vm.c revision 1.173.14.1 1 /* $NetBSD: vm.c,v 1.173.14.1 2021/07/06 04:22:34 martin Exp $ */
2
3 /*
4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.173.14.1 2021/07/06 04:22:34 martin Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/vmem.h>
52 #include <sys/mman.h>
53 #include <sys/null.h>
54 #include <sys/vnode.h>
55
56 #include <machine/pmap.h>
57
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_ddb.h>
60 #include <uvm/uvm_pdpolicy.h>
61 #include <uvm/uvm_prot.h>
62 #include <uvm/uvm_readahead.h>
63 #include <uvm/uvm_device.h>
64
65 #include <rump-sys/kern.h>
66 #include <rump-sys/vfs.h>
67
68 #include <rump/rumpuser.h>
69
70 kmutex_t uvm_pageqlock; /* non-free page lock */
71 kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
72 kmutex_t uvm_swap_data_lock;
73
74 struct uvmexp uvmexp;
75 struct uvm uvm;
76
77 #ifdef __uvmexp_pagesize
78 const int * const uvmexp_pagesize = &uvmexp.pagesize;
79 const int * const uvmexp_pagemask = &uvmexp.pagemask;
80 const int * const uvmexp_pageshift = &uvmexp.pageshift;
81 #endif
82
83 static struct vm_map kernel_map_store;
84 struct vm_map *kernel_map = &kernel_map_store;
85
86 static struct vm_map module_map_store;
87 extern struct vm_map *module_map;
88
89 static struct pmap pmap_kernel;
90 struct pmap rump_pmap_local;
91 struct pmap *const kernel_pmap_ptr = &pmap_kernel;
92
93 vmem_t *kmem_arena;
94 vmem_t *kmem_va_arena;
95
96 static unsigned int pdaemon_waiters;
97 static kmutex_t pdaemonmtx;
98 static kcondvar_t pdaemoncv, oomwait;
99
100 /* all local non-proc0 processes share this vmspace */
101 struct vmspace *rump_vmspace_local;
102
103 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
104 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
105 static unsigned long curphysmem;
106 static unsigned long dddlim; /* 90% of memory limit used */
107 #define NEED_PAGEDAEMON() \
108 (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
109 #define PDRESERVE (2*MAXPHYS)
110
111 /*
112 * Try to free two pages worth of pages from objects.
113 * If this succesfully frees a full page cache page, we'll
114 * free the released page plus PAGE_SIZE/sizeof(vm_page).
115 */
116 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
117
118 /*
119 * Keep a list of least recently used pages. Since the only way a
120 * rump kernel can "access" a page is via lookup, we put the page
121 * at the back of queue every time a lookup for it is done. If the
122 * page is in front of this global queue and we're short of memory,
123 * it's a candidate for pageout.
124 */
125 static struct pglist vmpage_lruqueue;
126 static unsigned vmpage_onqueue;
127
128 static int
129 pg_compare_key(void *ctx, const void *n, const void *key)
130 {
131 voff_t a = ((const struct vm_page *)n)->offset;
132 voff_t b = *(const voff_t *)key;
133
134 if (a < b)
135 return -1;
136 else if (a > b)
137 return 1;
138 else
139 return 0;
140 }
141
142 static int
143 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
144 {
145
146 return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
147 }
148
149 const rb_tree_ops_t uvm_page_tree_ops = {
150 .rbto_compare_nodes = pg_compare_nodes,
151 .rbto_compare_key = pg_compare_key,
152 .rbto_node_offset = offsetof(struct vm_page, rb_node),
153 .rbto_context = NULL
154 };
155
156 /*
157 * vm pages
158 */
159
160 static int
161 pgctor(void *arg, void *obj, int flags)
162 {
163 struct vm_page *pg = obj;
164
165 memset(pg, 0, sizeof(*pg));
166 pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
167 (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
168 return pg->uanon == NULL;
169 }
170
171 static void
172 pgdtor(void *arg, void *obj)
173 {
174 struct vm_page *pg = obj;
175
176 rump_hyperfree(pg->uanon, PAGE_SIZE);
177 }
178
179 static struct pool_cache pagecache;
180
181 /*
182 * Called with the object locked. We don't support anons.
183 */
184 struct vm_page *
185 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
186 int flags, int strat, int free_list)
187 {
188 struct vm_page *pg;
189
190 KASSERT(uobj && mutex_owned(uobj->vmobjlock));
191 KASSERT(anon == NULL);
192
193 pg = pool_cache_get(&pagecache, PR_NOWAIT);
194 if (__predict_false(pg == NULL)) {
195 return NULL;
196 }
197
198 pg->offset = off;
199 pg->uobject = uobj;
200
201 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
202 if (flags & UVM_PGA_ZERO) {
203 uvm_pagezero(pg);
204 }
205
206 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
207 (void)rb_tree_insert_node(&uobj->rb_tree, pg);
208
209 /*
210 * Don't put anons on the LRU page queue. We can't flush them
211 * (there's no concept of swap in a rump kernel), so no reason
212 * to bother with them.
213 */
214 if (!UVM_OBJ_IS_AOBJ(uobj)) {
215 atomic_inc_uint(&vmpage_onqueue);
216 mutex_enter(&uvm_pageqlock);
217 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
218 mutex_exit(&uvm_pageqlock);
219 }
220
221 uobj->uo_npages++;
222
223 return pg;
224 }
225
226 /*
227 * Release a page.
228 *
229 * Called with the vm object locked.
230 */
231 void
232 uvm_pagefree(struct vm_page *pg)
233 {
234 struct uvm_object *uobj = pg->uobject;
235
236 KASSERT(mutex_owned(&uvm_pageqlock));
237 KASSERT(mutex_owned(uobj->vmobjlock));
238
239 if (pg->flags & PG_WANTED)
240 wakeup(pg);
241
242 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
243
244 uobj->uo_npages--;
245 rb_tree_remove_node(&uobj->rb_tree, pg);
246
247 if (!UVM_OBJ_IS_AOBJ(uobj)) {
248 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
249 atomic_dec_uint(&vmpage_onqueue);
250 }
251
252 pool_cache_put(&pagecache, pg);
253 }
254
255 void
256 uvm_pagezero(struct vm_page *pg)
257 {
258
259 pg->flags &= ~PG_CLEAN;
260 memset((void *)pg->uanon, 0, PAGE_SIZE);
261 }
262
263 /*
264 * uvm_page_locked_p: return true if object associated with page is
265 * locked. this is a weak check for runtime assertions only.
266 */
267
268 bool
269 uvm_page_locked_p(struct vm_page *pg)
270 {
271
272 return mutex_owned(pg->uobject->vmobjlock);
273 }
274
275 /*
276 * Misc routines
277 */
278
279 static kmutex_t pagermtx;
280
281 void
282 uvm_init(void)
283 {
284 char buf[64];
285
286 if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
287 unsigned long tmp;
288 char *ep;
289 int mult;
290
291 tmp = strtoul(buf, &ep, 10);
292 if (strlen(ep) > 1)
293 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
294
295 /* mini-dehumanize-number */
296 mult = 1;
297 switch (*ep) {
298 case 'k':
299 mult = 1024;
300 break;
301 case 'm':
302 mult = 1024*1024;
303 break;
304 case 'g':
305 mult = 1024*1024*1024;
306 break;
307 case 0:
308 break;
309 default:
310 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
311 }
312 rump_physmemlimit = tmp * mult;
313
314 if (rump_physmemlimit / mult != tmp)
315 panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
316
317 /* reserve some memory for the pager */
318 if (rump_physmemlimit <= PDRESERVE)
319 panic("uvm_init: system reserves %d bytes of mem, "
320 "only %lu bytes given",
321 PDRESERVE, rump_physmemlimit);
322 pdlimit = rump_physmemlimit;
323 rump_physmemlimit -= PDRESERVE;
324
325 if (pdlimit < 1024*1024)
326 printf("uvm_init: WARNING: <1MB RAM limit, "
327 "hope you know what you're doing\n");
328
329 #define HUMANIZE_BYTES 9
330 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
331 format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
332 #undef HUMANIZE_BYTES
333 dddlim = 9 * (rump_physmemlimit / 10);
334 } else {
335 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
336 }
337 aprint_verbose("total memory = %s\n", buf);
338
339 TAILQ_INIT(&vmpage_lruqueue);
340
341 if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
342 uvmexp.npages = physmem;
343 } else {
344 uvmexp.npages = pdlimit >> PAGE_SHIFT;
345 uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
346 uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
347 }
348 /*
349 * uvmexp.free is not used internally or updated. The reason is
350 * that the memory hypercall allocator is allowed to allocate
351 * non-page sized chunks. We use a byte count in curphysmem
352 * instead.
353 */
354 uvmexp.free = uvmexp.npages;
355
356 #ifndef __uvmexp_pagesize
357 uvmexp.pagesize = PAGE_SIZE;
358 uvmexp.pagemask = PAGE_MASK;
359 uvmexp.pageshift = PAGE_SHIFT;
360 #else
361 #define FAKE_PAGE_SHIFT 12
362 uvmexp.pageshift = FAKE_PAGE_SHIFT;
363 uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
364 uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
365 #undef FAKE_PAGE_SHIFT
366 #endif
367
368 mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
369 mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, IPL_NONE);
370 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
371
372 /* just to appease linkage */
373 mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
374
375 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
376 cv_init(&pdaemoncv, "pdaemon");
377 cv_init(&oomwait, "oomwait");
378
379 module_map = &module_map_store;
380
381 kernel_map->pmap = pmap_kernel();
382
383 pool_subsystem_init();
384
385 kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
386 NULL, NULL, NULL,
387 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
388
389 vmem_subsystem_init(kmem_arena);
390
391 kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
392 vmem_alloc, vmem_free, kmem_arena,
393 8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
394
395 pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
396 "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
397
398 /* create vmspace used by local clients */
399 rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
400 uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
401 }
402
403 void
404 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
405 bool topdown)
406 {
407
408 vm->vm_map.pmap = pmap;
409 vm->vm_refcnt = 1;
410 }
411
412 int
413 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
414 bool new_pageable, int lockflags)
415 {
416 return 0;
417 }
418
419 void
420 uvm_pagewire(struct vm_page *pg)
421 {
422
423 /* nada */
424 }
425
426 void
427 uvm_pageunwire(struct vm_page *pg)
428 {
429
430 /* nada */
431 }
432
433 /* where's your schmonz now? */
434 #define PUNLIMIT(a) \
435 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
436 void
437 uvm_init_limits(struct proc *p)
438 {
439
440 #ifndef DFLSSIZ
441 #define DFLSSIZ (16*1024*1024)
442 #endif
443 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
444 p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
445 PUNLIMIT(RLIMIT_DATA);
446 PUNLIMIT(RLIMIT_RSS);
447 PUNLIMIT(RLIMIT_AS);
448 /* nice, cascade */
449 }
450 #undef PUNLIMIT
451
452 /*
453 * This satisfies the "disgusting mmap hack" used by proplib.
454 */
455 int
456 uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
457 {
458 int error;
459
460 /* no reason in particular, but cf. uvm_default_mapaddr() */
461 if (*addrp != NULL)
462 panic("uvm_mmap() variant unsupported");
463
464 if (RUMP_LOCALPROC_P(curproc)) {
465 error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
466 } else {
467 error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
468 size, addrp);
469 }
470 return error;
471 }
472
473 /*
474 * Stubs for things referenced from vfs_vnode.c but not used.
475 */
476 const dev_t zerodev;
477
478 struct uvm_object *
479 udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
480 {
481 return NULL;
482 }
483
484 struct pagerinfo {
485 vaddr_t pgr_kva;
486 int pgr_npages;
487 struct vm_page **pgr_pgs;
488 bool pgr_read;
489
490 LIST_ENTRY(pagerinfo) pgr_entries;
491 };
492 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
493
494 /*
495 * Pager "map" in routine. Instead of mapping, we allocate memory
496 * and copy page contents there. The reason for copying instead of
497 * mapping is simple: we do not assume we are running on virtual
498 * memory. Even if we could emulate virtual memory in some envs
499 * such as userspace, copying is much faster than trying to awkardly
500 * cope with remapping (see "Design and Implementation" pp.95-98).
501 * The downside of the approach is that the pager requires MAXPHYS
502 * free memory to perform paging, but short of virtual memory or
503 * making the pager do I/O in page-sized chunks we cannot do much
504 * about that.
505 */
506 vaddr_t
507 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
508 {
509 struct pagerinfo *pgri;
510 vaddr_t curkva;
511 int i;
512
513 /* allocate structures */
514 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
515 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
516 pgri->pgr_npages = npages;
517 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
518 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
519
520 /* copy contents to "mapped" memory */
521 for (i = 0, curkva = pgri->pgr_kva;
522 i < npages;
523 i++, curkva += PAGE_SIZE) {
524 /*
525 * We need to copy the previous contents of the pages to
526 * the window even if we are reading from the
527 * device, since the device might not fill the contents of
528 * the full mapped range and we will end up corrupting
529 * data when we unmap the window.
530 */
531 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
532 pgri->pgr_pgs[i] = pgs[i];
533 }
534
535 mutex_enter(&pagermtx);
536 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
537 mutex_exit(&pagermtx);
538
539 return pgri->pgr_kva;
540 }
541
542 /*
543 * map out the pager window. return contents from VA to page storage
544 * and free structures.
545 *
546 * Note: does not currently support partial frees
547 */
548 void
549 uvm_pagermapout(vaddr_t kva, int npages)
550 {
551 struct pagerinfo *pgri;
552 vaddr_t curkva;
553 int i;
554
555 mutex_enter(&pagermtx);
556 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
557 if (pgri->pgr_kva == kva)
558 break;
559 }
560 KASSERT(pgri);
561 if (pgri->pgr_npages != npages)
562 panic("uvm_pagermapout: partial unmapping not supported");
563 LIST_REMOVE(pgri, pgr_entries);
564 mutex_exit(&pagermtx);
565
566 if (pgri->pgr_read) {
567 for (i = 0, curkva = pgri->pgr_kva;
568 i < pgri->pgr_npages;
569 i++, curkva += PAGE_SIZE) {
570 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
571 }
572 }
573
574 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
575 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
576 kmem_free(pgri, sizeof(*pgri));
577 }
578
579 /*
580 * convert va in pager window to page structure.
581 * XXX: how expensive is this (global lock, list traversal)?
582 */
583 struct vm_page *
584 uvm_pageratop(vaddr_t va)
585 {
586 struct pagerinfo *pgri;
587 struct vm_page *pg = NULL;
588 int i;
589
590 mutex_enter(&pagermtx);
591 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
592 if (pgri->pgr_kva <= va
593 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
594 break;
595 }
596 if (pgri) {
597 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
598 pg = pgri->pgr_pgs[i];
599 }
600 mutex_exit(&pagermtx);
601
602 return pg;
603 }
604
605 /*
606 * Called with the vm object locked.
607 *
608 * Put vnode object pages at the end of the access queue to indicate
609 * they have been recently accessed and should not be immediate
610 * candidates for pageout. Do not do this for lookups done by
611 * the pagedaemon to mimic pmap_kentered mappings which don't track
612 * access information.
613 */
614 struct vm_page *
615 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
616 {
617 struct vm_page *pg;
618 bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
619
620 pg = rb_tree_find_node(&uobj->rb_tree, &off);
621 if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
622 mutex_enter(&uvm_pageqlock);
623 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
624 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
625 mutex_exit(&uvm_pageqlock);
626 }
627
628 return pg;
629 }
630
631 void
632 uvm_page_unbusy(struct vm_page **pgs, int npgs)
633 {
634 struct vm_page *pg;
635 int i, pageout_done;
636
637 KASSERT(npgs > 0);
638
639 pageout_done = 0;
640 for (i = 0; i < npgs; i++) {
641 pg = pgs[i];
642 if (pg == NULL || pg == PGO_DONTCARE) {
643 continue;
644 }
645
646 #if 0
647 KASSERT(uvm_page_owner_locked_p(pg, true));
648 #else
649 /*
650 * uvm_page_owner_locked_p() is not available in rump,
651 * and rump doesn't support amaps anyway.
652 */
653 KASSERT(mutex_owned(pg->uobject->vmobjlock));
654 #endif
655 KASSERT(pg->flags & PG_BUSY);
656
657 if (pg->flags & PG_PAGEOUT) {
658 pg->flags &= ~PG_PAGEOUT;
659 pg->flags |= PG_RELEASED;
660 pageout_done++;
661 atomic_inc_uint(&uvmexp.pdfreed);
662 }
663 if (pg->flags & PG_WANTED) {
664 wakeup(pg);
665 }
666 if (pg->flags & PG_RELEASED) {
667 KASSERT(pg->uobject != NULL ||
668 (pg->uanon != NULL && pg->uanon->an_ref > 0));
669 pg->flags &= ~PG_RELEASED;
670 uvm_pagefree(pg);
671 } else {
672 KASSERT((pg->flags & PG_FAKE) == 0);
673 pg->flags &= ~(PG_WANTED|PG_BUSY);
674 UVM_PAGE_OWN(pg, NULL);
675 }
676 }
677 if (pageout_done != 0) {
678 uvm_pageout_done(pageout_done);
679 }
680 }
681
682 void
683 uvm_estimatepageable(int *active, int *inactive)
684 {
685
686 /* XXX: guessing game */
687 *active = 1024;
688 *inactive = 1024;
689 }
690
691 bool
692 vm_map_starved_p(struct vm_map *map)
693 {
694
695 if (map->flags & VM_MAP_WANTVA)
696 return true;
697
698 return false;
699 }
700
701 int
702 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
703 {
704
705 panic("%s: unimplemented", __func__);
706 }
707
708 void
709 uvm_unloan(void *v, int npages, int flags)
710 {
711
712 panic("%s: unimplemented", __func__);
713 }
714
715 int
716 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
717 struct vm_page **opp)
718 {
719
720 return EBUSY;
721 }
722
723 struct vm_page *
724 uvm_loanbreak(struct vm_page *pg)
725 {
726
727 panic("%s: unimplemented", __func__);
728 }
729
730 void
731 ubc_purge(struct uvm_object *uobj)
732 {
733
734 }
735
736 vaddr_t
737 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
738 {
739
740 return 0;
741 }
742
743 int
744 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
745 vm_prot_t prot, bool set_max)
746 {
747
748 return EOPNOTSUPP;
749 }
750
751 int
752 uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
753 struct uvm_object *uobj, voff_t uoffset, vsize_t align,
754 uvm_flag_t flags)
755 {
756
757 *startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
758 return *startp != 0 ? 0 : ENOMEM;
759 }
760
761 void
762 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
763 {
764
765 rump_hyperfree((void*)start, end-start);
766 }
767
768
769 /*
770 * UVM km
771 */
772
773 vaddr_t
774 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
775 {
776 void *rv, *desired = NULL;
777 int alignbit, error;
778
779 #ifdef __x86_64__
780 /*
781 * On amd64, allocate all module memory from the lowest 2GB.
782 * This is because NetBSD kernel modules are compiled
783 * with -mcmodel=kernel and reserve only 4 bytes for
784 * offsets. If we load code compiled with -mcmodel=kernel
785 * anywhere except the lowest or highest 2GB, it will not
786 * work. Since userspace does not have access to the highest
787 * 2GB, use the lowest 2GB.
788 *
789 * Note: this assumes the rump kernel resides in
790 * the lowest 2GB as well.
791 *
792 * Note2: yes, it's a quick hack, but since this the only
793 * place where we care about the map we're allocating from,
794 * just use a simple "if" instead of coming up with a fancy
795 * generic solution.
796 */
797 if (map == module_map) {
798 desired = (void *)(0x80000000 - size);
799 }
800 #endif
801
802 if (__predict_false(map == module_map)) {
803 alignbit = 0;
804 if (align) {
805 alignbit = ffs(align)-1;
806 }
807 error = rumpuser_anonmmap(desired, size, alignbit,
808 flags & UVM_KMF_EXEC, &rv);
809 } else {
810 error = rumpuser_malloc(size, align, &rv);
811 }
812
813 if (error) {
814 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
815 return 0;
816 else
817 panic("uvm_km_alloc failed");
818 }
819
820 if (flags & UVM_KMF_ZERO)
821 memset(rv, 0, size);
822
823 return (vaddr_t)rv;
824 }
825
826 void
827 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
828 {
829
830 if (__predict_false(map == module_map))
831 rumpuser_unmap((void *)vaddr, size);
832 else
833 rumpuser_free((void *)vaddr, size);
834 }
835
836 int
837 uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
838 {
839 return 0;
840 }
841
842 struct vm_map *
843 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
844 vsize_t size, int pageable, bool fixed, struct vm_map *submap)
845 {
846
847 return (struct vm_map *)417416;
848 }
849
850 int
851 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
852 vmem_addr_t *addr)
853 {
854 vaddr_t va;
855 va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
856 (flags & VM_SLEEP), "kmalloc");
857
858 if (va) {
859 *addr = va;
860 return 0;
861 } else {
862 return ENOMEM;
863 }
864 }
865
866 void
867 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
868 {
869
870 rump_hyperfree((void *)addr, size);
871 }
872
873 /*
874 * VM space locking routines. We don't really have to do anything,
875 * since the pages are always "wired" (both local and remote processes).
876 */
877 int
878 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
879 {
880
881 return 0;
882 }
883
884 void
885 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
886 {
887
888 }
889
890 /*
891 * For the local case the buffer mappers don't need to do anything.
892 * For the remote case we need to reserve space and copy data in or
893 * out, depending on B_READ/B_WRITE.
894 */
895 int
896 vmapbuf(struct buf *bp, vsize_t len)
897 {
898 int error = 0;
899
900 bp->b_saveaddr = bp->b_data;
901
902 /* remote case */
903 if (!RUMP_LOCALPROC_P(curproc)) {
904 bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
905 if (BUF_ISWRITE(bp)) {
906 error = copyin(bp->b_saveaddr, bp->b_data, len);
907 if (error) {
908 rump_hyperfree(bp->b_data, len);
909 bp->b_data = bp->b_saveaddr;
910 bp->b_saveaddr = 0;
911 }
912 }
913 }
914
915 return error;
916 }
917
918 void
919 vunmapbuf(struct buf *bp, vsize_t len)
920 {
921
922 /* remote case */
923 if (!RUMP_LOCALPROC_P(bp->b_proc)) {
924 if (BUF_ISREAD(bp)) {
925 bp->b_error = copyout_proc(bp->b_proc,
926 bp->b_data, bp->b_saveaddr, len);
927 }
928 rump_hyperfree(bp->b_data, len);
929 }
930
931 bp->b_data = bp->b_saveaddr;
932 bp->b_saveaddr = 0;
933 }
934
935 void
936 uvmspace_addref(struct vmspace *vm)
937 {
938
939 /*
940 * No dynamically allocated vmspaces exist.
941 */
942 }
943
944 void
945 uvmspace_free(struct vmspace *vm)
946 {
947
948 /* nothing for now */
949 }
950
951 /*
952 * page life cycle stuff. it really doesn't exist, so just stubs.
953 */
954
955 void
956 uvm_pageactivate(struct vm_page *pg)
957 {
958
959 /* nada */
960 }
961
962 void
963 uvm_pagedeactivate(struct vm_page *pg)
964 {
965
966 /* nada */
967 }
968
969 void
970 uvm_pagedequeue(struct vm_page *pg)
971 {
972
973 /* nada*/
974 }
975
976 void
977 uvm_pageenqueue(struct vm_page *pg)
978 {
979
980 /* nada */
981 }
982
983 void
984 uvmpdpol_anfree(struct vm_anon *an)
985 {
986
987 /* nada */
988 }
989
990 /*
991 * Physical address accessors.
992 */
993
994 struct vm_page *
995 uvm_phys_to_vm_page(paddr_t pa)
996 {
997
998 return NULL;
999 }
1000
1001 paddr_t
1002 uvm_vm_page_to_phys(const struct vm_page *pg)
1003 {
1004
1005 return 0;
1006 }
1007
1008 vaddr_t
1009 uvm_uarea_alloc(void)
1010 {
1011
1012 /* non-zero */
1013 return (vaddr_t)11;
1014 }
1015
1016 void
1017 uvm_uarea_free(vaddr_t uarea)
1018 {
1019
1020 /* nata, so creamy */
1021 }
1022
1023 /*
1024 * Routines related to the Page Baroness.
1025 */
1026
1027 void
1028 uvm_wait(const char *msg)
1029 {
1030
1031 if (__predict_false(rump_threads == 0))
1032 panic("pagedaemon missing (RUMP_THREADS = 0)");
1033
1034 if (curlwp == uvm.pagedaemon_lwp) {
1035 /* is it possible for us to later get memory? */
1036 if (!uvmexp.paging)
1037 panic("pagedaemon out of memory");
1038 }
1039
1040 mutex_enter(&pdaemonmtx);
1041 pdaemon_waiters++;
1042 cv_signal(&pdaemoncv);
1043 cv_wait(&oomwait, &pdaemonmtx);
1044 mutex_exit(&pdaemonmtx);
1045 }
1046
1047 void
1048 uvm_pageout_start(int npages)
1049 {
1050
1051 mutex_enter(&pdaemonmtx);
1052 uvmexp.paging += npages;
1053 mutex_exit(&pdaemonmtx);
1054 }
1055
1056 void
1057 uvm_pageout_done(int npages)
1058 {
1059
1060 if (!npages)
1061 return;
1062
1063 mutex_enter(&pdaemonmtx);
1064 KASSERT(uvmexp.paging >= npages);
1065 uvmexp.paging -= npages;
1066
1067 if (pdaemon_waiters) {
1068 pdaemon_waiters = 0;
1069 cv_broadcast(&oomwait);
1070 }
1071 mutex_exit(&pdaemonmtx);
1072 }
1073
1074 static bool
1075 processpage(struct vm_page *pg, bool *lockrunning)
1076 {
1077 struct uvm_object *uobj;
1078
1079 uobj = pg->uobject;
1080 if (mutex_tryenter(uobj->vmobjlock)) {
1081 if ((pg->flags & PG_BUSY) == 0) {
1082 mutex_exit(&uvm_pageqlock);
1083 uobj->pgops->pgo_put(uobj, pg->offset,
1084 pg->offset + PAGE_SIZE,
1085 PGO_CLEANIT|PGO_FREE);
1086 KASSERT(!mutex_owned(uobj->vmobjlock));
1087 return true;
1088 } else {
1089 mutex_exit(uobj->vmobjlock);
1090 }
1091 } else if (*lockrunning == false && ncpu > 1) {
1092 CPU_INFO_ITERATOR cii;
1093 struct cpu_info *ci;
1094 struct lwp *l;
1095
1096 l = mutex_owner(uobj->vmobjlock);
1097 for (CPU_INFO_FOREACH(cii, ci)) {
1098 if (ci->ci_curlwp == l) {
1099 *lockrunning = true;
1100 break;
1101 }
1102 }
1103 }
1104
1105 return false;
1106 }
1107
1108 /*
1109 * The Diabolical pageDaemon Director (DDD).
1110 *
1111 * This routine can always use better heuristics.
1112 */
1113 void
1114 uvm_pageout(void *arg)
1115 {
1116 struct vm_page *pg;
1117 struct pool *pp, *pp_first;
1118 int cleaned, skip, skipped;
1119 bool succ;
1120 bool lockrunning;
1121
1122 mutex_enter(&pdaemonmtx);
1123 for (;;) {
1124 if (!NEED_PAGEDAEMON()) {
1125 kernel_map->flags &= ~VM_MAP_WANTVA;
1126 }
1127
1128 if (pdaemon_waiters) {
1129 pdaemon_waiters = 0;
1130 cv_broadcast(&oomwait);
1131 }
1132
1133 cv_wait(&pdaemoncv, &pdaemonmtx);
1134 uvmexp.pdwoke++;
1135
1136 /* tell the world that we are hungry */
1137 kernel_map->flags |= VM_MAP_WANTVA;
1138 mutex_exit(&pdaemonmtx);
1139
1140 /*
1141 * step one: reclaim the page cache. this should give
1142 * us the biggest earnings since whole pages are released
1143 * into backing memory.
1144 */
1145 pool_cache_reclaim(&pagecache);
1146 if (!NEED_PAGEDAEMON()) {
1147 mutex_enter(&pdaemonmtx);
1148 continue;
1149 }
1150
1151 /*
1152 * Ok, so that didn't help. Next, try to hunt memory
1153 * by pushing out vnode pages. The pages might contain
1154 * useful cached data, but we need the memory.
1155 */
1156 cleaned = 0;
1157 skip = 0;
1158 lockrunning = false;
1159 again:
1160 mutex_enter(&uvm_pageqlock);
1161 while (cleaned < PAGEDAEMON_OBJCHUNK) {
1162 skipped = 0;
1163 TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1164
1165 /*
1166 * skip over pages we _might_ have tried
1167 * to handle earlier. they might not be
1168 * exactly the same ones, but I'm not too
1169 * concerned.
1170 */
1171 while (skipped++ < skip)
1172 continue;
1173
1174 if (processpage(pg, &lockrunning)) {
1175 cleaned++;
1176 goto again;
1177 }
1178
1179 skip++;
1180 }
1181 break;
1182 }
1183 mutex_exit(&uvm_pageqlock);
1184
1185 /*
1186 * Ok, someone is running with an object lock held.
1187 * We want to yield the host CPU to make sure the
1188 * thread is not parked on the host. Since sched_yield()
1189 * doesn't appear to do anything on NetBSD, nanosleep
1190 * for the smallest possible time and hope we're back in
1191 * the game soon.
1192 */
1193 if (cleaned == 0 && lockrunning) {
1194 rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
1195
1196 lockrunning = false;
1197 skip = 0;
1198
1199 /* and here we go again */
1200 goto again;
1201 }
1202
1203 /*
1204 * And of course we need to reclaim the page cache
1205 * again to actually release memory.
1206 */
1207 pool_cache_reclaim(&pagecache);
1208 if (!NEED_PAGEDAEMON()) {
1209 mutex_enter(&pdaemonmtx);
1210 continue;
1211 }
1212
1213 /*
1214 * And then drain the pools. Wipe them out ... all of them.
1215 */
1216 for (pp_first = NULL;;) {
1217 rump_vfs_drainbufs(10 /* XXX: estimate! */);
1218
1219 succ = pool_drain(&pp);
1220 if (succ || pp == pp_first)
1221 break;
1222
1223 if (pp_first == NULL)
1224 pp_first = pp;
1225 }
1226
1227 /*
1228 * Need to use PYEC on our bag of tricks.
1229 * Unfortunately, the wife just borrowed it.
1230 */
1231
1232 mutex_enter(&pdaemonmtx);
1233 if (!succ && cleaned == 0 && pdaemon_waiters &&
1234 uvmexp.paging == 0) {
1235 rumpuser_dprintf("pagedaemoness: failed to reclaim "
1236 "memory ... sleeping (deadlock?)\n");
1237 kpause("pddlk", false, hz, &pdaemonmtx);
1238 }
1239 }
1240
1241 panic("you can swap out any time you like, but you can never leave");
1242 }
1243
1244 void
1245 uvm_kick_pdaemon()
1246 {
1247
1248 /*
1249 * Wake up the diabolical pagedaemon director if we are over
1250 * 90% of the memory limit. This is a complete and utter
1251 * stetson-harrison decision which you are allowed to finetune.
1252 * Don't bother locking. If we have some unflushed caches,
1253 * other waker-uppers will deal with the issue.
1254 */
1255 if (NEED_PAGEDAEMON()) {
1256 cv_signal(&pdaemoncv);
1257 }
1258 }
1259
1260 void *
1261 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1262 {
1263 const unsigned long thelimit =
1264 curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
1265 unsigned long newmem;
1266 void *rv;
1267 int error;
1268
1269 uvm_kick_pdaemon(); /* ouch */
1270
1271 /* first we must be within the limit */
1272 limitagain:
1273 if (thelimit != RUMPMEM_UNLIMITED) {
1274 newmem = atomic_add_long_nv(&curphysmem, howmuch);
1275 if (newmem > thelimit) {
1276 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1277 if (!waitok) {
1278 return NULL;
1279 }
1280 uvm_wait(wmsg);
1281 goto limitagain;
1282 }
1283 }
1284
1285 /* second, we must get something from the backend */
1286 again:
1287 error = rumpuser_malloc(howmuch, alignment, &rv);
1288 if (__predict_false(error && waitok)) {
1289 uvm_wait(wmsg);
1290 goto again;
1291 }
1292
1293 return rv;
1294 }
1295
1296 void
1297 rump_hyperfree(void *what, size_t size)
1298 {
1299
1300 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1301 atomic_add_long(&curphysmem, -size);
1302 }
1303 rumpuser_free(what, size);
1304 }
1305