Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.177
      1 /*	$NetBSD: vm.c,v 1.177 2019/12/21 12:59:12 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.177 2019/12/21 12:59:12 ad Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/vmem.h>
     52 #include <sys/mman.h>
     53 #include <sys/null.h>
     54 #include <sys/vnode.h>
     55 #include <sys/radixtree.h>
     56 
     57 #include <machine/pmap.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_ddb.h>
     61 #include <uvm/uvm_pdpolicy.h>
     62 #include <uvm/uvm_prot.h>
     63 #include <uvm/uvm_readahead.h>
     64 #include <uvm/uvm_device.h>
     65 
     66 #include <rump-sys/kern.h>
     67 #include <rump-sys/vfs.h>
     68 
     69 #include <rump/rumpuser.h>
     70 
     71 kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
     72 kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
     73 kmutex_t uvm_swap_data_lock;
     74 
     75 struct uvmexp uvmexp;
     76 struct uvm uvm;
     77 
     78 #ifdef __uvmexp_pagesize
     79 const int * const uvmexp_pagesize = &uvmexp.pagesize;
     80 const int * const uvmexp_pagemask = &uvmexp.pagemask;
     81 const int * const uvmexp_pageshift = &uvmexp.pageshift;
     82 #endif
     83 
     84 static struct vm_map kernel_map_store;
     85 struct vm_map *kernel_map = &kernel_map_store;
     86 
     87 static struct vm_map module_map_store;
     88 extern struct vm_map *module_map;
     89 
     90 static struct pmap pmap_kernel;
     91 struct pmap rump_pmap_local;
     92 struct pmap *const kernel_pmap_ptr = &pmap_kernel;
     93 
     94 vmem_t *kmem_arena;
     95 vmem_t *kmem_va_arena;
     96 
     97 static unsigned int pdaemon_waiters;
     98 static kmutex_t pdaemonmtx;
     99 static kcondvar_t pdaemoncv, oomwait;
    100 
    101 /* all local non-proc0 processes share this vmspace */
    102 struct vmspace *rump_vmspace_local;
    103 
    104 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
    105 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
    106 static unsigned long curphysmem;
    107 static unsigned long dddlim;		/* 90% of memory limit used */
    108 #define NEED_PAGEDAEMON() \
    109     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    110 #define PDRESERVE (2*MAXPHYS)
    111 
    112 /*
    113  * Try to free two pages worth of pages from objects.
    114  * If this succesfully frees a full page cache page, we'll
    115  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    116  */
    117 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    118 
    119 /*
    120  * Keep a list of least recently used pages.  Since the only way a
    121  * rump kernel can "access" a page is via lookup, we put the page
    122  * at the back of queue every time a lookup for it is done.  If the
    123  * page is in front of this global queue and we're short of memory,
    124  * it's a candidate for pageout.
    125  */
    126 static struct pglist vmpage_lruqueue;
    127 static unsigned vmpage_onqueue;
    128 
    129 /*
    130  * vm pages
    131  */
    132 
    133 static int
    134 pgctor(void *arg, void *obj, int flags)
    135 {
    136 	struct vm_page *pg = obj;
    137 
    138 	memset(pg, 0, sizeof(*pg));
    139 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    140 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    141 	return pg->uanon == NULL;
    142 }
    143 
    144 static void
    145 pgdtor(void *arg, void *obj)
    146 {
    147 	struct vm_page *pg = obj;
    148 
    149 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    150 }
    151 
    152 static struct pool_cache pagecache;
    153 
    154 /*
    155  * Called with the object locked.  We don't support anons.
    156  */
    157 struct vm_page *
    158 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    159 	int flags, int strat, int free_list)
    160 {
    161 	struct vm_page *pg;
    162 
    163 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
    164 	KASSERT(anon == NULL);
    165 
    166 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    167 	if (__predict_false(pg == NULL)) {
    168 		return NULL;
    169 	}
    170 
    171 	pg->offset = off;
    172 	pg->uobject = uobj;
    173 
    174 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    175 	if (flags & UVM_PGA_ZERO) {
    176 		uvm_pagezero(pg);
    177 	}
    178 
    179 	if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
    180 	    pg) != 0) {
    181 		pool_cache_put(&pagecache, pg);
    182 		return NULL;
    183 	}
    184 
    185 	/*
    186 	 * Don't put anons on the LRU page queue.  We can't flush them
    187 	 * (there's no concept of swap in a rump kernel), so no reason
    188 	 * to bother with them.
    189 	 */
    190 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    191 		atomic_inc_uint(&vmpage_onqueue);
    192 		mutex_enter(&vmpage_lruqueue_lock);
    193 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    194 		mutex_exit(&vmpage_lruqueue_lock);
    195 	}
    196 
    197 	uobj->uo_npages++;
    198 
    199 	return pg;
    200 }
    201 
    202 /*
    203  * Release a page.
    204  *
    205  * Called with the vm object locked.
    206  */
    207 void
    208 uvm_pagefree(struct vm_page *pg)
    209 {
    210 	struct uvm_object *uobj = pg->uobject;
    211 	struct vm_page *pg2 __unused;
    212 
    213 	KASSERT(mutex_owned(uobj->vmobjlock));
    214 
    215 	if (pg->flags & PG_WANTED)
    216 		wakeup(pg);
    217 
    218 	uobj->uo_npages--;
    219 	pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    220 	KASSERT(pg == pg2);
    221 
    222 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    223 		mutex_enter(&vmpage_lruqueue_lock);
    224 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    225 		mutex_exit(&vmpage_lruqueue_lock);
    226 		atomic_dec_uint(&vmpage_onqueue);
    227 	}
    228 
    229 	pool_cache_put(&pagecache, pg);
    230 }
    231 
    232 void
    233 uvm_pagezero(struct vm_page *pg)
    234 {
    235 
    236 	pg->flags &= ~PG_CLEAN;
    237 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    238 }
    239 
    240 /*
    241  * uvm_page_locked_p: return true if object associated with page is
    242  * locked.  this is a weak check for runtime assertions only.
    243  */
    244 
    245 bool
    246 uvm_page_locked_p(struct vm_page *pg)
    247 {
    248 
    249 	return mutex_owned(pg->uobject->vmobjlock);
    250 }
    251 
    252 /*
    253  * Misc routines
    254  */
    255 
    256 static kmutex_t pagermtx;
    257 
    258 void
    259 uvm_init(void)
    260 {
    261 	char buf[64];
    262 
    263 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    264 		unsigned long tmp;
    265 		char *ep;
    266 		int mult;
    267 
    268 		tmp = strtoul(buf, &ep, 10);
    269 		if (strlen(ep) > 1)
    270 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    271 
    272 		/* mini-dehumanize-number */
    273 		mult = 1;
    274 		switch (*ep) {
    275 		case 'k':
    276 			mult = 1024;
    277 			break;
    278 		case 'm':
    279 			mult = 1024*1024;
    280 			break;
    281 		case 'g':
    282 			mult = 1024*1024*1024;
    283 			break;
    284 		case 0:
    285 			break;
    286 		default:
    287 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    288 		}
    289 		rump_physmemlimit = tmp * mult;
    290 
    291 		if (rump_physmemlimit / mult != tmp)
    292 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    293 
    294 		/* reserve some memory for the pager */
    295 		if (rump_physmemlimit <= PDRESERVE)
    296 			panic("uvm_init: system reserves %d bytes of mem, "
    297 			    "only %lu bytes given",
    298 			    PDRESERVE, rump_physmemlimit);
    299 		pdlimit = rump_physmemlimit;
    300 		rump_physmemlimit -= PDRESERVE;
    301 
    302 		if (pdlimit < 1024*1024)
    303 			printf("uvm_init: WARNING: <1MB RAM limit, "
    304 			    "hope you know what you're doing\n");
    305 
    306 #define HUMANIZE_BYTES 9
    307 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    308 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    309 #undef HUMANIZE_BYTES
    310 		dddlim = 9 * (rump_physmemlimit / 10);
    311 	} else {
    312 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    313 	}
    314 	aprint_verbose("total memory = %s\n", buf);
    315 
    316 	TAILQ_INIT(&vmpage_lruqueue);
    317 
    318 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
    319 		uvmexp.npages = physmem;
    320 	} else {
    321 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
    322 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
    323 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
    324 	}
    325 	/*
    326 	 * uvmexp.free is not used internally or updated.  The reason is
    327 	 * that the memory hypercall allocator is allowed to allocate
    328 	 * non-page sized chunks.  We use a byte count in curphysmem
    329 	 * instead.
    330 	 */
    331 	uvmexp.free = uvmexp.npages;
    332 
    333 #ifndef __uvmexp_pagesize
    334 	uvmexp.pagesize = PAGE_SIZE;
    335 	uvmexp.pagemask = PAGE_MASK;
    336 	uvmexp.pageshift = PAGE_SHIFT;
    337 #else
    338 #define FAKE_PAGE_SHIFT 12
    339 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    340 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    341 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    342 #undef FAKE_PAGE_SHIFT
    343 #endif
    344 
    345 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    346 	mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
    347 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    348 
    349 	/* just to appease linkage */
    350 	mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
    351 
    352 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    353 	cv_init(&pdaemoncv, "pdaemon");
    354 	cv_init(&oomwait, "oomwait");
    355 
    356 	module_map = &module_map_store;
    357 
    358 	kernel_map->pmap = pmap_kernel();
    359 
    360 	pool_subsystem_init();
    361 
    362 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    363 	    NULL, NULL, NULL,
    364 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    365 
    366 	vmem_subsystem_init(kmem_arena);
    367 
    368 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    369 	    vmem_alloc, vmem_free, kmem_arena,
    370 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    371 
    372 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    373 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    374 
    375 	radix_tree_init();
    376 
    377 	/* create vmspace used by local clients */
    378 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
    379 	uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
    380 }
    381 
    382 void
    383 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    384     bool topdown)
    385 {
    386 
    387 	vm->vm_map.pmap = pmap;
    388 	vm->vm_refcnt = 1;
    389 }
    390 
    391 int
    392 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
    393     bool new_pageable, int lockflags)
    394 {
    395 	return 0;
    396 }
    397 
    398 void
    399 uvm_pagewire(struct vm_page *pg)
    400 {
    401 
    402 	/* nada */
    403 }
    404 
    405 void
    406 uvm_pageunwire(struct vm_page *pg)
    407 {
    408 
    409 	/* nada */
    410 }
    411 
    412 int
    413 uvm_free(void)
    414 {
    415 
    416 	return uvmexp.free;
    417 }
    418 
    419 /* where's your schmonz now? */
    420 #define PUNLIMIT(a)	\
    421 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    422 void
    423 uvm_init_limits(struct proc *p)
    424 {
    425 
    426 #ifndef DFLSSIZ
    427 #define DFLSSIZ (16*1024*1024)
    428 #endif
    429 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    430 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    431 	PUNLIMIT(RLIMIT_DATA);
    432 	PUNLIMIT(RLIMIT_RSS);
    433 	PUNLIMIT(RLIMIT_AS);
    434 	/* nice, cascade */
    435 }
    436 #undef PUNLIMIT
    437 
    438 /*
    439  * This satisfies the "disgusting mmap hack" used by proplib.
    440  */
    441 int
    442 uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
    443 {
    444 	int error;
    445 
    446 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    447 	if (*addrp != NULL)
    448 		panic("uvm_mmap() variant unsupported");
    449 
    450 	if (RUMP_LOCALPROC_P(curproc)) {
    451 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
    452 	} else {
    453 		error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
    454 		    size, addrp);
    455 	}
    456 	return error;
    457 }
    458 
    459 /*
    460  * Stubs for things referenced from vfs_vnode.c but not used.
    461  */
    462 const dev_t zerodev;
    463 
    464 struct uvm_object *
    465 udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
    466 {
    467 	return NULL;
    468 }
    469 
    470 struct pagerinfo {
    471 	vaddr_t pgr_kva;
    472 	int pgr_npages;
    473 	struct vm_page **pgr_pgs;
    474 	bool pgr_read;
    475 
    476 	LIST_ENTRY(pagerinfo) pgr_entries;
    477 };
    478 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    479 
    480 /*
    481  * Pager "map" in routine.  Instead of mapping, we allocate memory
    482  * and copy page contents there.  The reason for copying instead of
    483  * mapping is simple: we do not assume we are running on virtual
    484  * memory.  Even if we could emulate virtual memory in some envs
    485  * such as userspace, copying is much faster than trying to awkardly
    486  * cope with remapping (see "Design and Implementation" pp.95-98).
    487  * The downside of the approach is that the pager requires MAXPHYS
    488  * free memory to perform paging, but short of virtual memory or
    489  * making the pager do I/O in page-sized chunks we cannot do much
    490  * about that.
    491  */
    492 vaddr_t
    493 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    494 {
    495 	struct pagerinfo *pgri;
    496 	vaddr_t curkva;
    497 	int i;
    498 
    499 	/* allocate structures */
    500 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    501 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    502 	pgri->pgr_npages = npages;
    503 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    504 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    505 
    506 	/* copy contents to "mapped" memory */
    507 	for (i = 0, curkva = pgri->pgr_kva;
    508 	    i < npages;
    509 	    i++, curkva += PAGE_SIZE) {
    510 		/*
    511 		 * We need to copy the previous contents of the pages to
    512 		 * the window even if we are reading from the
    513 		 * device, since the device might not fill the contents of
    514 		 * the full mapped range and we will end up corrupting
    515 		 * data when we unmap the window.
    516 		 */
    517 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    518 		pgri->pgr_pgs[i] = pgs[i];
    519 	}
    520 
    521 	mutex_enter(&pagermtx);
    522 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    523 	mutex_exit(&pagermtx);
    524 
    525 	return pgri->pgr_kva;
    526 }
    527 
    528 /*
    529  * map out the pager window.  return contents from VA to page storage
    530  * and free structures.
    531  *
    532  * Note: does not currently support partial frees
    533  */
    534 void
    535 uvm_pagermapout(vaddr_t kva, int npages)
    536 {
    537 	struct pagerinfo *pgri;
    538 	vaddr_t curkva;
    539 	int i;
    540 
    541 	mutex_enter(&pagermtx);
    542 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    543 		if (pgri->pgr_kva == kva)
    544 			break;
    545 	}
    546 	KASSERT(pgri);
    547 	if (pgri->pgr_npages != npages)
    548 		panic("uvm_pagermapout: partial unmapping not supported");
    549 	LIST_REMOVE(pgri, pgr_entries);
    550 	mutex_exit(&pagermtx);
    551 
    552 	if (pgri->pgr_read) {
    553 		for (i = 0, curkva = pgri->pgr_kva;
    554 		    i < pgri->pgr_npages;
    555 		    i++, curkva += PAGE_SIZE) {
    556 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    557 		}
    558 	}
    559 
    560 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    561 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    562 	kmem_free(pgri, sizeof(*pgri));
    563 }
    564 
    565 /*
    566  * convert va in pager window to page structure.
    567  * XXX: how expensive is this (global lock, list traversal)?
    568  */
    569 struct vm_page *
    570 uvm_pageratop(vaddr_t va)
    571 {
    572 	struct pagerinfo *pgri;
    573 	struct vm_page *pg = NULL;
    574 	int i;
    575 
    576 	mutex_enter(&pagermtx);
    577 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    578 		if (pgri->pgr_kva <= va
    579 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    580 			break;
    581 	}
    582 	if (pgri) {
    583 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    584 		pg = pgri->pgr_pgs[i];
    585 	}
    586 	mutex_exit(&pagermtx);
    587 
    588 	return pg;
    589 }
    590 
    591 /*
    592  * Called with the vm object locked.
    593  *
    594  * Put vnode object pages at the end of the access queue to indicate
    595  * they have been recently accessed and should not be immediate
    596  * candidates for pageout.  Do not do this for lookups done by
    597  * the pagedaemon to mimic pmap_kentered mappings which don't track
    598  * access information.
    599  */
    600 struct vm_page *
    601 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    602 {
    603 	struct vm_page *pg;
    604 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    605 
    606 	pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
    607 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    608 		mutex_enter(&vmpage_lruqueue_lock);
    609 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    610 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    611 		mutex_exit(&vmpage_lruqueue_lock);
    612 	}
    613 
    614 	return pg;
    615 }
    616 
    617 void
    618 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    619 {
    620 	struct vm_page *pg;
    621 	int i;
    622 
    623 	KASSERT(npgs > 0);
    624 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
    625 
    626 	for (i = 0; i < npgs; i++) {
    627 		pg = pgs[i];
    628 		if (pg == NULL)
    629 			continue;
    630 
    631 		KASSERT(pg->flags & PG_BUSY);
    632 		if (pg->flags & PG_WANTED)
    633 			wakeup(pg);
    634 		if (pg->flags & PG_RELEASED)
    635 			uvm_pagefree(pg);
    636 		else
    637 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    638 	}
    639 }
    640 
    641 void
    642 uvm_estimatepageable(int *active, int *inactive)
    643 {
    644 
    645 	/* XXX: guessing game */
    646 	*active = 1024;
    647 	*inactive = 1024;
    648 }
    649 
    650 bool
    651 vm_map_starved_p(struct vm_map *map)
    652 {
    653 
    654 	if (map->flags & VM_MAP_WANTVA)
    655 		return true;
    656 
    657 	return false;
    658 }
    659 
    660 int
    661 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    662 {
    663 
    664 	panic("%s: unimplemented", __func__);
    665 }
    666 
    667 void
    668 uvm_unloan(void *v, int npages, int flags)
    669 {
    670 
    671 	panic("%s: unimplemented", __func__);
    672 }
    673 
    674 int
    675 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    676 	struct vm_page **opp)
    677 {
    678 
    679 	return EBUSY;
    680 }
    681 
    682 struct vm_page *
    683 uvm_loanbreak(struct vm_page *pg)
    684 {
    685 
    686 	panic("%s: unimplemented", __func__);
    687 }
    688 
    689 void
    690 ubc_purge(struct uvm_object *uobj)
    691 {
    692 
    693 }
    694 
    695 vaddr_t
    696 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
    697 {
    698 
    699 	return 0;
    700 }
    701 
    702 int
    703 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    704 	vm_prot_t prot, bool set_max)
    705 {
    706 
    707 	return EOPNOTSUPP;
    708 }
    709 
    710 int
    711 uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
    712     struct uvm_object *uobj, voff_t uoffset, vsize_t align,
    713     uvm_flag_t flags)
    714 {
    715 
    716 	*startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
    717 	return *startp != 0 ? 0 : ENOMEM;
    718 }
    719 
    720 void
    721 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
    722 {
    723 
    724 	rump_hyperfree((void*)start, end-start);
    725 }
    726 
    727 
    728 /*
    729  * UVM km
    730  */
    731 
    732 vaddr_t
    733 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    734 {
    735 	void *rv, *desired = NULL;
    736 	int alignbit, error;
    737 
    738 #ifdef __x86_64__
    739 	/*
    740 	 * On amd64, allocate all module memory from the lowest 2GB.
    741 	 * This is because NetBSD kernel modules are compiled
    742 	 * with -mcmodel=kernel and reserve only 4 bytes for
    743 	 * offsets.  If we load code compiled with -mcmodel=kernel
    744 	 * anywhere except the lowest or highest 2GB, it will not
    745 	 * work.  Since userspace does not have access to the highest
    746 	 * 2GB, use the lowest 2GB.
    747 	 *
    748 	 * Note: this assumes the rump kernel resides in
    749 	 * the lowest 2GB as well.
    750 	 *
    751 	 * Note2: yes, it's a quick hack, but since this the only
    752 	 * place where we care about the map we're allocating from,
    753 	 * just use a simple "if" instead of coming up with a fancy
    754 	 * generic solution.
    755 	 */
    756 	if (map == module_map) {
    757 		desired = (void *)(0x80000000 - size);
    758 	}
    759 #endif
    760 
    761 	if (__predict_false(map == module_map)) {
    762 		alignbit = 0;
    763 		if (align) {
    764 			alignbit = ffs(align)-1;
    765 		}
    766 		error = rumpuser_anonmmap(desired, size, alignbit,
    767 		    flags & UVM_KMF_EXEC, &rv);
    768 	} else {
    769 		error = rumpuser_malloc(size, align, &rv);
    770 	}
    771 
    772 	if (error) {
    773 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    774 			return 0;
    775 		else
    776 			panic("uvm_km_alloc failed");
    777 	}
    778 
    779 	if (flags & UVM_KMF_ZERO)
    780 		memset(rv, 0, size);
    781 
    782 	return (vaddr_t)rv;
    783 }
    784 
    785 void
    786 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    787 {
    788 
    789 	if (__predict_false(map == module_map))
    790 		rumpuser_unmap((void *)vaddr, size);
    791 	else
    792 		rumpuser_free((void *)vaddr, size);
    793 }
    794 
    795 int
    796 uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
    797 {
    798 	return 0;
    799 }
    800 
    801 struct vm_map *
    802 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    803 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    804 {
    805 
    806 	return (struct vm_map *)417416;
    807 }
    808 
    809 int
    810 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    811     vmem_addr_t *addr)
    812 {
    813 	vaddr_t va;
    814 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    815 	    (flags & VM_SLEEP), "kmalloc");
    816 
    817 	if (va) {
    818 		*addr = va;
    819 		return 0;
    820 	} else {
    821 		return ENOMEM;
    822 	}
    823 }
    824 
    825 void
    826 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    827 {
    828 
    829 	rump_hyperfree((void *)addr, size);
    830 }
    831 
    832 /*
    833  * VM space locking routines.  We don't really have to do anything,
    834  * since the pages are always "wired" (both local and remote processes).
    835  */
    836 int
    837 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    838 {
    839 
    840 	return 0;
    841 }
    842 
    843 void
    844 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    845 {
    846 
    847 }
    848 
    849 /*
    850  * For the local case the buffer mappers don't need to do anything.
    851  * For the remote case we need to reserve space and copy data in or
    852  * out, depending on B_READ/B_WRITE.
    853  */
    854 int
    855 vmapbuf(struct buf *bp, vsize_t len)
    856 {
    857 	int error = 0;
    858 
    859 	bp->b_saveaddr = bp->b_data;
    860 
    861 	/* remote case */
    862 	if (!RUMP_LOCALPROC_P(curproc)) {
    863 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    864 		if (BUF_ISWRITE(bp)) {
    865 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    866 			if (error) {
    867 				rump_hyperfree(bp->b_data, len);
    868 				bp->b_data = bp->b_saveaddr;
    869 				bp->b_saveaddr = 0;
    870 			}
    871 		}
    872 	}
    873 
    874 	return error;
    875 }
    876 
    877 void
    878 vunmapbuf(struct buf *bp, vsize_t len)
    879 {
    880 
    881 	/* remote case */
    882 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    883 		if (BUF_ISREAD(bp)) {
    884 			bp->b_error = copyout_proc(bp->b_proc,
    885 			    bp->b_data, bp->b_saveaddr, len);
    886 		}
    887 		rump_hyperfree(bp->b_data, len);
    888 	}
    889 
    890 	bp->b_data = bp->b_saveaddr;
    891 	bp->b_saveaddr = 0;
    892 }
    893 
    894 void
    895 uvmspace_addref(struct vmspace *vm)
    896 {
    897 
    898 	/*
    899 	 * No dynamically allocated vmspaces exist.
    900 	 */
    901 }
    902 
    903 void
    904 uvmspace_free(struct vmspace *vm)
    905 {
    906 
    907 	/* nothing for now */
    908 }
    909 
    910 /*
    911  * page life cycle stuff.  it really doesn't exist, so just stubs.
    912  */
    913 
    914 void
    915 uvm_pageactivate(struct vm_page *pg)
    916 {
    917 
    918 	/* nada */
    919 }
    920 
    921 void
    922 uvm_pagedeactivate(struct vm_page *pg)
    923 {
    924 
    925 	/* nada */
    926 }
    927 
    928 void
    929 uvm_pagedequeue(struct vm_page *pg)
    930 {
    931 
    932 	/* nada*/
    933 }
    934 
    935 void
    936 uvm_pageenqueue(struct vm_page *pg)
    937 {
    938 
    939 	/* nada */
    940 }
    941 
    942 void
    943 uvmpdpol_anfree(struct vm_anon *an)
    944 {
    945 
    946 	/* nada */
    947 }
    948 
    949 /*
    950  * Physical address accessors.
    951  */
    952 
    953 struct vm_page *
    954 uvm_phys_to_vm_page(paddr_t pa)
    955 {
    956 
    957 	return NULL;
    958 }
    959 
    960 paddr_t
    961 uvm_vm_page_to_phys(const struct vm_page *pg)
    962 {
    963 
    964 	return 0;
    965 }
    966 
    967 vaddr_t
    968 uvm_uarea_alloc(void)
    969 {
    970 
    971 	/* non-zero */
    972 	return (vaddr_t)11;
    973 }
    974 
    975 void
    976 uvm_uarea_free(vaddr_t uarea)
    977 {
    978 
    979 	/* nata, so creamy */
    980 }
    981 
    982 /*
    983  * Routines related to the Page Baroness.
    984  */
    985 
    986 void
    987 uvm_wait(const char *msg)
    988 {
    989 
    990 	if (__predict_false(rump_threads == 0))
    991 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    992 
    993 	if (curlwp == uvm.pagedaemon_lwp) {
    994 		/* is it possible for us to later get memory? */
    995 		if (!uvmexp.paging)
    996 			panic("pagedaemon out of memory");
    997 	}
    998 
    999 	mutex_enter(&pdaemonmtx);
   1000 	pdaemon_waiters++;
   1001 	cv_signal(&pdaemoncv);
   1002 	cv_wait(&oomwait, &pdaemonmtx);
   1003 	mutex_exit(&pdaemonmtx);
   1004 }
   1005 
   1006 void
   1007 uvm_pageout_start(int npages)
   1008 {
   1009 
   1010 	mutex_enter(&pdaemonmtx);
   1011 	uvmexp.paging += npages;
   1012 	mutex_exit(&pdaemonmtx);
   1013 }
   1014 
   1015 void
   1016 uvm_pageout_done(int npages)
   1017 {
   1018 
   1019 	if (!npages)
   1020 		return;
   1021 
   1022 	mutex_enter(&pdaemonmtx);
   1023 	KASSERT(uvmexp.paging >= npages);
   1024 	uvmexp.paging -= npages;
   1025 
   1026 	if (pdaemon_waiters) {
   1027 		pdaemon_waiters = 0;
   1028 		cv_broadcast(&oomwait);
   1029 	}
   1030 	mutex_exit(&pdaemonmtx);
   1031 }
   1032 
   1033 static bool
   1034 processpage(struct vm_page *pg, bool *lockrunning)
   1035 {
   1036 	struct uvm_object *uobj;
   1037 
   1038 	uobj = pg->uobject;
   1039 	if (mutex_tryenter(uobj->vmobjlock)) {
   1040 		if ((pg->flags & PG_BUSY) == 0) {
   1041 			mutex_exit(&vmpage_lruqueue_lock);
   1042 			uobj->pgops->pgo_put(uobj, pg->offset,
   1043 			    pg->offset + PAGE_SIZE,
   1044 			    PGO_CLEANIT|PGO_FREE);
   1045 			KASSERT(!mutex_owned(uobj->vmobjlock));
   1046 			return true;
   1047 		} else {
   1048 			mutex_exit(uobj->vmobjlock);
   1049 		}
   1050 	} else if (*lockrunning == false && ncpu > 1) {
   1051 		CPU_INFO_ITERATOR cii;
   1052 		struct cpu_info *ci;
   1053 		struct lwp *l;
   1054 
   1055 		l = mutex_owner(uobj->vmobjlock);
   1056 		for (CPU_INFO_FOREACH(cii, ci)) {
   1057 			if (ci->ci_curlwp == l) {
   1058 				*lockrunning = true;
   1059 				break;
   1060 			}
   1061 		}
   1062 	}
   1063 
   1064 	return false;
   1065 }
   1066 
   1067 /*
   1068  * The Diabolical pageDaemon Director (DDD).
   1069  *
   1070  * This routine can always use better heuristics.
   1071  */
   1072 void
   1073 uvm_pageout(void *arg)
   1074 {
   1075 	struct vm_page *pg;
   1076 	struct pool *pp, *pp_first;
   1077 	int cleaned, skip, skipped;
   1078 	bool succ;
   1079 	bool lockrunning;
   1080 
   1081 	mutex_enter(&pdaemonmtx);
   1082 	for (;;) {
   1083 		if (!NEED_PAGEDAEMON()) {
   1084 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1085 		}
   1086 
   1087 		if (pdaemon_waiters) {
   1088 			pdaemon_waiters = 0;
   1089 			cv_broadcast(&oomwait);
   1090 		}
   1091 
   1092 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1093 		uvmexp.pdwoke++;
   1094 
   1095 		/* tell the world that we are hungry */
   1096 		kernel_map->flags |= VM_MAP_WANTVA;
   1097 		mutex_exit(&pdaemonmtx);
   1098 
   1099 		/*
   1100 		 * step one: reclaim the page cache.  this should give
   1101 		 * us the biggest earnings since whole pages are released
   1102 		 * into backing memory.
   1103 		 */
   1104 		pool_cache_reclaim(&pagecache);
   1105 		if (!NEED_PAGEDAEMON()) {
   1106 			mutex_enter(&pdaemonmtx);
   1107 			continue;
   1108 		}
   1109 
   1110 		/*
   1111 		 * Ok, so that didn't help.  Next, try to hunt memory
   1112 		 * by pushing out vnode pages.  The pages might contain
   1113 		 * useful cached data, but we need the memory.
   1114 		 */
   1115 		cleaned = 0;
   1116 		skip = 0;
   1117 		lockrunning = false;
   1118  again:
   1119 		mutex_enter(&vmpage_lruqueue_lock);
   1120 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1121 			skipped = 0;
   1122 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1123 
   1124 				/*
   1125 				 * skip over pages we _might_ have tried
   1126 				 * to handle earlier.  they might not be
   1127 				 * exactly the same ones, but I'm not too
   1128 				 * concerned.
   1129 				 */
   1130 				while (skipped++ < skip)
   1131 					continue;
   1132 
   1133 				if (processpage(pg, &lockrunning)) {
   1134 					cleaned++;
   1135 					goto again;
   1136 				}
   1137 
   1138 				skip++;
   1139 			}
   1140 			break;
   1141 		}
   1142 		mutex_exit(&vmpage_lruqueue_lock);
   1143 
   1144 		/*
   1145 		 * Ok, someone is running with an object lock held.
   1146 		 * We want to yield the host CPU to make sure the
   1147 		 * thread is not parked on the host.  Since sched_yield()
   1148 		 * doesn't appear to do anything on NetBSD, nanosleep
   1149 		 * for the smallest possible time and hope we're back in
   1150 		 * the game soon.
   1151 		 */
   1152 		if (cleaned == 0 && lockrunning) {
   1153 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
   1154 
   1155 			lockrunning = false;
   1156 			skip = 0;
   1157 
   1158 			/* and here we go again */
   1159 			goto again;
   1160 		}
   1161 
   1162 		/*
   1163 		 * And of course we need to reclaim the page cache
   1164 		 * again to actually release memory.
   1165 		 */
   1166 		pool_cache_reclaim(&pagecache);
   1167 		if (!NEED_PAGEDAEMON()) {
   1168 			mutex_enter(&pdaemonmtx);
   1169 			continue;
   1170 		}
   1171 
   1172 		/*
   1173 		 * And then drain the pools.  Wipe them out ... all of them.
   1174 		 */
   1175 		for (pp_first = NULL;;) {
   1176 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1177 
   1178 			succ = pool_drain(&pp);
   1179 			if (succ || pp == pp_first)
   1180 				break;
   1181 
   1182 			if (pp_first == NULL)
   1183 				pp_first = pp;
   1184 		}
   1185 
   1186 		/*
   1187 		 * Need to use PYEC on our bag of tricks.
   1188 		 * Unfortunately, the wife just borrowed it.
   1189 		 */
   1190 
   1191 		mutex_enter(&pdaemonmtx);
   1192 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1193 		    uvmexp.paging == 0) {
   1194 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1195 			    "memory ... sleeping (deadlock?)\n");
   1196 			kpause("pddlk", false, hz, &pdaemonmtx);
   1197 		}
   1198 	}
   1199 
   1200 	panic("you can swap out any time you like, but you can never leave");
   1201 }
   1202 
   1203 void
   1204 uvm_kick_pdaemon()
   1205 {
   1206 
   1207 	/*
   1208 	 * Wake up the diabolical pagedaemon director if we are over
   1209 	 * 90% of the memory limit.  This is a complete and utter
   1210 	 * stetson-harrison decision which you are allowed to finetune.
   1211 	 * Don't bother locking.  If we have some unflushed caches,
   1212 	 * other waker-uppers will deal with the issue.
   1213 	 */
   1214 	if (NEED_PAGEDAEMON()) {
   1215 		cv_signal(&pdaemoncv);
   1216 	}
   1217 }
   1218 
   1219 void *
   1220 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1221 {
   1222 	const unsigned long thelimit =
   1223 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1224 	unsigned long newmem;
   1225 	void *rv;
   1226 	int error;
   1227 
   1228 	uvm_kick_pdaemon(); /* ouch */
   1229 
   1230 	/* first we must be within the limit */
   1231  limitagain:
   1232 	if (thelimit != RUMPMEM_UNLIMITED) {
   1233 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1234 		if (newmem > thelimit) {
   1235 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1236 			if (!waitok) {
   1237 				return NULL;
   1238 			}
   1239 			uvm_wait(wmsg);
   1240 			goto limitagain;
   1241 		}
   1242 	}
   1243 
   1244 	/* second, we must get something from the backend */
   1245  again:
   1246 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1247 	if (__predict_false(error && waitok)) {
   1248 		uvm_wait(wmsg);
   1249 		goto again;
   1250 	}
   1251 
   1252 	return rv;
   1253 }
   1254 
   1255 void
   1256 rump_hyperfree(void *what, size_t size)
   1257 {
   1258 
   1259 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1260 		atomic_add_long(&curphysmem, -size);
   1261 	}
   1262 	rumpuser_free(what, size);
   1263 }
   1264