Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.183
      1 /*	$NetBSD: vm.c,v 1.183 2020/01/15 17:55:44 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.183 2020/01/15 17:55:44 ad Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/vmem.h>
     52 #include <sys/mman.h>
     53 #include <sys/null.h>
     54 #include <sys/vnode.h>
     55 #include <sys/radixtree.h>
     56 
     57 #include <machine/pmap.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_ddb.h>
     61 #include <uvm/uvm_pdpolicy.h>
     62 #include <uvm/uvm_prot.h>
     63 #include <uvm/uvm_readahead.h>
     64 #include <uvm/uvm_device.h>
     65 
     66 #include <rump-sys/kern.h>
     67 #include <rump-sys/vfs.h>
     68 
     69 #include <rump/rumpuser.h>
     70 
     71 kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
     72 kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
     73 kmutex_t uvm_swap_data_lock;
     74 
     75 struct uvmexp uvmexp;
     76 struct uvm uvm;
     77 
     78 #ifdef __uvmexp_pagesize
     79 const int * const uvmexp_pagesize = &uvmexp.pagesize;
     80 const int * const uvmexp_pagemask = &uvmexp.pagemask;
     81 const int * const uvmexp_pageshift = &uvmexp.pageshift;
     82 #endif
     83 
     84 static struct vm_map kernel_map_store;
     85 struct vm_map *kernel_map = &kernel_map_store;
     86 
     87 static struct vm_map module_map_store;
     88 extern struct vm_map *module_map;
     89 
     90 static struct pmap pmap_kernel;
     91 struct pmap rump_pmap_local;
     92 struct pmap *const kernel_pmap_ptr = &pmap_kernel;
     93 
     94 vmem_t *kmem_arena;
     95 vmem_t *kmem_va_arena;
     96 
     97 static unsigned int pdaemon_waiters;
     98 static kmutex_t pdaemonmtx;
     99 static kcondvar_t pdaemoncv, oomwait;
    100 
    101 /* all local non-proc0 processes share this vmspace */
    102 struct vmspace *rump_vmspace_local;
    103 
    104 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
    105 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
    106 static unsigned long curphysmem;
    107 static unsigned long dddlim;		/* 90% of memory limit used */
    108 #define NEED_PAGEDAEMON() \
    109     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    110 #define PDRESERVE (2*MAXPHYS)
    111 
    112 /*
    113  * Try to free two pages worth of pages from objects.
    114  * If this succesfully frees a full page cache page, we'll
    115  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    116  */
    117 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    118 
    119 /*
    120  * Keep a list of least recently used pages.  Since the only way a
    121  * rump kernel can "access" a page is via lookup, we put the page
    122  * at the back of queue every time a lookup for it is done.  If the
    123  * page is in front of this global queue and we're short of memory,
    124  * it's a candidate for pageout.
    125  */
    126 static struct pglist vmpage_lruqueue;
    127 static unsigned vmpage_onqueue;
    128 
    129 /*
    130  * vm pages
    131  */
    132 
    133 static int
    134 pgctor(void *arg, void *obj, int flags)
    135 {
    136 	struct vm_page *pg = obj;
    137 
    138 	memset(pg, 0, sizeof(*pg));
    139 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    140 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    141 	return pg->uanon == NULL;
    142 }
    143 
    144 static void
    145 pgdtor(void *arg, void *obj)
    146 {
    147 	struct vm_page *pg = obj;
    148 
    149 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    150 }
    151 
    152 static struct pool_cache pagecache;
    153 
    154 /*
    155  * Called with the object locked.  We don't support anons.
    156  */
    157 struct vm_page *
    158 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    159 	int flags, int strat, int free_list)
    160 {
    161 	struct vm_page *pg;
    162 
    163 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
    164 	KASSERT(anon == NULL);
    165 
    166 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    167 	if (__predict_false(pg == NULL)) {
    168 		return NULL;
    169 	}
    170 	mutex_init(&pg->interlock, MUTEX_DEFAULT, IPL_NONE);
    171 
    172 	pg->offset = off;
    173 	pg->uobject = uobj;
    174 
    175 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    176 	if (flags & UVM_PGA_ZERO) {
    177 		uvm_pagezero(pg);
    178 	}
    179 
    180 	if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
    181 	    pg) != 0) {
    182 		pool_cache_put(&pagecache, pg);
    183 		return NULL;
    184 	}
    185 
    186 	/*
    187 	 * Don't put anons on the LRU page queue.  We can't flush them
    188 	 * (there's no concept of swap in a rump kernel), so no reason
    189 	 * to bother with them.
    190 	 */
    191 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    192 		atomic_inc_uint(&vmpage_onqueue);
    193 		mutex_enter(&vmpage_lruqueue_lock);
    194 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    195 		mutex_exit(&vmpage_lruqueue_lock);
    196 	}
    197 
    198 	uobj->uo_npages++;
    199 
    200 	return pg;
    201 }
    202 
    203 /*
    204  * Release a page.
    205  *
    206  * Called with the vm object locked.
    207  */
    208 void
    209 uvm_pagefree(struct vm_page *pg)
    210 {
    211 	struct uvm_object *uobj = pg->uobject;
    212 	struct vm_page *pg2 __unused;
    213 
    214 	KASSERT(mutex_owned(uobj->vmobjlock));
    215 
    216 	if (pg->flags & PG_WANTED)
    217 		wakeup(pg);
    218 
    219 	uobj->uo_npages--;
    220 	pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    221 	KASSERT(pg == pg2);
    222 
    223 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    224 		mutex_enter(&vmpage_lruqueue_lock);
    225 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    226 		mutex_exit(&vmpage_lruqueue_lock);
    227 		atomic_dec_uint(&vmpage_onqueue);
    228 	}
    229 
    230 	mutex_destroy(&pg->interlock);
    231 	pool_cache_put(&pagecache, pg);
    232 }
    233 
    234 void
    235 uvm_pagezero(struct vm_page *pg)
    236 {
    237 
    238 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    239 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    240 }
    241 
    242 /*
    243  * uvm_page_owner_locked_p: return true if object associated with page is
    244  * locked.  this is a weak check for runtime assertions only.
    245  */
    246 
    247 bool
    248 uvm_page_owner_locked_p(struct vm_page *pg)
    249 {
    250 
    251 	return mutex_owned(pg->uobject->vmobjlock);
    252 }
    253 
    254 /*
    255  * Misc routines
    256  */
    257 
    258 static kmutex_t pagermtx;
    259 
    260 void
    261 uvm_init(void)
    262 {
    263 	char buf[64];
    264 
    265 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    266 		unsigned long tmp;
    267 		char *ep;
    268 		int mult;
    269 
    270 		tmp = strtoul(buf, &ep, 10);
    271 		if (strlen(ep) > 1)
    272 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    273 
    274 		/* mini-dehumanize-number */
    275 		mult = 1;
    276 		switch (*ep) {
    277 		case 'k':
    278 			mult = 1024;
    279 			break;
    280 		case 'm':
    281 			mult = 1024*1024;
    282 			break;
    283 		case 'g':
    284 			mult = 1024*1024*1024;
    285 			break;
    286 		case 0:
    287 			break;
    288 		default:
    289 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    290 		}
    291 		rump_physmemlimit = tmp * mult;
    292 
    293 		if (rump_physmemlimit / mult != tmp)
    294 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    295 
    296 		/* reserve some memory for the pager */
    297 		if (rump_physmemlimit <= PDRESERVE)
    298 			panic("uvm_init: system reserves %d bytes of mem, "
    299 			    "only %lu bytes given",
    300 			    PDRESERVE, rump_physmemlimit);
    301 		pdlimit = rump_physmemlimit;
    302 		rump_physmemlimit -= PDRESERVE;
    303 
    304 		if (pdlimit < 1024*1024)
    305 			printf("uvm_init: WARNING: <1MB RAM limit, "
    306 			    "hope you know what you're doing\n");
    307 
    308 #define HUMANIZE_BYTES 9
    309 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    310 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    311 #undef HUMANIZE_BYTES
    312 		dddlim = 9 * (rump_physmemlimit / 10);
    313 	} else {
    314 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    315 	}
    316 	aprint_verbose("total memory = %s\n", buf);
    317 
    318 	TAILQ_INIT(&vmpage_lruqueue);
    319 
    320 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
    321 		uvmexp.npages = physmem;
    322 	} else {
    323 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
    324 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
    325 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
    326 	}
    327 	/*
    328 	 * uvmexp.free is not used internally or updated.  The reason is
    329 	 * that the memory hypercall allocator is allowed to allocate
    330 	 * non-page sized chunks.  We use a byte count in curphysmem
    331 	 * instead.
    332 	 */
    333 	uvmexp.free = uvmexp.npages;
    334 
    335 #ifndef __uvmexp_pagesize
    336 	uvmexp.pagesize = PAGE_SIZE;
    337 	uvmexp.pagemask = PAGE_MASK;
    338 	uvmexp.pageshift = PAGE_SHIFT;
    339 #else
    340 #define FAKE_PAGE_SHIFT 12
    341 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    342 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    343 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    344 #undef FAKE_PAGE_SHIFT
    345 #endif
    346 
    347 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    348 	mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
    349 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    350 
    351 	/* just to appease linkage */
    352 	mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
    353 
    354 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    355 	cv_init(&pdaemoncv, "pdaemon");
    356 	cv_init(&oomwait, "oomwait");
    357 
    358 	module_map = &module_map_store;
    359 
    360 	kernel_map->pmap = pmap_kernel();
    361 
    362 	pool_subsystem_init();
    363 
    364 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    365 	    NULL, NULL, NULL,
    366 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    367 
    368 	vmem_subsystem_init(kmem_arena);
    369 
    370 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    371 	    vmem_alloc, vmem_free, kmem_arena,
    372 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    373 
    374 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    375 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    376 
    377 	radix_tree_init();
    378 
    379 	/* create vmspace used by local clients */
    380 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
    381 	uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
    382 }
    383 
    384 void
    385 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    386     bool topdown)
    387 {
    388 
    389 	vm->vm_map.pmap = pmap;
    390 	vm->vm_refcnt = 1;
    391 }
    392 
    393 int
    394 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
    395     bool new_pageable, int lockflags)
    396 {
    397 	return 0;
    398 }
    399 
    400 void
    401 uvm_pagewire(struct vm_page *pg)
    402 {
    403 
    404 	/* nada */
    405 }
    406 
    407 void
    408 uvm_pageunwire(struct vm_page *pg)
    409 {
    410 
    411 	/* nada */
    412 }
    413 
    414 int
    415 uvm_availmem(void)
    416 {
    417 
    418 	return uvmexp.free;
    419 }
    420 
    421 void
    422 uvm_pagelock(struct vm_page *pg)
    423 {
    424 
    425 	mutex_enter(&pg->interlock);
    426 }
    427 
    428 void
    429 uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
    430 {
    431 
    432 	if (pg1 < pg2) {
    433 		mutex_enter(&pg1->interlock);
    434 		mutex_enter(&pg2->interlock);
    435 	} else {
    436 		mutex_enter(&pg2->interlock);
    437 		mutex_enter(&pg1->interlock);
    438 	}
    439 }
    440 
    441 void
    442 uvm_pageunlock(struct vm_page *pg)
    443 {
    444 
    445 	mutex_exit(&pg->interlock);
    446 }
    447 
    448 void
    449 uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
    450 {
    451 
    452 	mutex_exit(&pg1->interlock);
    453 	mutex_exit(&pg2->interlock);
    454 }
    455 
    456 /* where's your schmonz now? */
    457 #define PUNLIMIT(a)	\
    458 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    459 void
    460 uvm_init_limits(struct proc *p)
    461 {
    462 
    463 #ifndef DFLSSIZ
    464 #define DFLSSIZ (16*1024*1024)
    465 #endif
    466 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    467 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    468 	PUNLIMIT(RLIMIT_DATA);
    469 	PUNLIMIT(RLIMIT_RSS);
    470 	PUNLIMIT(RLIMIT_AS);
    471 	/* nice, cascade */
    472 }
    473 #undef PUNLIMIT
    474 
    475 /*
    476  * This satisfies the "disgusting mmap hack" used by proplib.
    477  */
    478 int
    479 uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
    480 {
    481 	int error;
    482 
    483 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    484 	if (*addrp != NULL)
    485 		panic("uvm_mmap() variant unsupported");
    486 
    487 	if (RUMP_LOCALPROC_P(curproc)) {
    488 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
    489 	} else {
    490 		error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
    491 		    size, addrp);
    492 	}
    493 	return error;
    494 }
    495 
    496 /*
    497  * Stubs for things referenced from vfs_vnode.c but not used.
    498  */
    499 const dev_t zerodev;
    500 
    501 struct uvm_object *
    502 udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
    503 {
    504 	return NULL;
    505 }
    506 
    507 struct pagerinfo {
    508 	vaddr_t pgr_kva;
    509 	int pgr_npages;
    510 	struct vm_page **pgr_pgs;
    511 	bool pgr_read;
    512 
    513 	LIST_ENTRY(pagerinfo) pgr_entries;
    514 };
    515 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    516 
    517 /*
    518  * Pager "map" in routine.  Instead of mapping, we allocate memory
    519  * and copy page contents there.  The reason for copying instead of
    520  * mapping is simple: we do not assume we are running on virtual
    521  * memory.  Even if we could emulate virtual memory in some envs
    522  * such as userspace, copying is much faster than trying to awkardly
    523  * cope with remapping (see "Design and Implementation" pp.95-98).
    524  * The downside of the approach is that the pager requires MAXPHYS
    525  * free memory to perform paging, but short of virtual memory or
    526  * making the pager do I/O in page-sized chunks we cannot do much
    527  * about that.
    528  */
    529 vaddr_t
    530 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    531 {
    532 	struct pagerinfo *pgri;
    533 	vaddr_t curkva;
    534 	int i;
    535 
    536 	/* allocate structures */
    537 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    538 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    539 	pgri->pgr_npages = npages;
    540 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    541 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    542 
    543 	/* copy contents to "mapped" memory */
    544 	for (i = 0, curkva = pgri->pgr_kva;
    545 	    i < npages;
    546 	    i++, curkva += PAGE_SIZE) {
    547 		/*
    548 		 * We need to copy the previous contents of the pages to
    549 		 * the window even if we are reading from the
    550 		 * device, since the device might not fill the contents of
    551 		 * the full mapped range and we will end up corrupting
    552 		 * data when we unmap the window.
    553 		 */
    554 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    555 		pgri->pgr_pgs[i] = pgs[i];
    556 	}
    557 
    558 	mutex_enter(&pagermtx);
    559 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    560 	mutex_exit(&pagermtx);
    561 
    562 	return pgri->pgr_kva;
    563 }
    564 
    565 /*
    566  * map out the pager window.  return contents from VA to page storage
    567  * and free structures.
    568  *
    569  * Note: does not currently support partial frees
    570  */
    571 void
    572 uvm_pagermapout(vaddr_t kva, int npages)
    573 {
    574 	struct pagerinfo *pgri;
    575 	vaddr_t curkva;
    576 	int i;
    577 
    578 	mutex_enter(&pagermtx);
    579 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    580 		if (pgri->pgr_kva == kva)
    581 			break;
    582 	}
    583 	KASSERT(pgri);
    584 	if (pgri->pgr_npages != npages)
    585 		panic("uvm_pagermapout: partial unmapping not supported");
    586 	LIST_REMOVE(pgri, pgr_entries);
    587 	mutex_exit(&pagermtx);
    588 
    589 	if (pgri->pgr_read) {
    590 		for (i = 0, curkva = pgri->pgr_kva;
    591 		    i < pgri->pgr_npages;
    592 		    i++, curkva += PAGE_SIZE) {
    593 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    594 		}
    595 	}
    596 
    597 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    598 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    599 	kmem_free(pgri, sizeof(*pgri));
    600 }
    601 
    602 /*
    603  * convert va in pager window to page structure.
    604  * XXX: how expensive is this (global lock, list traversal)?
    605  */
    606 struct vm_page *
    607 uvm_pageratop(vaddr_t va)
    608 {
    609 	struct pagerinfo *pgri;
    610 	struct vm_page *pg = NULL;
    611 	int i;
    612 
    613 	mutex_enter(&pagermtx);
    614 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    615 		if (pgri->pgr_kva <= va
    616 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    617 			break;
    618 	}
    619 	if (pgri) {
    620 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    621 		pg = pgri->pgr_pgs[i];
    622 	}
    623 	mutex_exit(&pagermtx);
    624 
    625 	return pg;
    626 }
    627 
    628 /*
    629  * Called with the vm object locked.
    630  *
    631  * Put vnode object pages at the end of the access queue to indicate
    632  * they have been recently accessed and should not be immediate
    633  * candidates for pageout.  Do not do this for lookups done by
    634  * the pagedaemon to mimic pmap_kentered mappings which don't track
    635  * access information.
    636  */
    637 struct vm_page *
    638 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    639 {
    640 	struct vm_page *pg;
    641 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    642 
    643 	pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
    644 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    645 		mutex_enter(&vmpage_lruqueue_lock);
    646 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    647 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    648 		mutex_exit(&vmpage_lruqueue_lock);
    649 	}
    650 
    651 	return pg;
    652 }
    653 
    654 void
    655 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    656 {
    657 	struct vm_page *pg;
    658 	int i;
    659 
    660 	KASSERT(npgs > 0);
    661 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
    662 
    663 	for (i = 0; i < npgs; i++) {
    664 		pg = pgs[i];
    665 		if (pg == NULL)
    666 			continue;
    667 
    668 		KASSERT(pg->flags & PG_BUSY);
    669 		if (pg->flags & PG_WANTED)
    670 			wakeup(pg);
    671 		if (pg->flags & PG_RELEASED)
    672 			uvm_pagefree(pg);
    673 		else
    674 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    675 	}
    676 }
    677 
    678 void
    679 uvm_estimatepageable(int *active, int *inactive)
    680 {
    681 
    682 	/* XXX: guessing game */
    683 	*active = 1024;
    684 	*inactive = 1024;
    685 }
    686 
    687 int
    688 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    689 {
    690 
    691 	panic("%s: unimplemented", __func__);
    692 }
    693 
    694 void
    695 uvm_unloan(void *v, int npages, int flags)
    696 {
    697 
    698 	panic("%s: unimplemented", __func__);
    699 }
    700 
    701 int
    702 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    703 	struct vm_page **opp)
    704 {
    705 
    706 	return EBUSY;
    707 }
    708 
    709 struct vm_page *
    710 uvm_loanbreak(struct vm_page *pg)
    711 {
    712 
    713 	panic("%s: unimplemented", __func__);
    714 }
    715 
    716 void
    717 ubc_purge(struct uvm_object *uobj)
    718 {
    719 
    720 }
    721 
    722 vaddr_t
    723 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
    724 {
    725 
    726 	return 0;
    727 }
    728 
    729 int
    730 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    731 	vm_prot_t prot, bool set_max)
    732 {
    733 
    734 	return EOPNOTSUPP;
    735 }
    736 
    737 int
    738 uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
    739     struct uvm_object *uobj, voff_t uoffset, vsize_t align,
    740     uvm_flag_t flags)
    741 {
    742 
    743 	*startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
    744 	return *startp != 0 ? 0 : ENOMEM;
    745 }
    746 
    747 void
    748 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
    749 {
    750 
    751 	rump_hyperfree((void*)start, end-start);
    752 }
    753 
    754 
    755 /*
    756  * UVM km
    757  */
    758 
    759 vaddr_t
    760 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    761 {
    762 	void *rv, *desired = NULL;
    763 	int alignbit, error;
    764 
    765 #ifdef __x86_64__
    766 	/*
    767 	 * On amd64, allocate all module memory from the lowest 2GB.
    768 	 * This is because NetBSD kernel modules are compiled
    769 	 * with -mcmodel=kernel and reserve only 4 bytes for
    770 	 * offsets.  If we load code compiled with -mcmodel=kernel
    771 	 * anywhere except the lowest or highest 2GB, it will not
    772 	 * work.  Since userspace does not have access to the highest
    773 	 * 2GB, use the lowest 2GB.
    774 	 *
    775 	 * Note: this assumes the rump kernel resides in
    776 	 * the lowest 2GB as well.
    777 	 *
    778 	 * Note2: yes, it's a quick hack, but since this the only
    779 	 * place where we care about the map we're allocating from,
    780 	 * just use a simple "if" instead of coming up with a fancy
    781 	 * generic solution.
    782 	 */
    783 	if (map == module_map) {
    784 		desired = (void *)(0x80000000 - size);
    785 	}
    786 #endif
    787 
    788 	if (__predict_false(map == module_map)) {
    789 		alignbit = 0;
    790 		if (align) {
    791 			alignbit = ffs(align)-1;
    792 		}
    793 		error = rumpuser_anonmmap(desired, size, alignbit,
    794 		    flags & UVM_KMF_EXEC, &rv);
    795 	} else {
    796 		error = rumpuser_malloc(size, align, &rv);
    797 	}
    798 
    799 	if (error) {
    800 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    801 			return 0;
    802 		else
    803 			panic("uvm_km_alloc failed");
    804 	}
    805 
    806 	if (flags & UVM_KMF_ZERO)
    807 		memset(rv, 0, size);
    808 
    809 	return (vaddr_t)rv;
    810 }
    811 
    812 void
    813 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    814 {
    815 
    816 	if (__predict_false(map == module_map))
    817 		rumpuser_unmap((void *)vaddr, size);
    818 	else
    819 		rumpuser_free((void *)vaddr, size);
    820 }
    821 
    822 int
    823 uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
    824 {
    825 	return 0;
    826 }
    827 
    828 struct vm_map *
    829 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    830 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    831 {
    832 
    833 	return (struct vm_map *)417416;
    834 }
    835 
    836 int
    837 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    838     vmem_addr_t *addr)
    839 {
    840 	vaddr_t va;
    841 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    842 	    (flags & VM_SLEEP), "kmalloc");
    843 
    844 	if (va) {
    845 		*addr = va;
    846 		return 0;
    847 	} else {
    848 		return ENOMEM;
    849 	}
    850 }
    851 
    852 void
    853 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    854 {
    855 
    856 	rump_hyperfree((void *)addr, size);
    857 }
    858 
    859 /*
    860  * VM space locking routines.  We don't really have to do anything,
    861  * since the pages are always "wired" (both local and remote processes).
    862  */
    863 int
    864 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    865 {
    866 
    867 	return 0;
    868 }
    869 
    870 void
    871 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    872 {
    873 
    874 }
    875 
    876 /*
    877  * For the local case the buffer mappers don't need to do anything.
    878  * For the remote case we need to reserve space and copy data in or
    879  * out, depending on B_READ/B_WRITE.
    880  */
    881 int
    882 vmapbuf(struct buf *bp, vsize_t len)
    883 {
    884 	int error = 0;
    885 
    886 	bp->b_saveaddr = bp->b_data;
    887 
    888 	/* remote case */
    889 	if (!RUMP_LOCALPROC_P(curproc)) {
    890 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    891 		if (BUF_ISWRITE(bp)) {
    892 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    893 			if (error) {
    894 				rump_hyperfree(bp->b_data, len);
    895 				bp->b_data = bp->b_saveaddr;
    896 				bp->b_saveaddr = 0;
    897 			}
    898 		}
    899 	}
    900 
    901 	return error;
    902 }
    903 
    904 void
    905 vunmapbuf(struct buf *bp, vsize_t len)
    906 {
    907 
    908 	/* remote case */
    909 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    910 		if (BUF_ISREAD(bp)) {
    911 			bp->b_error = copyout_proc(bp->b_proc,
    912 			    bp->b_data, bp->b_saveaddr, len);
    913 		}
    914 		rump_hyperfree(bp->b_data, len);
    915 	}
    916 
    917 	bp->b_data = bp->b_saveaddr;
    918 	bp->b_saveaddr = 0;
    919 }
    920 
    921 void
    922 uvmspace_addref(struct vmspace *vm)
    923 {
    924 
    925 	/*
    926 	 * No dynamically allocated vmspaces exist.
    927 	 */
    928 }
    929 
    930 void
    931 uvmspace_free(struct vmspace *vm)
    932 {
    933 
    934 	/* nothing for now */
    935 }
    936 
    937 /*
    938  * page life cycle stuff.  it really doesn't exist, so just stubs.
    939  */
    940 
    941 void
    942 uvm_pageactivate(struct vm_page *pg)
    943 {
    944 
    945 	/* nada */
    946 }
    947 
    948 void
    949 uvm_pagedeactivate(struct vm_page *pg)
    950 {
    951 
    952 	/* nada */
    953 }
    954 
    955 void
    956 uvm_pagedequeue(struct vm_page *pg)
    957 {
    958 
    959 	/* nada*/
    960 }
    961 
    962 void
    963 uvm_pageenqueue(struct vm_page *pg)
    964 {
    965 
    966 	/* nada */
    967 }
    968 
    969 void
    970 uvmpdpol_anfree(struct vm_anon *an)
    971 {
    972 
    973 	/* nada */
    974 }
    975 
    976 /*
    977  * Physical address accessors.
    978  */
    979 
    980 struct vm_page *
    981 uvm_phys_to_vm_page(paddr_t pa)
    982 {
    983 
    984 	return NULL;
    985 }
    986 
    987 paddr_t
    988 uvm_vm_page_to_phys(const struct vm_page *pg)
    989 {
    990 
    991 	return 0;
    992 }
    993 
    994 vaddr_t
    995 uvm_uarea_alloc(void)
    996 {
    997 
    998 	/* non-zero */
    999 	return (vaddr_t)11;
   1000 }
   1001 
   1002 void
   1003 uvm_uarea_free(vaddr_t uarea)
   1004 {
   1005 
   1006 	/* nata, so creamy */
   1007 }
   1008 
   1009 /*
   1010  * Routines related to the Page Baroness.
   1011  */
   1012 
   1013 void
   1014 uvm_wait(const char *msg)
   1015 {
   1016 
   1017 	if (__predict_false(rump_threads == 0))
   1018 		panic("pagedaemon missing (RUMP_THREADS = 0)");
   1019 
   1020 	if (curlwp == uvm.pagedaemon_lwp) {
   1021 		/* is it possible for us to later get memory? */
   1022 		if (!uvmexp.paging)
   1023 			panic("pagedaemon out of memory");
   1024 	}
   1025 
   1026 	mutex_enter(&pdaemonmtx);
   1027 	pdaemon_waiters++;
   1028 	cv_signal(&pdaemoncv);
   1029 	cv_wait(&oomwait, &pdaemonmtx);
   1030 	mutex_exit(&pdaemonmtx);
   1031 }
   1032 
   1033 void
   1034 uvm_pageout_start(int npages)
   1035 {
   1036 
   1037 	mutex_enter(&pdaemonmtx);
   1038 	uvmexp.paging += npages;
   1039 	mutex_exit(&pdaemonmtx);
   1040 }
   1041 
   1042 void
   1043 uvm_pageout_done(int npages)
   1044 {
   1045 
   1046 	if (!npages)
   1047 		return;
   1048 
   1049 	mutex_enter(&pdaemonmtx);
   1050 	KASSERT(uvmexp.paging >= npages);
   1051 	uvmexp.paging -= npages;
   1052 
   1053 	if (pdaemon_waiters) {
   1054 		pdaemon_waiters = 0;
   1055 		cv_broadcast(&oomwait);
   1056 	}
   1057 	mutex_exit(&pdaemonmtx);
   1058 }
   1059 
   1060 static bool
   1061 processpage(struct vm_page *pg, bool *lockrunning)
   1062 {
   1063 	struct uvm_object *uobj;
   1064 
   1065 	uobj = pg->uobject;
   1066 	if (mutex_tryenter(uobj->vmobjlock)) {
   1067 		if ((pg->flags & PG_BUSY) == 0) {
   1068 			mutex_exit(&vmpage_lruqueue_lock);
   1069 			uobj->pgops->pgo_put(uobj, pg->offset,
   1070 			    pg->offset + PAGE_SIZE,
   1071 			    PGO_CLEANIT|PGO_FREE);
   1072 			KASSERT(!mutex_owned(uobj->vmobjlock));
   1073 			return true;
   1074 		} else {
   1075 			mutex_exit(uobj->vmobjlock);
   1076 		}
   1077 	} else if (*lockrunning == false && ncpu > 1) {
   1078 		CPU_INFO_ITERATOR cii;
   1079 		struct cpu_info *ci;
   1080 		struct lwp *l;
   1081 
   1082 		l = mutex_owner(uobj->vmobjlock);
   1083 		for (CPU_INFO_FOREACH(cii, ci)) {
   1084 			if (ci->ci_curlwp == l) {
   1085 				*lockrunning = true;
   1086 				break;
   1087 			}
   1088 		}
   1089 	}
   1090 
   1091 	return false;
   1092 }
   1093 
   1094 /*
   1095  * The Diabolical pageDaemon Director (DDD).
   1096  *
   1097  * This routine can always use better heuristics.
   1098  */
   1099 void
   1100 uvm_pageout(void *arg)
   1101 {
   1102 	struct vm_page *pg;
   1103 	struct pool *pp, *pp_first;
   1104 	int cleaned, skip, skipped;
   1105 	bool succ;
   1106 	bool lockrunning;
   1107 
   1108 	mutex_enter(&pdaemonmtx);
   1109 	for (;;) {
   1110 		if (!NEED_PAGEDAEMON()) {
   1111 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1112 		}
   1113 
   1114 		if (pdaemon_waiters) {
   1115 			pdaemon_waiters = 0;
   1116 			cv_broadcast(&oomwait);
   1117 		}
   1118 
   1119 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1120 		uvmexp.pdwoke++;
   1121 
   1122 		/* tell the world that we are hungry */
   1123 		kernel_map->flags |= VM_MAP_WANTVA;
   1124 		mutex_exit(&pdaemonmtx);
   1125 
   1126 		/*
   1127 		 * step one: reclaim the page cache.  this should give
   1128 		 * us the biggest earnings since whole pages are released
   1129 		 * into backing memory.
   1130 		 */
   1131 		pool_cache_reclaim(&pagecache);
   1132 		if (!NEED_PAGEDAEMON()) {
   1133 			mutex_enter(&pdaemonmtx);
   1134 			continue;
   1135 		}
   1136 
   1137 		/*
   1138 		 * Ok, so that didn't help.  Next, try to hunt memory
   1139 		 * by pushing out vnode pages.  The pages might contain
   1140 		 * useful cached data, but we need the memory.
   1141 		 */
   1142 		cleaned = 0;
   1143 		skip = 0;
   1144 		lockrunning = false;
   1145  again:
   1146 		mutex_enter(&vmpage_lruqueue_lock);
   1147 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1148 			skipped = 0;
   1149 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1150 
   1151 				/*
   1152 				 * skip over pages we _might_ have tried
   1153 				 * to handle earlier.  they might not be
   1154 				 * exactly the same ones, but I'm not too
   1155 				 * concerned.
   1156 				 */
   1157 				while (skipped++ < skip)
   1158 					continue;
   1159 
   1160 				if (processpage(pg, &lockrunning)) {
   1161 					cleaned++;
   1162 					goto again;
   1163 				}
   1164 
   1165 				skip++;
   1166 			}
   1167 			break;
   1168 		}
   1169 		mutex_exit(&vmpage_lruqueue_lock);
   1170 
   1171 		/*
   1172 		 * Ok, someone is running with an object lock held.
   1173 		 * We want to yield the host CPU to make sure the
   1174 		 * thread is not parked on the host.  Since sched_yield()
   1175 		 * doesn't appear to do anything on NetBSD, nanosleep
   1176 		 * for the smallest possible time and hope we're back in
   1177 		 * the game soon.
   1178 		 */
   1179 		if (cleaned == 0 && lockrunning) {
   1180 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
   1181 
   1182 			lockrunning = false;
   1183 			skip = 0;
   1184 
   1185 			/* and here we go again */
   1186 			goto again;
   1187 		}
   1188 
   1189 		/*
   1190 		 * And of course we need to reclaim the page cache
   1191 		 * again to actually release memory.
   1192 		 */
   1193 		pool_cache_reclaim(&pagecache);
   1194 		if (!NEED_PAGEDAEMON()) {
   1195 			mutex_enter(&pdaemonmtx);
   1196 			continue;
   1197 		}
   1198 
   1199 		/*
   1200 		 * And then drain the pools.  Wipe them out ... all of them.
   1201 		 */
   1202 		for (pp_first = NULL;;) {
   1203 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1204 
   1205 			succ = pool_drain(&pp);
   1206 			if (succ || pp == pp_first)
   1207 				break;
   1208 
   1209 			if (pp_first == NULL)
   1210 				pp_first = pp;
   1211 		}
   1212 
   1213 		/*
   1214 		 * Need to use PYEC on our bag of tricks.
   1215 		 * Unfortunately, the wife just borrowed it.
   1216 		 */
   1217 
   1218 		mutex_enter(&pdaemonmtx);
   1219 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1220 		    uvmexp.paging == 0) {
   1221 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1222 			    "memory ... sleeping (deadlock?)\n");
   1223 			kpause("pddlk", false, hz, &pdaemonmtx);
   1224 		}
   1225 	}
   1226 
   1227 	panic("you can swap out any time you like, but you can never leave");
   1228 }
   1229 
   1230 void
   1231 uvm_kick_pdaemon()
   1232 {
   1233 
   1234 	/*
   1235 	 * Wake up the diabolical pagedaemon director if we are over
   1236 	 * 90% of the memory limit.  This is a complete and utter
   1237 	 * stetson-harrison decision which you are allowed to finetune.
   1238 	 * Don't bother locking.  If we have some unflushed caches,
   1239 	 * other waker-uppers will deal with the issue.
   1240 	 */
   1241 	if (NEED_PAGEDAEMON()) {
   1242 		cv_signal(&pdaemoncv);
   1243 	}
   1244 }
   1245 
   1246 void *
   1247 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1248 {
   1249 	const unsigned long thelimit =
   1250 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1251 	unsigned long newmem;
   1252 	void *rv;
   1253 	int error;
   1254 
   1255 	uvm_kick_pdaemon(); /* ouch */
   1256 
   1257 	/* first we must be within the limit */
   1258  limitagain:
   1259 	if (thelimit != RUMPMEM_UNLIMITED) {
   1260 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1261 		if (newmem > thelimit) {
   1262 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1263 			if (!waitok) {
   1264 				return NULL;
   1265 			}
   1266 			uvm_wait(wmsg);
   1267 			goto limitagain;
   1268 		}
   1269 	}
   1270 
   1271 	/* second, we must get something from the backend */
   1272  again:
   1273 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1274 	if (__predict_false(error && waitok)) {
   1275 		uvm_wait(wmsg);
   1276 		goto again;
   1277 	}
   1278 
   1279 	return rv;
   1280 }
   1281 
   1282 void
   1283 rump_hyperfree(void *what, size_t size)
   1284 {
   1285 
   1286 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1287 		atomic_add_long(&curphysmem, -size);
   1288 	}
   1289 	rumpuser_free(what, size);
   1290 }
   1291