 switch (*ep) {
298 case 'k':
299 mult = 1024;
300 break;
301 case 'm':
302 mult = 1024*1024;
303 break;
304 case 'g':
305 mult = 1024*1024*1024;
306 break;
307 case 0:
308 break;
309 default:
310 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
311 }
312 rump_physmemlimit = tmp * mult;
313
314 if (rump_physmemlimit / mult != tmp)
315 panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
316
317 /* reserve some memory for the pager */
318 if (rump_physmemlimit <= PDRESERVE)
319 panic("uvm_init: system reserves %d bytes of mem, "
320 "only %lu bytes given",
321 PDRESERVE, rump_physmemlimit);
322 pdlimit = rump_physmemlimit;
323 rump_physmemlimit -= PDRESERVE;
324
325 if (pdlimit < 1024*1024)
326 printf("uvm_init: WARNING: <1MB RAM limit, "
327 "hope you know what you're doing\n");
328
329 #define HUMANIZE_BYTES 9
330 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
331 format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
332 #undef HUMANIZE_BYTES
333 dddlim = 9 * (rump_physmemlimit / 10);
334 } else {
335 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
336 }
337 aprint_verbose("total memory = %s\n", buf);
338
339 TAILQ_INIT(&vmpage_lruqueue);
340
341 if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
342 uvmexp.npages = physmem;
343 } else {
344 uvmexp.npages = pdlimit >> PAGE_SHIFT;
345 uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
346 uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
347 }
348 /*
349 * uvmexp.free is not used internally or updated. The reason is
350 * that the memory hypercall allocator is allowed to allocate
351 * non-page sized chunks. We use a byte count in curphysmem
352 * instead.
353 */
354 uvmexp.free = uvmexp.npages;
355
356 #ifndef __uvmexp_pagesize
357 uvmexp.pagesize = PAGE_SIZE;
358 uvmexp.pagemask = PAGE_MASK;
359 uvmexp.pageshift = PAGE_SHIFT;
360 #else
361 #define FAKE_PAGE_SHIFT 12
362 uvmexp.pageshift = FAKE_PAGE_SHIFT;
363 uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
364 uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
365 #undef FAKE_PAGE_SHIFT
366 #endif
367
368 mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
369 mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, IPL_NONE);
370 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
371
372 /* just to appease linkage */
373 mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
374
375 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
376 cv_init(&pdaemoncv, "pdaemon");
377 cv_init(&oomwait, "oomwait");
378
379 module_map = &module_map_store;
380
381 kernel_map->pmap = pmap_kernel();
382
383 pool_subsystem_init();
384
385 kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
386 NULL, NULL, NULL,
387 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
388
389 vmem_subsystem_init(kmem_arena);
390
391 kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
392 vmem_alloc, vmem_free, kmem_arena,
393 8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
394
395 pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
396 "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
397
398 /* create vmspace used by local clients */
399 rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
400 uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
401 }
402
403 void
404 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
405 bool topdown)
406 {
407
408 vm->vm_map.pmap = pmap;
409 vm->vm_refcnt = 1;
410 }
411
412 void
413 uvm_pagewire(struct vm_page *pg)
414 {
415
416 /* nada */
417 }
418
419 void
420 uvm_pageunwire(struct vm_page *pg)
421 {
422
423 /* nada */
424 }
425
426 /* where's your schmonz now? */
427 #define PUNLIMIT(a) \
428 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
429 void
430 uvm_init_limits(struct proc *p)
431 {
432
433 #ifndef DFLSSIZ
434 #define DFLSSIZ (16*1024*1024)
435 #endif
436 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
437 p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
438 PUNLIMIT(RLIMIT_DATA);
439 PUNLIMIT(RLIMIT_RSS);
440 PUNLIMIT(RLIMIT_AS);
441 /* nice, cascade */
442 }
443 #undef PUNLIMIT
444
445 /*
446 * This satisfies the "disgusting mmap hack" used by proplib.
447 */
448 int
449 uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
450 {
451 int error;
452
453 /* no reason in particular, but cf. uvm_default_mapaddr() */
454 if (*addrp != NULL)
455 panic("uvm_mmap() variant unsupported");
456
457 if (RUMP_LOCALPROC_P(curproc)) {
458 error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
459 } else {
460 error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
461 size, addrp);
462 }
463 return error;
464 }
465
466 /*
467 * Stubs for things referenced from vfs_vnode.c but not used.
468 */
469 const dev_t zerodev;
470
471 struct uvm_object *
472 udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
473 {
474 return NULL;
475 }
476
477 struct pagerinfo {
478 vaddr_t pgr_kva;
479 int pgr_npages;
480 struct vm_page **pgr_pgs;
481 bool pgr_read;
482
483 LIST_ENTRY(pagerinfo) pgr_entries;
484 };
485 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
486
487 /*
488 * Pager "map" in routine. Instead of mapping, we allocate memory
489 * and copy page contents there. The reason for copying instead of
490 * mapping is simple: we do not assume we are running on virtual
491 * memory. Even if we could emulate virtual memory in some envs
492 * such as userspace, copying is much faster than trying to awkardly
493 * cope with remapping (see "Design and Implementation" pp.95-98).
494 * The downside of the approach is that the pager requires MAXPHYS
495 * free memory to perform paging, but short of virtual memory or
496 * making the pager do I/O in page-sized chunks we cannot do much
497 * about that.
498 */
499 vaddr_t
500 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
501 {
502 struct pagerinfo *pgri;
503 vaddr_t curkva;
504 int i;
505
506 /* allocate structures */
507 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
508 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
509 pgri->pgr_npages = npages;
510 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
511 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
512
513 /* copy contents to "mapped" memory */
514 for (i = 0, curkva = pgri->pgr_kva;
515 i < npages;
516 i++, curkva += PAGE_SIZE) {
517 /*
518 * We need to copy the previous contents of the pages to
519 * the window even if we are reading from the
520 * device, since the device might not fill the contents of
521 * the full mapped range and we will end up corrupting
522 * data when we unmap the window.
523 */
524 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
525 pgri->pgr_pgs[i] = pgs[i];
526 }
527
528 mutex_enter(&pagermtx);
529 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
530 mutex_exit(&pagermtx);
531
532 return pgri->pgr_kva;
533 }
534
535 /*
536 * map out the pager window. return contents from VA to page storage
537 * and free structures.
538 *
539 * Note: does not currently support partial frees
540 */
541 void
542 uvm_pagermapout(vaddr_t kva, int npages)
543 {
544 struct pagerinfo *pgri;
545 vaddr_t curkva;
546 int i;
547
548 mutex_enter(&pagermtx);
549 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
550 if (pgri->pgr_kva == kva)
551 break;
552 }
553 KASSERT(pgri);
554 if (pgri->pgr_npages != npages)
555 panic("uvm_pagermapout: partial unmapping not supported");
556 LIST_REMOVE(pgri, pgr_entries);
557 mutex_exit(&pagermtx);
558
559 if (pgri->pgr_read) {
560 for (i = 0, curkva = pgri->pgr_kva;
561 i < pgri->pgr_npages;
562 i++, curkva += PAGE_SIZE) {
563 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
564 }
565 }
566
567 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
568 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
569 kmem_free(pgri, sizeof(*pgri));
570 }
571
572 /*
573 * convert va in pager window to page structure.
574 * XXX: how expensive is this (global lock, list traversal)?
575 */
576 struct vm_page *
577 uvm_pageratop(vaddr_t va)
578 {
579 struct pagerinfo *pgri;
580 struct vm_page *pg = NULL;
581 int i;
582
583 mutex_enter(&pagermtx);
584 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
585 if (pgri->pgr_kva <= va
586 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
587 break;
588 }
589 if (pgri) {
590 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
591 pg = pgri->pgr_pgs[i];
592 }
593 mutex_exit(&pagermtx);
594
595 return pg;
596 }
597
598 /*
599 * Called with the vm object locked.
600 *
601 * Put vnode object pages at the end of the access queue to indicate
602 * they have been recently accessed and should not be immediate
603 * candidates for pageout. Do not do this for lookups done by
604 * the pagedaemon to mimic pmap_kentered mappings which don't track
605 * access information.
606 */
607 struct vm_page *
608 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
609 {
610 struct vm_page *pg;
611 bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
612
613 pg = rb_tree_find_node(&uobj->rb_tree, &off);
614 if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
615 mutex_enter(&uvm_pageqlock);
616 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
617 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
618 mutex_exit(&uvm_pageqlock);
619 }
620
621 return pg;
622 }
623
624 void
625 uvm_page_unbusy(struct vm_page **pgs, int npgs)
626 {
627 struct vm_page *pg;
628 int i;
629
630 KASSERT(npgs > 0);
631 KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
632
633 for (i = 0; i < npgs; i++) {
634 pg = pgs[i];
635 if (pg == NULL)
636 continue;
637
638 KASSERT(pg->flags & PG_BUSY);
639 if (pg->flags & PG_WANTED)
640 wakeup(pg);
641 if (pg->flags & PG_RELEASED)
642 uvm_pagefree(pg);
643 else
644 pg->flags &= ~(PG_WANTED|PG_BUSY);
645 }
646 }
647
648 void
649 uvm_estimatepageable(int *active, int *inactive)
650 {
651
652 /* XXX: guessing game */
653 *active = 1024;
654 *inactive = 1024;
655 }
656
657 bool
658 vm_map_starved_p(struct vm_map *map)
659 {
660
661 if (map->flags & VM_MAP_WANTVA)
662 return true;
663
664 return false;
665 }
666
667 int
668 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
669 {
670
671 panic("%s: unimplemented", __func__);
672 }
673
674 void
675 uvm_unloan(void *v, int npages, int flags)
676 {
677
678 panic("%s: unimplemented", __func__);
679 }
680
681 int
682 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
683 struct vm_page **opp)
684 {
685
686 return EBUSY;
687 }
688
689 struct vm_page *
690 uvm_loanbreak(struct vm_page *pg)
691 {
692
693 panic("%s: unimplemented", __func__);
694 }
695
696 void
697 ubc_purge(struct uvm_object *uobj)
698 {
699
700 }
701
702 vaddr_t
703 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
704 {
705
706 return 0;
707 }
708
709 int
710 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
711 vm_prot_t prot, bool set_max)
712 {
713
714 return EOPNOTSUPP;
715 }
716
717 /*
718 * UVM km
719 */
720
721 vaddr_t
722 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
723 {
724 void *rv, *desired = NULL;
725 int alignbit, error;
726
727 #ifdef __x86_64__
728 /*
729 * On amd64, allocate all module memory from the lowest 2GB.
730 * This is because NetBSD kernel modules are compiled
731 * with -mcmodel=kernel and reserve only 4 bytes for
732 * offsets. If we load code compiled with -mcmodel=kernel
733 * anywhere except the lowest or highest 2GB, it will not
734 * work. Since userspace does not have access to the highest
735 * 2GB, use the lowest 2GB.
736 *
737 * Note: this assumes the rump kernel resides in
738 * the lowest 2GB as well.
739 *
740 * Note2: yes, it's a quick hack, but since this the only
741 * place where we care about the map we're allocating from,
742 * just use a simple "if" instead of coming up with a fancy
743 * generic solution.
744 */
745 if (map == module_map) {
746 desired = (void *)(0x80000000 - size);
747 }
748 #endif
749
750 if (__predict_false(map == module_map)) {
751 alignbit = 0;
752 if (align) {
753 alignbit = ffs(align)-1;
754 }
755 error = rumpuser_anonmmap(desired, size, alignbit,
756 flags & UVM_KMF_EXEC, &rv);
757 } else {
758 error = rumpuser_malloc(size, align, &rv);
759 }
760
761 if (error) {
762 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
763 return 0;
764 else
765 panic("uvm_km_alloc failed");
766 }
767
768 if (flags & UVM_KMF_ZERO)
769 memset(rv, 0, size);
770
771 return (vaddr_t)rv;
772 }
773
774 void
775 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
776 {
777
778 if (__predict_false(map == module_map))
779 rumpuser_unmap((void *)vaddr, size);
780 else
781 rumpuser_free((void *)vaddr, size);
782 }
783
784 int
785 uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
786 {
787 return 0;
788 }
789
790 struct vm_map *
791 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
792 vsize_t size, int pageable, bool fixed, struct vm_map *submap)
793 {
794
795 return (struct vm_map *)417416;
796 }
797
798 int
799 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
800 vmem_addr_t *addr)
801 {
802 vaddr_t va;
803 va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
804 (flags & VM_SLEEP), "kmalloc");
805
806 if (va) {
807 *addr = va;
808 return 0;
809 } else {
810 return ENOMEM;
811 }
812 }
813
814 void
815 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
816 {
817
818 rump_hyperfree((void *)addr, size);
819 }
820
821 /*
822 * VM space locking routines. We don't really have to do anything,
823 * since the pages are always "wired" (both local and remote processes).
824 */
825 int
826 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
827 {
828
829 return 0;
830 }
831
832 void
833 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
834 {
835
836 }
837
838 /*
839 * For the local case the buffer mappers don't need to do anything.
840 * For the remote case we need to reserve space and copy data in or
841 * out, depending on B_READ/B_WRITE.
842 */
843 int
844 vmapbuf(struct buf *bp, vsize_t len)
845 {
846 int error = 0;
847
848 bp->b_saveaddr = bp->b_data;
849
850 /* remote case */
851 if (!RUMP_LOCALPROC_P(curproc)) {
852 bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
853 if (BUF_ISWRITE(bp)) {
854 error = copyin(bp->b_saveaddr, bp->b_data, len);
855 if (error) {
856 rump_hyperfree(bp->b_data, len);
857 bp->b_data = bp->b_saveaddr;
858 bp->b_saveaddr = 0;
859 }
860 }
861 }
862
863 return error;
864 }
865
866 void
867 vunmapbuf(struct buf *bp, vsize_t len)
868 {
869
870 /* remote case */
871 if (!RUMP_LOCALPROC_P(bp->b_proc)) {
872 if (BUF_ISREAD(bp)) {
873 bp->b_error = copyout_proc(bp->b_proc,
874 bp->b_data, bp->b_saveaddr, len);
875 }
876 rump_hyperfree(bp->b_data, len);
877 }
878
879 bp->b_data = bp->b_saveaddr;
880 bp->b_saveaddr = 0;
881 }
882
883 void
884 uvmspace_addref(struct vmspace *vm)
885 {
886
887 /*
888 * No dynamically allocated vmspaces exist.
889 */
890 }
891
892 void
893 uvmspace_free(struct vmspace *vm)
894 {
895
896 /* nothing for now */
897 }
898
899 /*
900 * page life cycle stuff. it really doesn't exist, so just stubs.
901 */
902
903 void
904 uvm_pageactivate(struct vm_page *pg)
905 {
906
907 /* nada */
908 }
909
910 void
911 uvm_pagedeactivate(struct vm_page *pg)
912 {
913
914 /* nada */
915 }
916
917 void
918 uvm_pagedequeue(struct vm_page *pg)
919 {
920
921 /* nada*/
922 }
923
924 void
925 uvm_pageenqueue(struct vm_page *pg)
926 {
927
928 /* nada */
929 }
930
931 void
932 uvmpdpol_anfree(struct vm_anon *an)
933 {
934
935 /* nada */
936 }
937
938 /*
939 * Physical address accessors.
940 */
941
942 struct vm_page *
943 uvm_phys_to_vm_page(paddr_t pa)
944 {
945
946 return NULL;
947 }
948
949 paddr_t
950 uvm_vm_page_to_phys(const struct vm_page *pg)
951 {
952
953 return 0;
954 }
955
956 vaddr_t
957 uvm_uarea_alloc(void)
958 {
959
960 /* non-zero */
961 return (vaddr_t)11;
962 }
963
964 void
965 uvm_uarea_free(vaddr_t uarea)
966 {
967
968 /* nata, so creamy */
969 }
970
971 /*
972 * Routines related to the Page Baroness.
973 */
974
975 void
976 uvm_wait(const char *msg)
977 {
978
979 if (__predict_false(rump_threads == 0))
980 panic("pagedaemon missing (RUMP_THREADS = 0)");
981
982 if (curlwp == uvm.pagedaemon_lwp) {
983 /* is it possible for us to later get memory? */
984 if (!uvmexp.paging)
985 panic("pagedaemon out of memory");
986 }
987
988 mutex_enter(&pdaemonmtx);
989 pdaemon_waiters++;
990 cv_signal(&pdaemoncv);
991 cv_wait(&oomwait, &pdaemonmtx);
992 mutex_exit(&pdaemonmtx);
993 }
994
995 void
996 uvm_pageout_start(int npages)
997 {
998
999 mutex_enter(&pdaemonmtx);
1000 uvmexp.paging += npages;
1001 mutex_exit(&pdaemonmtx);
1002 }
1003
1004 void
1005 uvm_pageout_done(int npages)
1006 {
1007
1008 if (!npages)
1009 return;
1010
1011 mutex_enter(&pdaemonmtx);
1012 KASSERT(uvmexp.paging >= npages);
1013 uvmexp.paging -= npages;
1014
1015 if (pdaemon_waiters) {
1016 pdaemon_waiters = 0;
1017 cv_broadcast(&oomwait);
1018 }
1019 mutex_exit(&pdaemonmtx);
1020 }
1021
1022 static bool
1023 processpage(struct vm_page *pg, bool *lockrunning)
1024 {
1025 struct uvm_object *uobj;
1026
1027 uobj = pg->uobject;
1028 if (mutex_tryenter(uobj->vmobjlock)) {
1029 if ((pg->flags & PG_BUSY) == 0) {
1030 mutex_exit(&uvm_pageqlock);
1031 uobj->pgops->pgo_put(uobj, pg->offset,
1032 pg->offset + PAGE_SIZE,
1033 PGO_CLEANIT|PGO_FREE);
1034 KASSERT(!mutex_owned(uobj->vmobjlock));
1035 return true;
1036 } else {
1037 mutex_exit(uobj->vmobjlock);
1038 }
1039 } else if (*lockrunning == false && ncpu > 1) {
1040 CPU_INFO_ITERATOR cii;
1041 struct cpu_info *ci;
1042 struct lwp *l;
1043
1044 l = mutex_owner(uobj->vmobjlock);
1045 for (CPU_INFO_FOREACH(cii, ci)) {
1046 if (ci->ci_curlwp == l) {
1047 *lockrunning = true;
1048 break;
1049 }
1050 }
1051 }
1052
1053 return false;
1054 }
1055
1056 /*
1057 * The Diabolical pageDaemon Director (DDD).
1058 *
1059 * This routine can always use better heuristics.
1060 */
1061 void
1062 uvm_pageout(void *arg)
1063 {
1064 struct vm_page *pg;
1065 struct pool *pp, *pp_first;
1066 int cleaned, skip, skipped;
1067 bool succ;
1068 bool lockrunning;
1069
1070 mutex_enter(&pdaemonmtx);
1071 for (;;) {
1072 if (!NEED_PAGEDAEMON()) {
1073 kernel_map->flags &= ~VM_MAP_WANTVA;
1074 }
1075
1076 if (pdaemon_waiters) {
1077 pdaemon_waiters = 0;
1078 cv_broadcast(&oomwait);
1079 }
1080
1081 cv_wait(&pdaemoncv, &pdaemonmtx);
1082 uvmexp.pdwoke++;
1083
1084 /* tell the world that we are hungry */
1085 kernel_map->flags |= VM_MAP_WANTVA;
1086 mutex_exit(&pdaemonmtx);
1087
1088 /*
1089 * step one: reclaim the page cache. this should give
1090 * us the biggest earnings since whole pages are released
1091 * into backing memory.
1092 */
1093 pool_cache_reclaim(&pagecache);
1094 if (!NEED_PAGEDAEMON()) {
1095 mutex_enter(&pdaemonmtx);
1096 continue;
1097 }
1098
1099 /*
1100 * Ok, so that didn't help. Next, try to hunt memory
1101 * by pushing out vnode pages. The pages might contain
1102 * useful cached data, but we need the memory.
1103 */
1104 cleaned = 0;
1105 skip = 0;
1106 lockrunning = false;
1107 again:
1108 mutex_enter(&uvm_pageqlock);
1109 while (cleaned < PAGEDAEMON_OBJCHUNK) {
1110 skipped = 0;
1111 TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1112
1113 /*
1114 * skip over pages we _might_ have tried
1115 * to handle earlier. they might not be
1116 * exactly the same ones, but I'm not too
1117 * concerned.
1118 */
1119 while (skipped++ < skip)
1120 continue;
1121
1122 if (processpage(pg, &lockrunning)) {
1123 cleaned++;
1124 goto again;
1125 }
1126
1127 skip++;
1128 }
1129 break;
1130 }
1131 mutex_exit(&uvm_pageqlock);
1132
1133 /*
1134 * Ok, someone is running with an object lock held.
1135 * We want to yield the host CPU to make sure the
1136 * thread is not parked on the host. Since sched_yield()
1137 * doesn't appear to do anything on NetBSD, nanosleep
1138 * for the smallest possible time and hope we're back in
1139 * the game soon.
1140 */
1141 if (cleaned == 0 && lockrunning) {
1142 rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
1143
1144 lockrunning = false;
1145 skip = 0;
1146
1147 /* and here we go again */
1148 goto again;
1149 }
1150
1151 /*
1152 * And of course we need to reclaim the page cache
1153 * again to actually release memory.
1154 */
1155 pool_cache_reclaim(&pagecache);
1156 if (!NEED_PAGEDAEMON()) {
1157 mutex_enter(&pdaemonmtx);
1158 continue;
1159 }
1160
1161 /*
1162 * And then drain the pools. Wipe them out ... all of them.
1163 */
1164 for (pp_first = NULL;;) {
1165 rump_vfs_drainbufs(10 /* XXX: estimate! */);
1166
1167 succ = pool_drain(&pp);
1168 if (succ || pp == pp_first)
1169 break;
1170
1171 if (pp_first == NULL)
1172 pp_first = pp;
1173 }
1174
1175 /*
1176 * Need to use PYEC on our bag of tricks.
1177 * Unfortunately, the wife just borrowed it.
1178 */
1179
1180 mutex_enter(&pdaemonmtx);
1181 if (!succ && cleaned == 0 && pdaemon_waiters &&
1182 uvmexp.paging == 0) {
1183 rumpuser_dprintf("pagedaemoness: failed to reclaim "
1184 "memory ... sleeping (deadlock?)\n");
1185 kpause("pddlk", false, hz, &pdaemonmtx);
1186 }
1187 }
1188
1189 panic("you can swap out any time you like, but you can never leave");
1190 }
1191
1192 void
1193 uvm_kick_pdaemon()
1194 {
1195
1196 /*
1197 * Wake up the diabolical pagedaemon director if we are over
1198 * 90% of the memory limit. This is a complete and utter
1199 * stetson-harrison decision which you are allowed to finetune.
1200 * Don't bother locking. If we have some unflushed caches,
1201 * other waker-uppers will deal with the issue.
1202 */
1203 if (NEED_PAGEDAEMON()) {
1204 cv_signal(&pdaemoncv);
1205 }
1206 }
1207
1208 void *
1209 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1210 {
1211 const unsigned long thelimit =
1212 curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
1213 unsigned long newmem;
1214 void *rv;
1215 int error;
1216
1217 uvm_kick_pdaemon(); /* ouch */
1218
1219 /* first we must be within the limit */
1220 limitagain:
1221 if (thelimit != RUMPMEM_UNLIMITED) {
1222 newmem = atomic_add_long_nv(&curphysmem, howmuch);
1223 if (newmem > thelimit) {
1224 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1225 if (!waitok) {
1226 return NULL;
1227 }
1228 uvm_wait(wmsg);
1229 goto limitagain;
1230 }
1231 }
1232
1233 /* second, we must get something from the backend */
1234 again:
1235 error = rumpuser_malloc(howmuch, alignment, &rv);
1236 if (__predict_false(error && waitok)) {
1237 uvm_wait(wmsg);
1238 goto again;
1239 }
1240
1241 return rv;
1242 }
1243
1244 void
1245 rump_hyperfree(void *what, size_t size)
1246 {
1247
1248 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1249 atomic_add_long(&curphysmem, -size);
1250 }
1251 rumpuser_free(what, size);
1252 }
1253