Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.175
      1 /*	$NetBSD: vm.c,v 1.175 2019/12/14 17:28:58 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.175 2019/12/14 17:28:58 ad Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/vmem.h>
     52 #include <sys/mman.h>
     53 #include <sys/null.h>
     54 #include <sys/vnode.h>
     55 #include <sys/radixtree.h>
     56 
     57 #include <machine/pmap.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_ddb.h>
     61 #include <uvm/uvm_pdpolicy.h>
     62 #include <uvm/uvm_prot.h>
     63 #include <uvm/uvm_readahead.h>
     64 #include <uvm/uvm_device.h>
     65 
     66 #include <rump-sys/kern.h>
     67 #include <rump-sys/vfs.h>
     68 
     69 #include <rump/rumpuser.h>
     70 
     71 kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
     72 kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
     73 kmutex_t uvm_swap_data_lock;
     74 
     75 struct uvmexp uvmexp;
     76 struct uvm uvm;
     77 
     78 #ifdef __uvmexp_pagesize
     79 const int * const uvmexp_pagesize = &uvmexp.pagesize;
     80 const int * const uvmexp_pagemask = &uvmexp.pagemask;
     81 const int * const uvmexp_pageshift = &uvmexp.pageshift;
     82 #endif
     83 
     84 static struct vm_map kernel_map_store;
     85 struct vm_map *kernel_map = &kernel_map_store;
     86 
     87 static struct vm_map module_map_store;
     88 extern struct vm_map *module_map;
     89 
     90 static struct pmap pmap_kernel;
     91 struct pmap rump_pmap_local;
     92 struct pmap *const kernel_pmap_ptr = &pmap_kernel;
     93 
     94 vmem_t *kmem_arena;
     95 vmem_t *kmem_va_arena;
     96 
     97 static unsigned int pdaemon_waiters;
     98 static kmutex_t pdaemonmtx;
     99 static kcondvar_t pdaemoncv, oomwait;
    100 
    101 /* all local non-proc0 processes share this vmspace */
    102 struct vmspace *rump_vmspace_local;
    103 
    104 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
    105 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
    106 static unsigned long curphysmem;
    107 static unsigned long dddlim;		/* 90% of memory limit used */
    108 #define NEED_PAGEDAEMON() \
    109     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    110 #define PDRESERVE (2*MAXPHYS)
    111 
    112 /*
    113  * Try to free two pages worth of pages from objects.
    114  * If this succesfully frees a full page cache page, we'll
    115  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    116  */
    117 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    118 
    119 /*
    120  * Keep a list of least recently used pages.  Since the only way a
    121  * rump kernel can "access" a page is via lookup, we put the page
    122  * at the back of queue every time a lookup for it is done.  If the
    123  * page is in front of this global queue and we're short of memory,
    124  * it's a candidate for pageout.
    125  */
    126 static struct pglist vmpage_lruqueue;
    127 static unsigned vmpage_onqueue;
    128 
    129 /*
    130  * vm pages
    131  */
    132 
    133 static int
    134 pgctor(void *arg, void *obj, int flags)
    135 {
    136 	struct vm_page *pg = obj;
    137 
    138 	memset(pg, 0, sizeof(*pg));
    139 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    140 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    141 	return pg->uanon == NULL;
    142 }
    143 
    144 static void
    145 pgdtor(void *arg, void *obj)
    146 {
    147 	struct vm_page *pg = obj;
    148 
    149 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    150 }
    151 
    152 static struct pool_cache pagecache;
    153 
    154 /*
    155  * Called with the object locked.  We don't support anons.
    156  */
    157 struct vm_page *
    158 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    159 	int flags, int strat, int free_list)
    160 {
    161 	struct vm_page *pg;
    162 
    163 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
    164 	KASSERT(anon == NULL);
    165 
    166 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    167 	if (__predict_false(pg == NULL)) {
    168 		return NULL;
    169 	}
    170 
    171 	pg->offset = off;
    172 	pg->uobject = uobj;
    173 
    174 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    175 	if (flags & UVM_PGA_ZERO) {
    176 		uvm_pagezero(pg);
    177 	}
    178 
    179 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    180 	if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
    181 	    pg) != 0) {
    182 		pool_cache_put(&pagecache, pg);
    183 		return NULL;
    184 	}
    185 
    186 	/*
    187 	 * Don't put anons on the LRU page queue.  We can't flush them
    188 	 * (there's no concept of swap in a rump kernel), so no reason
    189 	 * to bother with them.
    190 	 */
    191 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    192 		atomic_inc_uint(&vmpage_onqueue);
    193 		mutex_enter(&vmpage_lruqueue_lock);
    194 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    195 		mutex_exit(&vmpage_lruqueue_lock);
    196 	}
    197 
    198 	uobj->uo_npages++;
    199 
    200 	return pg;
    201 }
    202 
    203 /*
    204  * Release a page.
    205  *
    206  * Called with the vm object locked.
    207  */
    208 void
    209 uvm_pagefree(struct vm_page *pg)
    210 {
    211 	struct uvm_object *uobj = pg->uobject;
    212 	struct vm_page *pg2 __unused;
    213 
    214 	KASSERT(mutex_owned(uobj->vmobjlock));
    215 
    216 	if (pg->flags & PG_WANTED)
    217 		wakeup(pg);
    218 
    219 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    220 
    221 	uobj->uo_npages--;
    222 	pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    223 	KASSERT(pg == pg2);
    224 
    225 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    226 		mutex_enter(&vmpage_lruqueue_lock);
    227 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    228 		mutex_exit(&vmpage_lruqueue_lock);
    229 		atomic_dec_uint(&vmpage_onqueue);
    230 	}
    231 
    232 	pool_cache_put(&pagecache, pg);
    233 }
    234 
    235 void
    236 uvm_pagezero(struct vm_page *pg)
    237 {
    238 
    239 	pg->flags &= ~PG_CLEAN;
    240 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    241 }
    242 
    243 /*
    244  * uvm_page_locked_p: return true if object associated with page is
    245  * locked.  this is a weak check for runtime assertions only.
    246  */
    247 
    248 bool
    249 uvm_page_locked_p(struct vm_page *pg)
    250 {
    251 
    252 	return mutex_owned(pg->uobject->vmobjlock);
    253 }
    254 
    255 /*
    256  * Misc routines
    257  */
    258 
    259 static kmutex_t pagermtx;
    260 
    261 void
    262 uvm_init(void)
    263 {
    264 	char buf[64];
    265 
    266 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    267 		unsigned long tmp;
    268 		char *ep;
    269 		int mult;
    270 
    271 		tmp = strtoul(buf, &ep, 10);
    272 		if (strlen(ep) > 1)
    273 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    274 
    275 		/* mini-dehumanize-number */
    276 		mult = 1;
    277 		switch (*ep) {
    278 		case 'k':
    279 			mult = 1024;
    280 			break;
    281 		case 'm':
    282 			mult = 1024*1024;
    283 			break;
    284 		case 'g':
    285 			mult = 1024*1024*1024;
    286 			break;
    287 		case 0:
    288 			break;
    289 		default:
    290 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    291 		}
    292 		rump_physmemlimit = tmp * mult;
    293 
    294 		if (rump_physmemlimit / mult != tmp)
    295 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    296 
    297 		/* reserve some memory for the pager */
    298 		if (rump_physmemlimit <= PDRESERVE)
    299 			panic("uvm_init: system reserves %d bytes of mem, "
    300 			    "only %lu bytes given",
    301 			    PDRESERVE, rump_physmemlimit);
    302 		pdlimit = rump_physmemlimit;
    303 		rump_physmemlimit -= PDRESERVE;
    304 
    305 		if (pdlimit < 1024*1024)
    306 			printf("uvm_init: WARNING: <1MB RAM limit, "
    307 			    "hope you know what you're doing\n");
    308 
    309 #define HUMANIZE_BYTES 9
    310 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    311 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    312 #undef HUMANIZE_BYTES
    313 		dddlim = 9 * (rump_physmemlimit / 10);
    314 	} else {
    315 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    316 	}
    317 	aprint_verbose("total memory = %s\n", buf);
    318 
    319 	TAILQ_INIT(&vmpage_lruqueue);
    320 
    321 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
    322 		uvmexp.npages = physmem;
    323 	} else {
    324 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
    325 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
    326 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
    327 	}
    328 	/*
    329 	 * uvmexp.free is not used internally or updated.  The reason is
    330 	 * that the memory hypercall allocator is allowed to allocate
    331 	 * non-page sized chunks.  We use a byte count in curphysmem
    332 	 * instead.
    333 	 */
    334 	uvmexp.free = uvmexp.npages;
    335 
    336 #ifndef __uvmexp_pagesize
    337 	uvmexp.pagesize = PAGE_SIZE;
    338 	uvmexp.pagemask = PAGE_MASK;
    339 	uvmexp.pageshift = PAGE_SHIFT;
    340 #else
    341 #define FAKE_PAGE_SHIFT 12
    342 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    343 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    344 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    345 #undef FAKE_PAGE_SHIFT
    346 #endif
    347 
    348 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    349 	mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
    350 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    351 
    352 	/* just to appease linkage */
    353 	mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
    354 
    355 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    356 	cv_init(&pdaemoncv, "pdaemon");
    357 	cv_init(&oomwait, "oomwait");
    358 
    359 	module_map = &module_map_store;
    360 
    361 	kernel_map->pmap = pmap_kernel();
    362 
    363 	pool_subsystem_init();
    364 
    365 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    366 	    NULL, NULL, NULL,
    367 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    368 
    369 	vmem_subsystem_init(kmem_arena);
    370 
    371 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    372 	    vmem_alloc, vmem_free, kmem_arena,
    373 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    374 
    375 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    376 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    377 
    378 	radix_tree_init();
    379 
    380 	/* create vmspace used by local clients */
    381 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
    382 	uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
    383 }
    384 
    385 void
    386 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    387     bool topdown)
    388 {
    389 
    390 	vm->vm_map.pmap = pmap;
    391 	vm->vm_refcnt = 1;
    392 }
    393 
    394 int
    395 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
    396     bool new_pageable, int lockflags)
    397 {
    398 	return 0;
    399 }
    400 
    401 void
    402 uvm_pagewire(struct vm_page *pg)
    403 {
    404 
    405 	/* nada */
    406 }
    407 
    408 void
    409 uvm_pageunwire(struct vm_page *pg)
    410 {
    411 
    412 	/* nada */
    413 }
    414 
    415 /* where's your schmonz now? */
    416 #define PUNLIMIT(a)	\
    417 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    418 void
    419 uvm_init_limits(struct proc *p)
    420 {
    421 
    422 #ifndef DFLSSIZ
    423 #define DFLSSIZ (16*1024*1024)
    424 #endif
    425 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    426 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    427 	PUNLIMIT(RLIMIT_DATA);
    428 	PUNLIMIT(RLIMIT_RSS);
    429 	PUNLIMIT(RLIMIT_AS);
    430 	/* nice, cascade */
    431 }
    432 #undef PUNLIMIT
    433 
    434 /*
    435  * This satisfies the "disgusting mmap hack" used by proplib.
    436  */
    437 int
    438 uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
    439 {
    440 	int error;
    441 
    442 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    443 	if (*addrp != NULL)
    444 		panic("uvm_mmap() variant unsupported");
    445 
    446 	if (RUMP_LOCALPROC_P(curproc)) {
    447 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
    448 	} else {
    449 		error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
    450 		    size, addrp);
    451 	}
    452 	return error;
    453 }
    454 
    455 /*
    456  * Stubs for things referenced from vfs_vnode.c but not used.
    457  */
    458 const dev_t zerodev;
    459 
    460 struct uvm_object *
    461 udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
    462 {
    463 	return NULL;
    464 }
    465 
    466 struct pagerinfo {
    467 	vaddr_t pgr_kva;
    468 	int pgr_npages;
    469 	struct vm_page **pgr_pgs;
    470 	bool pgr_read;
    471 
    472 	LIST_ENTRY(pagerinfo) pgr_entries;
    473 };
    474 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    475 
    476 /*
    477  * Pager "map" in routine.  Instead of mapping, we allocate memory
    478  * and copy page contents there.  The reason for copying instead of
    479  * mapping is simple: we do not assume we are running on virtual
    480  * memory.  Even if we could emulate virtual memory in some envs
    481  * such as userspace, copying is much faster than trying to awkardly
    482  * cope with remapping (see "Design and Implementation" pp.95-98).
    483  * The downside of the approach is that the pager requires MAXPHYS
    484  * free memory to perform paging, but short of virtual memory or
    485  * making the pager do I/O in page-sized chunks we cannot do much
    486  * about that.
    487  */
    488 vaddr_t
    489 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    490 {
    491 	struct pagerinfo *pgri;
    492 	vaddr_t curkva;
    493 	int i;
    494 
    495 	/* allocate structures */
    496 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    497 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    498 	pgri->pgr_npages = npages;
    499 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    500 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    501 
    502 	/* copy contents to "mapped" memory */
    503 	for (i = 0, curkva = pgri->pgr_kva;
    504 	    i < npages;
    505 	    i++, curkva += PAGE_SIZE) {
    506 		/*
    507 		 * We need to copy the previous contents of the pages to
    508 		 * the window even if we are reading from the
    509 		 * device, since the device might not fill the contents of
    510 		 * the full mapped range and we will end up corrupting
    511 		 * data when we unmap the window.
    512 		 */
    513 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    514 		pgri->pgr_pgs[i] = pgs[i];
    515 	}
    516 
    517 	mutex_enter(&pagermtx);
    518 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    519 	mutex_exit(&pagermtx);
    520 
    521 	return pgri->pgr_kva;
    522 }
    523 
    524 /*
    525  * map out the pager window.  return contents from VA to page storage
    526  * and free structures.
    527  *
    528  * Note: does not currently support partial frees
    529  */
    530 void
    531 uvm_pagermapout(vaddr_t kva, int npages)
    532 {
    533 	struct pagerinfo *pgri;
    534 	vaddr_t curkva;
    535 	int i;
    536 
    537 	mutex_enter(&pagermtx);
    538 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    539 		if (pgri->pgr_kva == kva)
    540 			break;
    541 	}
    542 	KASSERT(pgri);
    543 	if (pgri->pgr_npages != npages)
    544 		panic("uvm_pagermapout: partial unmapping not supported");
    545 	LIST_REMOVE(pgri, pgr_entries);
    546 	mutex_exit(&pagermtx);
    547 
    548 	if (pgri->pgr_read) {
    549 		for (i = 0, curkva = pgri->pgr_kva;
    550 		    i < pgri->pgr_npages;
    551 		    i++, curkva += PAGE_SIZE) {
    552 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    553 		}
    554 	}
    555 
    556 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    557 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    558 	kmem_free(pgri, sizeof(*pgri));
    559 }
    560 
    561 /*
    562  * convert va in pager window to page structure.
    563  * XXX: how expensive is this (global lock, list traversal)?
    564  */
    565 struct vm_page *
    566 uvm_pageratop(vaddr_t va)
    567 {
    568 	struct pagerinfo *pgri;
    569 	struct vm_page *pg = NULL;
    570 	int i;
    571 
    572 	mutex_enter(&pagermtx);
    573 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    574 		if (pgri->pgr_kva <= va
    575 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    576 			break;
    577 	}
    578 	if (pgri) {
    579 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    580 		pg = pgri->pgr_pgs[i];
    581 	}
    582 	mutex_exit(&pagermtx);
    583 
    584 	return pg;
    585 }
    586 
    587 /*
    588  * Called with the vm object locked.
    589  *
    590  * Put vnode object pages at the end of the access queue to indicate
    591  * they have been recently accessed and should not be immediate
    592  * candidates for pageout.  Do not do this for lookups done by
    593  * the pagedaemon to mimic pmap_kentered mappings which don't track
    594  * access information.
    595  */
    596 struct vm_page *
    597 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    598 {
    599 	struct vm_page *pg;
    600 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    601 
    602 	pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
    603 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    604 		mutex_enter(&vmpage_lruqueue_lock);
    605 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    606 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    607 		mutex_exit(&vmpage_lruqueue_lock);
    608 	}
    609 
    610 	return pg;
    611 }
    612 
    613 void
    614 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    615 {
    616 	struct vm_page *pg;
    617 	int i;
    618 
    619 	KASSERT(npgs > 0);
    620 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
    621 
    622 	for (i = 0; i < npgs; i++) {
    623 		pg = pgs[i];
    624 		if (pg == NULL)
    625 			continue;
    626 
    627 		KASSERT(pg->flags & PG_BUSY);
    628 		if (pg->flags & PG_WANTED)
    629 			wakeup(pg);
    630 		if (pg->flags & PG_RELEASED)
    631 			uvm_pagefree(pg);
    632 		else
    633 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    634 	}
    635 }
    636 
    637 void
    638 uvm_estimatepageable(int *active, int *inactive)
    639 {
    640 
    641 	/* XXX: guessing game */
    642 	*active = 1024;
    643 	*inactive = 1024;
    644 }
    645 
    646 bool
    647 vm_map_starved_p(struct vm_map *map)
    648 {
    649 
    650 	if (map->flags & VM_MAP_WANTVA)
    651 		return true;
    652 
    653 	return false;
    654 }
    655 
    656 int
    657 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    658 {
    659 
    660 	panic("%s: unimplemented", __func__);
    661 }
    662 
    663 void
    664 uvm_unloan(void *v, int npages, int flags)
    665 {
    666 
    667 	panic("%s: unimplemented", __func__);
    668 }
    669 
    670 int
    671 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    672 	struct vm_page **opp)
    673 {
    674 
    675 	return EBUSY;
    676 }
    677 
    678 struct vm_page *
    679 uvm_loanbreak(struct vm_page *pg)
    680 {
    681 
    682 	panic("%s: unimplemented", __func__);
    683 }
    684 
    685 void
    686 ubc_purge(struct uvm_object *uobj)
    687 {
    688 
    689 }
    690 
    691 vaddr_t
    692 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
    693 {
    694 
    695 	return 0;
    696 }
    697 
    698 int
    699 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    700 	vm_prot_t prot, bool set_max)
    701 {
    702 
    703 	return EOPNOTSUPP;
    704 }
    705 
    706 int
    707 uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
    708     struct uvm_object *uobj, voff_t uoffset, vsize_t align,
    709     uvm_flag_t flags)
    710 {
    711 
    712 	*startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
    713 	return *startp != 0 ? 0 : ENOMEM;
    714 }
    715 
    716 void
    717 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
    718 {
    719 
    720 	rump_hyperfree((void*)start, end-start);
    721 }
    722 
    723 
    724 /*
    725  * UVM km
    726  */
    727 
    728 vaddr_t
    729 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    730 {
    731 	void *rv, *desired = NULL;
    732 	int alignbit, error;
    733 
    734 #ifdef __x86_64__
    735 	/*
    736 	 * On amd64, allocate all module memory from the lowest 2GB.
    737 	 * This is because NetBSD kernel modules are compiled
    738 	 * with -mcmodel=kernel and reserve only 4 bytes for
    739 	 * offsets.  If we load code compiled with -mcmodel=kernel
    740 	 * anywhere except the lowest or highest 2GB, it will not
    741 	 * work.  Since userspace does not have access to the highest
    742 	 * 2GB, use the lowest 2GB.
    743 	 *
    744 	 * Note: this assumes the rump kernel resides in
    745 	 * the lowest 2GB as well.
    746 	 *
    747 	 * Note2: yes, it's a quick hack, but since this the only
    748 	 * place where we care about the map we're allocating from,
    749 	 * just use a simple "if" instead of coming up with a fancy
    750 	 * generic solution.
    751 	 */
    752 	if (map == module_map) {
    753 		desired = (void *)(0x80000000 - size);
    754 	}
    755 #endif
    756 
    757 	if (__predict_false(map == module_map)) {
    758 		alignbit = 0;
    759 		if (align) {
    760 			alignbit = ffs(align)-1;
    761 		}
    762 		error = rumpuser_anonmmap(desired, size, alignbit,
    763 		    flags & UVM_KMF_EXEC, &rv);
    764 	} else {
    765 		error = rumpuser_malloc(size, align, &rv);
    766 	}
    767 
    768 	if (error) {
    769 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    770 			return 0;
    771 		else
    772 			panic("uvm_km_alloc failed");
    773 	}
    774 
    775 	if (flags & UVM_KMF_ZERO)
    776 		memset(rv, 0, size);
    777 
    778 	return (vaddr_t)rv;
    779 }
    780 
    781 void
    782 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    783 {
    784 
    785 	if (__predict_false(map == module_map))
    786 		rumpuser_unmap((void *)vaddr, size);
    787 	else
    788 		rumpuser_free((void *)vaddr, size);
    789 }
    790 
    791 int
    792 uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
    793 {
    794 	return 0;
    795 }
    796 
    797 struct vm_map *
    798 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    799 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    800 {
    801 
    802 	return (struct vm_map *)417416;
    803 }
    804 
    805 int
    806 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    807     vmem_addr_t *addr)
    808 {
    809 	vaddr_t va;
    810 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    811 	    (flags & VM_SLEEP), "kmalloc");
    812 
    813 	if (va) {
    814 		*addr = va;
    815 		return 0;
    816 	} else {
    817 		return ENOMEM;
    818 	}
    819 }
    820 
    821 void
    822 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    823 {
    824 
    825 	rump_hyperfree((void *)addr, size);
    826 }
    827 
    828 /*
    829  * VM space locking routines.  We don't really have to do anything,
    830  * since the pages are always "wired" (both local and remote processes).
    831  */
    832 int
    833 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    834 {
    835 
    836 	return 0;
    837 }
    838 
    839 void
    840 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    841 {
    842 
    843 }
    844 
    845 /*
    846  * For the local case the buffer mappers don't need to do anything.
    847  * For the remote case we need to reserve space and copy data in or
    848  * out, depending on B_READ/B_WRITE.
    849  */
    850 int
    851 vmapbuf(struct buf *bp, vsize_t len)
    852 {
    853 	int error = 0;
    854 
    855 	bp->b_saveaddr = bp->b_data;
    856 
    857 	/* remote case */
    858 	if (!RUMP_LOCALPROC_P(curproc)) {
    859 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    860 		if (BUF_ISWRITE(bp)) {
    861 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    862 			if (error) {
    863 				rump_hyperfree(bp->b_data, len);
    864 				bp->b_data = bp->b_saveaddr;
    865 				bp->b_saveaddr = 0;
    866 			}
    867 		}
    868 	}
    869 
    870 	return error;
    871 }
    872 
    873 void
    874 vunmapbuf(struct buf *bp, vsize_t len)
    875 {
    876 
    877 	/* remote case */
    878 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    879 		if (BUF_ISREAD(bp)) {
    880 			bp->b_error = copyout_proc(bp->b_proc,
    881 			    bp->b_data, bp->b_saveaddr, len);
    882 		}
    883 		rump_hyperfree(bp->b_data, len);
    884 	}
    885 
    886 	bp->b_data = bp->b_saveaddr;
    887 	bp->b_saveaddr = 0;
    888 }
    889 
    890 void
    891 uvmspace_addref(struct vmspace *vm)
    892 {
    893 
    894 	/*
    895 	 * No dynamically allocated vmspaces exist.
    896 	 */
    897 }
    898 
    899 void
    900 uvmspace_free(struct vmspace *vm)
    901 {
    902 
    903 	/* nothing for now */
    904 }
    905 
    906 /*
    907  * page life cycle stuff.  it really doesn't exist, so just stubs.
    908  */
    909 
    910 void
    911 uvm_pageactivate(struct vm_page *pg)
    912 {
    913 
    914 	/* nada */
    915 }
    916 
    917 void
    918 uvm_pagedeactivate(struct vm_page *pg)
    919 {
    920 
    921 	/* nada */
    922 }
    923 
    924 void
    925 uvm_pagedequeue(struct vm_page *pg)
    926 {
    927 
    928 	/* nada*/
    929 }
    930 
    931 void
    932 uvm_pageenqueue(struct vm_page *pg)
    933 {
    934 
    935 	/* nada */
    936 }
    937 
    938 void
    939 uvmpdpol_anfree(struct vm_anon *an)
    940 {
    941 
    942 	/* nada */
    943 }
    944 
    945 /*
    946  * Physical address accessors.
    947  */
    948 
    949 struct vm_page *
    950 uvm_phys_to_vm_page(paddr_t pa)
    951 {
    952 
    953 	return NULL;
    954 }
    955 
    956 paddr_t
    957 uvm_vm_page_to_phys(const struct vm_page *pg)
    958 {
    959 
    960 	return 0;
    961 }
    962 
    963 vaddr_t
    964 uvm_uarea_alloc(void)
    965 {
    966 
    967 	/* non-zero */
    968 	return (vaddr_t)11;
    969 }
    970 
    971 void
    972 uvm_uarea_free(vaddr_t uarea)
    973 {
    974 
    975 	/* nata, so creamy */
    976 }
    977 
    978 /*
    979  * Routines related to the Page Baroness.
    980  */
    981 
    982 void
    983 uvm_wait(const char *msg)
    984 {
    985 
    986 	if (__predict_false(rump_threads == 0))
    987 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    988 
    989 	if (curlwp == uvm.pagedaemon_lwp) {
    990 		/* is it possible for us to later get memory? */
    991 		if (!uvmexp.paging)
    992 			panic("pagedaemon out of memory");
    993 	}
    994 
    995 	mutex_enter(&pdaemonmtx);
    996 	pdaemon_waiters++;
    997 	cv_signal(&pdaemoncv);
    998 	cv_wait(&oomwait, &pdaemonmtx);
    999 	mutex_exit(&pdaemonmtx);
   1000 }
   1001 
   1002 void
   1003 uvm_pageout_start(int npages)
   1004 {
   1005 
   1006 	mutex_enter(&pdaemonmtx);
   1007 	uvmexp.paging += npages;
   1008 	mutex_exit(&pdaemonmtx);
   1009 }
   1010 
   1011 void
   1012 uvm_pageout_done(int npages)
   1013 {
   1014 
   1015 	if (!npages)
   1016 		return;
   1017 
   1018 	mutex_enter(&pdaemonmtx);
   1019 	KASSERT(uvmexp.paging >= npages);
   1020 	uvmexp.paging -= npages;
   1021 
   1022 	if (pdaemon_waiters) {
   1023 		pdaemon_waiters = 0;
   1024 		cv_broadcast(&oomwait);
   1025 	}
   1026 	mutex_exit(&pdaemonmtx);
   1027 }
   1028 
   1029 static bool
   1030 processpage(struct vm_page *pg, bool *lockrunning)
   1031 {
   1032 	struct uvm_object *uobj;
   1033 
   1034 	uobj = pg->uobject;
   1035 	if (mutex_tryenter(uobj->vmobjlock)) {
   1036 		if ((pg->flags & PG_BUSY) == 0) {
   1037 			mutex_exit(&vmpage_lruqueue_lock);
   1038 			uobj->pgops->pgo_put(uobj, pg->offset,
   1039 			    pg->offset + PAGE_SIZE,
   1040 			    PGO_CLEANIT|PGO_FREE);
   1041 			KASSERT(!mutex_owned(uobj->vmobjlock));
   1042 			return true;
   1043 		} else {
   1044 			mutex_exit(uobj->vmobjlock);
   1045 		}
   1046 	} else if (*lockrunning == false && ncpu > 1) {
   1047 		CPU_INFO_ITERATOR cii;
   1048 		struct cpu_info *ci;
   1049 		struct lwp *l;
   1050 
   1051 		l = mutex_owner(uobj->vmobjlock);
   1052 		for (CPU_INFO_FOREACH(cii, ci)) {
   1053 			if (ci->ci_curlwp == l) {
   1054 				*lockrunning = true;
   1055 				break;
   1056 			}
   1057 		}
   1058 	}
   1059 
   1060 	return false;
   1061 }
   1062 
   1063 /*
   1064  * The Diabolical pageDaemon Director (DDD).
   1065  *
   1066  * This routine can always use better heuristics.
   1067  */
   1068 void
   1069 uvm_pageout(void *arg)
   1070 {
   1071 	struct vm_page *pg;
   1072 	struct pool *pp, *pp_first;
   1073 	int cleaned, skip, skipped;
   1074 	bool succ;
   1075 	bool lockrunning;
   1076 
   1077 	mutex_enter(&pdaemonmtx);
   1078 	for (;;) {
   1079 		if (!NEED_PAGEDAEMON()) {
   1080 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1081 		}
   1082 
   1083 		if (pdaemon_waiters) {
   1084 			pdaemon_waiters = 0;
   1085 			cv_broadcast(&oomwait);
   1086 		}
   1087 
   1088 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1089 		uvmexp.pdwoke++;
   1090 
   1091 		/* tell the world that we are hungry */
   1092 		kernel_map->flags |= VM_MAP_WANTVA;
   1093 		mutex_exit(&pdaemonmtx);
   1094 
   1095 		/*
   1096 		 * step one: reclaim the page cache.  this should give
   1097 		 * us the biggest earnings since whole pages are released
   1098 		 * into backing memory.
   1099 		 */
   1100 		pool_cache_reclaim(&pagecache);
   1101 		if (!NEED_PAGEDAEMON()) {
   1102 			mutex_enter(&pdaemonmtx);
   1103 			continue;
   1104 		}
   1105 
   1106 		/*
   1107 		 * Ok, so that didn't help.  Next, try to hunt memory
   1108 		 * by pushing out vnode pages.  The pages might contain
   1109 		 * useful cached data, but we need the memory.
   1110 		 */
   1111 		cleaned = 0;
   1112 		skip = 0;
   1113 		lockrunning = false;
   1114  again:
   1115 		mutex_enter(&vmpage_lruqueue_lock);
   1116 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1117 			skipped = 0;
   1118 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1119 
   1120 				/*
   1121 				 * skip over pages we _might_ have tried
   1122 				 * to handle earlier.  they might not be
   1123 				 * exactly the same ones, but I'm not too
   1124 				 * concerned.
   1125 				 */
   1126 				while (skipped++ < skip)
   1127 					continue;
   1128 
   1129 				if (processpage(pg, &lockrunning)) {
   1130 					cleaned++;
   1131 					goto again;
   1132 				}
   1133 
   1134 				skip++;
   1135 			}
   1136 			break;
   1137 		}
   1138 		mutex_exit(&vmpage_lruqueue_lock);
   1139 
   1140 		/*
   1141 		 * Ok, someone is running with an object lock held.
   1142 		 * We want to yield the host CPU to make sure the
   1143 		 * thread is not parked on the host.  Since sched_yield()
   1144 		 * doesn't appear to do anything on NetBSD, nanosleep
   1145 		 * for the smallest possible time and hope we're back in
   1146 		 * the game soon.
   1147 		 */
   1148 		if (cleaned == 0 && lockrunning) {
   1149 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
   1150 
   1151 			lockrunning = false;
   1152 			skip = 0;
   1153 
   1154 			/* and here we go again */
   1155 			goto again;
   1156 		}
   1157 
   1158 		/*
   1159 		 * And of course we need to reclaim the page cache
   1160 		 * again to actually release memory.
   1161 		 */
   1162 		pool_cache_reclaim(&pagecache);
   1163 		if (!NEED_PAGEDAEMON()) {
   1164 			mutex_enter(&pdaemonmtx);
   1165 			continue;
   1166 		}
   1167 
   1168 		/*
   1169 		 * And then drain the pools.  Wipe them out ... all of them.
   1170 		 */
   1171 		for (pp_first = NULL;;) {
   1172 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1173 
   1174 			succ = pool_drain(&pp);
   1175 			if (succ || pp == pp_first)
   1176 				break;
   1177 
   1178 			if (pp_first == NULL)
   1179 				pp_first = pp;
   1180 		}
   1181 
   1182 		/*
   1183 		 * Need to use PYEC on our bag of tricks.
   1184 		 * Unfortunately, the wife just borrowed it.
   1185 		 */
   1186 
   1187 		mutex_enter(&pdaemonmtx);
   1188 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1189 		    uvmexp.paging == 0) {
   1190 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1191 			    "memory ... sleeping (deadlock?)\n");
   1192 			kpause("pddlk", false, hz, &pdaemonmtx);
   1193 		}
   1194 	}
   1195 
   1196 	panic("you can swap out any time you like, but you can never leave");
   1197 }
   1198 
   1199 void
   1200 uvm_kick_pdaemon()
   1201 {
   1202 
   1203 	/*
   1204 	 * Wake up the diabolical pagedaemon director if we are over
   1205 	 * 90% of the memory limit.  This is a complete and utter
   1206 	 * stetson-harrison decision which you are allowed to finetune.
   1207 	 * Don't bother locking.  If we have some unflushed caches,
   1208 	 * other waker-uppers will deal with the issue.
   1209 	 */
   1210 	if (NEED_PAGEDAEMON()) {
   1211 		cv_signal(&pdaemoncv);
   1212 	}
   1213 }
   1214 
   1215 void *
   1216 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1217 {
   1218 	const unsigned long thelimit =
   1219 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1220 	unsigned long newmem;
   1221 	void *rv;
   1222 	int error;
   1223 
   1224 	uvm_kick_pdaemon(); /* ouch */
   1225 
   1226 	/* first we must be within the limit */
   1227  limitagain:
   1228 	if (thelimit != RUMPMEM_UNLIMITED) {
   1229 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1230 		if (newmem > thelimit) {
   1231 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1232 			if (!waitok) {
   1233 				return NULL;
   1234 			}
   1235 			uvm_wait(wmsg);
   1236 			goto limitagain;
   1237 		}
   1238 	}
   1239 
   1240 	/* second, we must get something from the backend */
   1241  again:
   1242 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1243 	if (__predict_false(error && waitok)) {
   1244 		uvm_wait(wmsg);
   1245 		goto again;
   1246 	}
   1247 
   1248 	return rv;
   1249 }
   1250 
   1251 void
   1252 rump_hyperfree(void *what, size_t size)
   1253 {
   1254 
   1255 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1256 		atomic_add_long(&curphysmem, -size);
   1257 	}
   1258 	rumpuser_free(what, size);
   1259 }
   1260