Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.184
      1 /*	$NetBSD: vm.c,v 1.184 2020/02/23 15:46:42 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.184 2020/02/23 15:46:42 ad Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/vmem.h>
     52 #include <sys/mman.h>
     53 #include <sys/null.h>
     54 #include <sys/vnode.h>
     55 #include <sys/radixtree.h>
     56 
     57 #include <machine/pmap.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_ddb.h>
     61 #include <uvm/uvm_pdpolicy.h>
     62 #include <uvm/uvm_prot.h>
     63 #include <uvm/uvm_readahead.h>
     64 #include <uvm/uvm_device.h>
     65 
     66 #include <rump-sys/kern.h>
     67 #include <rump-sys/vfs.h>
     68 
     69 #include <rump/rumpuser.h>
     70 
     71 kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
     72 kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
     73 kmutex_t uvm_swap_data_lock;
     74 
     75 struct uvmexp uvmexp;
     76 struct uvm uvm;
     77 
     78 #ifdef __uvmexp_pagesize
     79 const int * const uvmexp_pagesize = &uvmexp.pagesize;
     80 const int * const uvmexp_pagemask = &uvmexp.pagemask;
     81 const int * const uvmexp_pageshift = &uvmexp.pageshift;
     82 #endif
     83 
     84 static struct vm_map kernel_map_store;
     85 struct vm_map *kernel_map = &kernel_map_store;
     86 
     87 static struct vm_map module_map_store;
     88 extern struct vm_map *module_map;
     89 
     90 static struct pmap pmap_kernel;
     91 struct pmap rump_pmap_local;
     92 struct pmap *const kernel_pmap_ptr = &pmap_kernel;
     93 
     94 vmem_t *kmem_arena;
     95 vmem_t *kmem_va_arena;
     96 
     97 static unsigned int pdaemon_waiters;
     98 static kmutex_t pdaemonmtx;
     99 static kcondvar_t pdaemoncv, oomwait;
    100 
    101 /* all local non-proc0 processes share this vmspace */
    102 struct vmspace *rump_vmspace_local;
    103 
    104 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
    105 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
    106 static unsigned long curphysmem;
    107 static unsigned long dddlim;		/* 90% of memory limit used */
    108 #define NEED_PAGEDAEMON() \
    109     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    110 #define PDRESERVE (2*MAXPHYS)
    111 
    112 /*
    113  * Try to free two pages worth of pages from objects.
    114  * If this succesfully frees a full page cache page, we'll
    115  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    116  */
    117 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    118 
    119 /*
    120  * Keep a list of least recently used pages.  Since the only way a
    121  * rump kernel can "access" a page is via lookup, we put the page
    122  * at the back of queue every time a lookup for it is done.  If the
    123  * page is in front of this global queue and we're short of memory,
    124  * it's a candidate for pageout.
    125  */
    126 static struct pglist vmpage_lruqueue;
    127 static unsigned vmpage_onqueue;
    128 
    129 /*
    130  * vm pages
    131  */
    132 
    133 static int
    134 pgctor(void *arg, void *obj, int flags)
    135 {
    136 	struct vm_page *pg = obj;
    137 
    138 	memset(pg, 0, sizeof(*pg));
    139 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    140 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    141 	return pg->uanon == NULL;
    142 }
    143 
    144 static void
    145 pgdtor(void *arg, void *obj)
    146 {
    147 	struct vm_page *pg = obj;
    148 
    149 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    150 }
    151 
    152 static struct pool_cache pagecache;
    153 
    154 /*
    155  * Called with the object locked.  We don't support anons.
    156  */
    157 struct vm_page *
    158 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    159 	int flags, int strat, int free_list)
    160 {
    161 	struct vm_page *pg;
    162 
    163 	KASSERT(uobj && rw_write_held(uobj->vmobjlock));
    164 	KASSERT(anon == NULL);
    165 
    166 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    167 	if (__predict_false(pg == NULL)) {
    168 		return NULL;
    169 	}
    170 	mutex_init(&pg->interlock, MUTEX_DEFAULT, IPL_NONE);
    171 
    172 	pg->offset = off;
    173 	pg->uobject = uobj;
    174 
    175 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    176 	if (flags & UVM_PGA_ZERO) {
    177 		uvm_pagezero(pg);
    178 	}
    179 
    180 	if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
    181 	    pg) != 0) {
    182 		pool_cache_put(&pagecache, pg);
    183 		return NULL;
    184 	}
    185 
    186 	/*
    187 	 * Don't put anons on the LRU page queue.  We can't flush them
    188 	 * (there's no concept of swap in a rump kernel), so no reason
    189 	 * to bother with them.
    190 	 */
    191 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    192 		atomic_inc_uint(&vmpage_onqueue);
    193 		mutex_enter(&vmpage_lruqueue_lock);
    194 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    195 		mutex_exit(&vmpage_lruqueue_lock);
    196 	}
    197 
    198 	uobj->uo_npages++;
    199 
    200 	return pg;
    201 }
    202 
    203 /*
    204  * Release a page.
    205  *
    206  * Called with the vm object locked.
    207  */
    208 void
    209 uvm_pagefree(struct vm_page *pg)
    210 {
    211 	struct uvm_object *uobj = pg->uobject;
    212 	struct vm_page *pg2 __unused;
    213 
    214 	KASSERT(rw_write_held(uobj->vmobjlock));
    215 
    216 	if (pg->flags & PG_WANTED)
    217 		wakeup(pg);
    218 
    219 	uobj->uo_npages--;
    220 	pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    221 	KASSERT(pg == pg2);
    222 
    223 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    224 		mutex_enter(&vmpage_lruqueue_lock);
    225 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    226 		mutex_exit(&vmpage_lruqueue_lock);
    227 		atomic_dec_uint(&vmpage_onqueue);
    228 	}
    229 
    230 	mutex_destroy(&pg->interlock);
    231 	pool_cache_put(&pagecache, pg);
    232 }
    233 
    234 void
    235 uvm_pagezero(struct vm_page *pg)
    236 {
    237 
    238 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    239 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    240 }
    241 
    242 /*
    243  * uvm_page_owner_locked_p: return true if object associated with page is
    244  * locked.  this is a weak check for runtime assertions only.
    245  */
    246 
    247 bool
    248 uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
    249 {
    250 
    251 	if (exclusive)
    252 		return rw_write_held(pg->uobject->vmobjlock);
    253 	else
    254 		return rw_lock_held(pg->uobject->vmobjlock);
    255 }
    256 
    257 /*
    258  * Misc routines
    259  */
    260 
    261 static kmutex_t pagermtx;
    262 
    263 void
    264 uvm_init(void)
    265 {
    266 	char buf[64];
    267 
    268 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    269 		unsigned long tmp;
    270 		char *ep;
    271 		int mult;
    272 
    273 		tmp = strtoul(buf, &ep, 10);
    274 		if (strlen(ep) > 1)
    275 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    276 
    277 		/* mini-dehumanize-number */
    278 		mult = 1;
    279 		switch (*ep) {
    280 		case 'k':
    281 			mult = 1024;
    282 			break;
    283 		case 'm':
    284 			mult = 1024*1024;
    285 			break;
    286 		case 'g':
    287 			mult = 1024*1024*1024;
    288 			break;
    289 		case 0:
    290 			break;
    291 		default:
    292 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    293 		}
    294 		rump_physmemlimit = tmp * mult;
    295 
    296 		if (rump_physmemlimit / mult != tmp)
    297 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    298 
    299 		/* reserve some memory for the pager */
    300 		if (rump_physmemlimit <= PDRESERVE)
    301 			panic("uvm_init: system reserves %d bytes of mem, "
    302 			    "only %lu bytes given",
    303 			    PDRESERVE, rump_physmemlimit);
    304 		pdlimit = rump_physmemlimit;
    305 		rump_physmemlimit -= PDRESERVE;
    306 
    307 		if (pdlimit < 1024*1024)
    308 			printf("uvm_init: WARNING: <1MB RAM limit, "
    309 			    "hope you know what you're doing\n");
    310 
    311 #define HUMANIZE_BYTES 9
    312 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    313 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    314 #undef HUMANIZE_BYTES
    315 		dddlim = 9 * (rump_physmemlimit / 10);
    316 	} else {
    317 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    318 	}
    319 	aprint_verbose("total memory = %s\n", buf);
    320 
    321 	TAILQ_INIT(&vmpage_lruqueue);
    322 
    323 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
    324 		uvmexp.npages = physmem;
    325 	} else {
    326 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
    327 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
    328 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
    329 	}
    330 	/*
    331 	 * uvmexp.free is not used internally or updated.  The reason is
    332 	 * that the memory hypercall allocator is allowed to allocate
    333 	 * non-page sized chunks.  We use a byte count in curphysmem
    334 	 * instead.
    335 	 */
    336 	uvmexp.free = uvmexp.npages;
    337 
    338 #ifndef __uvmexp_pagesize
    339 	uvmexp.pagesize = PAGE_SIZE;
    340 	uvmexp.pagemask = PAGE_MASK;
    341 	uvmexp.pageshift = PAGE_SHIFT;
    342 #else
    343 #define FAKE_PAGE_SHIFT 12
    344 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    345 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    346 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    347 #undef FAKE_PAGE_SHIFT
    348 #endif
    349 
    350 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    351 	mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
    352 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    353 
    354 	/* just to appease linkage */
    355 	mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
    356 
    357 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    358 	cv_init(&pdaemoncv, "pdaemon");
    359 	cv_init(&oomwait, "oomwait");
    360 
    361 	module_map = &module_map_store;
    362 
    363 	kernel_map->pmap = pmap_kernel();
    364 
    365 	pool_subsystem_init();
    366 
    367 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    368 	    NULL, NULL, NULL,
    369 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    370 
    371 	vmem_subsystem_init(kmem_arena);
    372 
    373 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    374 	    vmem_alloc, vmem_free, kmem_arena,
    375 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    376 
    377 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    378 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    379 
    380 	radix_tree_init();
    381 
    382 	/* create vmspace used by local clients */
    383 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
    384 	uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
    385 }
    386 
    387 void
    388 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    389     bool topdown)
    390 {
    391 
    392 	vm->vm_map.pmap = pmap;
    393 	vm->vm_refcnt = 1;
    394 }
    395 
    396 int
    397 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
    398     bool new_pageable, int lockflags)
    399 {
    400 	return 0;
    401 }
    402 
    403 void
    404 uvm_pagewire(struct vm_page *pg)
    405 {
    406 
    407 	/* nada */
    408 }
    409 
    410 void
    411 uvm_pageunwire(struct vm_page *pg)
    412 {
    413 
    414 	/* nada */
    415 }
    416 
    417 int
    418 uvm_availmem(void)
    419 {
    420 
    421 	return uvmexp.free;
    422 }
    423 
    424 void
    425 uvm_pagelock(struct vm_page *pg)
    426 {
    427 
    428 	mutex_enter(&pg->interlock);
    429 }
    430 
    431 void
    432 uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
    433 {
    434 
    435 	if (pg1 < pg2) {
    436 		mutex_enter(&pg1->interlock);
    437 		mutex_enter(&pg2->interlock);
    438 	} else {
    439 		mutex_enter(&pg2->interlock);
    440 		mutex_enter(&pg1->interlock);
    441 	}
    442 }
    443 
    444 void
    445 uvm_pageunlock(struct vm_page *pg)
    446 {
    447 
    448 	mutex_exit(&pg->interlock);
    449 }
    450 
    451 void
    452 uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
    453 {
    454 
    455 	mutex_exit(&pg1->interlock);
    456 	mutex_exit(&pg2->interlock);
    457 }
    458 
    459 /* where's your schmonz now? */
    460 #define PUNLIMIT(a)	\
    461 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    462 void
    463 uvm_init_limits(struct proc *p)
    464 {
    465 
    466 #ifndef DFLSSIZ
    467 #define DFLSSIZ (16*1024*1024)
    468 #endif
    469 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    470 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    471 	PUNLIMIT(RLIMIT_DATA);
    472 	PUNLIMIT(RLIMIT_RSS);
    473 	PUNLIMIT(RLIMIT_AS);
    474 	/* nice, cascade */
    475 }
    476 #undef PUNLIMIT
    477 
    478 /*
    479  * This satisfies the "disgusting mmap hack" used by proplib.
    480  */
    481 int
    482 uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
    483 {
    484 	int error;
    485 
    486 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    487 	if (*addrp != NULL)
    488 		panic("uvm_mmap() variant unsupported");
    489 
    490 	if (RUMP_LOCALPROC_P(curproc)) {
    491 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
    492 	} else {
    493 		error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
    494 		    size, addrp);
    495 	}
    496 	return error;
    497 }
    498 
    499 /*
    500  * Stubs for things referenced from vfs_vnode.c but not used.
    501  */
    502 const dev_t zerodev;
    503 
    504 struct uvm_object *
    505 udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
    506 {
    507 	return NULL;
    508 }
    509 
    510 struct pagerinfo {
    511 	vaddr_t pgr_kva;
    512 	int pgr_npages;
    513 	struct vm_page **pgr_pgs;
    514 	bool pgr_read;
    515 
    516 	LIST_ENTRY(pagerinfo) pgr_entries;
    517 };
    518 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    519 
    520 /*
    521  * Pager "map" in routine.  Instead of mapping, we allocate memory
    522  * and copy page contents there.  The reason for copying instead of
    523  * mapping is simple: we do not assume we are running on virtual
    524  * memory.  Even if we could emulate virtual memory in some envs
    525  * such as userspace, copying is much faster than trying to awkardly
    526  * cope with remapping (see "Design and Implementation" pp.95-98).
    527  * The downside of the approach is that the pager requires MAXPHYS
    528  * free memory to perform paging, but short of virtual memory or
    529  * making the pager do I/O in page-sized chunks we cannot do much
    530  * about that.
    531  */
    532 vaddr_t
    533 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    534 {
    535 	struct pagerinfo *pgri;
    536 	vaddr_t curkva;
    537 	int i;
    538 
    539 	/* allocate structures */
    540 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    541 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    542 	pgri->pgr_npages = npages;
    543 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    544 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    545 
    546 	/* copy contents to "mapped" memory */
    547 	for (i = 0, curkva = pgri->pgr_kva;
    548 	    i < npages;
    549 	    i++, curkva += PAGE_SIZE) {
    550 		/*
    551 		 * We need to copy the previous contents of the pages to
    552 		 * the window even if we are reading from the
    553 		 * device, since the device might not fill the contents of
    554 		 * the full mapped range and we will end up corrupting
    555 		 * data when we unmap the window.
    556 		 */
    557 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    558 		pgri->pgr_pgs[i] = pgs[i];
    559 	}
    560 
    561 	mutex_enter(&pagermtx);
    562 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    563 	mutex_exit(&pagermtx);
    564 
    565 	return pgri->pgr_kva;
    566 }
    567 
    568 /*
    569  * map out the pager window.  return contents from VA to page storage
    570  * and free structures.
    571  *
    572  * Note: does not currently support partial frees
    573  */
    574 void
    575 uvm_pagermapout(vaddr_t kva, int npages)
    576 {
    577 	struct pagerinfo *pgri;
    578 	vaddr_t curkva;
    579 	int i;
    580 
    581 	mutex_enter(&pagermtx);
    582 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    583 		if (pgri->pgr_kva == kva)
    584 			break;
    585 	}
    586 	KASSERT(pgri);
    587 	if (pgri->pgr_npages != npages)
    588 		panic("uvm_pagermapout: partial unmapping not supported");
    589 	LIST_REMOVE(pgri, pgr_entries);
    590 	mutex_exit(&pagermtx);
    591 
    592 	if (pgri->pgr_read) {
    593 		for (i = 0, curkva = pgri->pgr_kva;
    594 		    i < pgri->pgr_npages;
    595 		    i++, curkva += PAGE_SIZE) {
    596 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    597 		}
    598 	}
    599 
    600 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    601 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    602 	kmem_free(pgri, sizeof(*pgri));
    603 }
    604 
    605 /*
    606  * convert va in pager window to page structure.
    607  * XXX: how expensive is this (global lock, list traversal)?
    608  */
    609 struct vm_page *
    610 uvm_pageratop(vaddr_t va)
    611 {
    612 	struct pagerinfo *pgri;
    613 	struct vm_page *pg = NULL;
    614 	int i;
    615 
    616 	mutex_enter(&pagermtx);
    617 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    618 		if (pgri->pgr_kva <= va
    619 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    620 			break;
    621 	}
    622 	if (pgri) {
    623 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    624 		pg = pgri->pgr_pgs[i];
    625 	}
    626 	mutex_exit(&pagermtx);
    627 
    628 	return pg;
    629 }
    630 
    631 /*
    632  * Called with the vm object locked.
    633  *
    634  * Put vnode object pages at the end of the access queue to indicate
    635  * they have been recently accessed and should not be immediate
    636  * candidates for pageout.  Do not do this for lookups done by
    637  * the pagedaemon to mimic pmap_kentered mappings which don't track
    638  * access information.
    639  */
    640 struct vm_page *
    641 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    642 {
    643 	struct vm_page *pg;
    644 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    645 
    646 	pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
    647 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    648 		mutex_enter(&vmpage_lruqueue_lock);
    649 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    650 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    651 		mutex_exit(&vmpage_lruqueue_lock);
    652 	}
    653 
    654 	return pg;
    655 }
    656 
    657 void
    658 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    659 {
    660 	struct vm_page *pg;
    661 	int i;
    662 
    663 	KASSERT(npgs > 0);
    664 	KASSERT(rw_write_held(pgs[0]->uobject->vmobjlock));
    665 
    666 	for (i = 0; i < npgs; i++) {
    667 		pg = pgs[i];
    668 		if (pg == NULL)
    669 			continue;
    670 
    671 		KASSERT(pg->flags & PG_BUSY);
    672 		if (pg->flags & PG_WANTED)
    673 			wakeup(pg);
    674 		if (pg->flags & PG_RELEASED)
    675 			uvm_pagefree(pg);
    676 		else
    677 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    678 	}
    679 }
    680 
    681 void
    682 uvm_estimatepageable(int *active, int *inactive)
    683 {
    684 
    685 	/* XXX: guessing game */
    686 	*active = 1024;
    687 	*inactive = 1024;
    688 }
    689 
    690 int
    691 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    692 {
    693 
    694 	panic("%s: unimplemented", __func__);
    695 }
    696 
    697 void
    698 uvm_unloan(void *v, int npages, int flags)
    699 {
    700 
    701 	panic("%s: unimplemented", __func__);
    702 }
    703 
    704 int
    705 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    706 	struct vm_page **opp)
    707 {
    708 
    709 	return EBUSY;
    710 }
    711 
    712 struct vm_page *
    713 uvm_loanbreak(struct vm_page *pg)
    714 {
    715 
    716 	panic("%s: unimplemented", __func__);
    717 }
    718 
    719 void
    720 ubc_purge(struct uvm_object *uobj)
    721 {
    722 
    723 }
    724 
    725 vaddr_t
    726 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
    727 {
    728 
    729 	return 0;
    730 }
    731 
    732 int
    733 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    734 	vm_prot_t prot, bool set_max)
    735 {
    736 
    737 	return EOPNOTSUPP;
    738 }
    739 
    740 int
    741 uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
    742     struct uvm_object *uobj, voff_t uoffset, vsize_t align,
    743     uvm_flag_t flags)
    744 {
    745 
    746 	*startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
    747 	return *startp != 0 ? 0 : ENOMEM;
    748 }
    749 
    750 void
    751 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
    752 {
    753 
    754 	rump_hyperfree((void*)start, end-start);
    755 }
    756 
    757 
    758 /*
    759  * UVM km
    760  */
    761 
    762 vaddr_t
    763 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    764 {
    765 	void *rv, *desired = NULL;
    766 	int alignbit, error;
    767 
    768 #ifdef __x86_64__
    769 	/*
    770 	 * On amd64, allocate all module memory from the lowest 2GB.
    771 	 * This is because NetBSD kernel modules are compiled
    772 	 * with -mcmodel=kernel and reserve only 4 bytes for
    773 	 * offsets.  If we load code compiled with -mcmodel=kernel
    774 	 * anywhere except the lowest or highest 2GB, it will not
    775 	 * work.  Since userspace does not have access to the highest
    776 	 * 2GB, use the lowest 2GB.
    777 	 *
    778 	 * Note: this assumes the rump kernel resides in
    779 	 * the lowest 2GB as well.
    780 	 *
    781 	 * Note2: yes, it's a quick hack, but since this the only
    782 	 * place where we care about the map we're allocating from,
    783 	 * just use a simple "if" instead of coming up with a fancy
    784 	 * generic solution.
    785 	 */
    786 	if (map == module_map) {
    787 		desired = (void *)(0x80000000 - size);
    788 	}
    789 #endif
    790 
    791 	if (__predict_false(map == module_map)) {
    792 		alignbit = 0;
    793 		if (align) {
    794 			alignbit = ffs(align)-1;
    795 		}
    796 		error = rumpuser_anonmmap(desired, size, alignbit,
    797 		    flags & UVM_KMF_EXEC, &rv);
    798 	} else {
    799 		error = rumpuser_malloc(size, align, &rv);
    800 	}
    801 
    802 	if (error) {
    803 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    804 			return 0;
    805 		else
    806 			panic("uvm_km_alloc failed");
    807 	}
    808 
    809 	if (flags & UVM_KMF_ZERO)
    810 		memset(rv, 0, size);
    811 
    812 	return (vaddr_t)rv;
    813 }
    814 
    815 void
    816 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    817 {
    818 
    819 	if (__predict_false(map == module_map))
    820 		rumpuser_unmap((void *)vaddr, size);
    821 	else
    822 		rumpuser_free((void *)vaddr, size);
    823 }
    824 
    825 int
    826 uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
    827 {
    828 	return 0;
    829 }
    830 
    831 struct vm_map *
    832 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    833 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    834 {
    835 
    836 	return (struct vm_map *)417416;
    837 }
    838 
    839 int
    840 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    841     vmem_addr_t *addr)
    842 {
    843 	vaddr_t va;
    844 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    845 	    (flags & VM_SLEEP), "kmalloc");
    846 
    847 	if (va) {
    848 		*addr = va;
    849 		return 0;
    850 	} else {
    851 		return ENOMEM;
    852 	}
    853 }
    854 
    855 void
    856 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    857 {
    858 
    859 	rump_hyperfree((void *)addr, size);
    860 }
    861 
    862 /*
    863  * VM space locking routines.  We don't really have to do anything,
    864  * since the pages are always "wired" (both local and remote processes).
    865  */
    866 int
    867 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    868 {
    869 
    870 	return 0;
    871 }
    872 
    873 void
    874 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    875 {
    876 
    877 }
    878 
    879 /*
    880  * For the local case the buffer mappers don't need to do anything.
    881  * For the remote case we need to reserve space and copy data in or
    882  * out, depending on B_READ/B_WRITE.
    883  */
    884 int
    885 vmapbuf(struct buf *bp, vsize_t len)
    886 {
    887 	int error = 0;
    888 
    889 	bp->b_saveaddr = bp->b_data;
    890 
    891 	/* remote case */
    892 	if (!RUMP_LOCALPROC_P(curproc)) {
    893 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    894 		if (BUF_ISWRITE(bp)) {
    895 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    896 			if (error) {
    897 				rump_hyperfree(bp->b_data, len);
    898 				bp->b_data = bp->b_saveaddr;
    899 				bp->b_saveaddr = 0;
    900 			}
    901 		}
    902 	}
    903 
    904 	return error;
    905 }
    906 
    907 void
    908 vunmapbuf(struct buf *bp, vsize_t len)
    909 {
    910 
    911 	/* remote case */
    912 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    913 		if (BUF_ISREAD(bp)) {
    914 			bp->b_error = copyout_proc(bp->b_proc,
    915 			    bp->b_data, bp->b_saveaddr, len);
    916 		}
    917 		rump_hyperfree(bp->b_data, len);
    918 	}
    919 
    920 	bp->b_data = bp->b_saveaddr;
    921 	bp->b_saveaddr = 0;
    922 }
    923 
    924 void
    925 uvmspace_addref(struct vmspace *vm)
    926 {
    927 
    928 	/*
    929 	 * No dynamically allocated vmspaces exist.
    930 	 */
    931 }
    932 
    933 void
    934 uvmspace_free(struct vmspace *vm)
    935 {
    936 
    937 	/* nothing for now */
    938 }
    939 
    940 /*
    941  * page life cycle stuff.  it really doesn't exist, so just stubs.
    942  */
    943 
    944 void
    945 uvm_pageactivate(struct vm_page *pg)
    946 {
    947 
    948 	/* nada */
    949 }
    950 
    951 void
    952 uvm_pagedeactivate(struct vm_page *pg)
    953 {
    954 
    955 	/* nada */
    956 }
    957 
    958 void
    959 uvm_pagedequeue(struct vm_page *pg)
    960 {
    961 
    962 	/* nada*/
    963 }
    964 
    965 void
    966 uvm_pageenqueue(struct vm_page *pg)
    967 {
    968 
    969 	/* nada */
    970 }
    971 
    972 void
    973 uvmpdpol_anfree(struct vm_anon *an)
    974 {
    975 
    976 	/* nada */
    977 }
    978 
    979 /*
    980  * Physical address accessors.
    981  */
    982 
    983 struct vm_page *
    984 uvm_phys_to_vm_page(paddr_t pa)
    985 {
    986 
    987 	return NULL;
    988 }
    989 
    990 paddr_t
    991 uvm_vm_page_to_phys(const struct vm_page *pg)
    992 {
    993 
    994 	return 0;
    995 }
    996 
    997 vaddr_t
    998 uvm_uarea_alloc(void)
    999 {
   1000 
   1001 	/* non-zero */
   1002 	return (vaddr_t)11;
   1003 }
   1004 
   1005 void
   1006 uvm_uarea_free(vaddr_t uarea)
   1007 {
   1008 
   1009 	/* nata, so creamy */
   1010 }
   1011 
   1012 /*
   1013  * Routines related to the Page Baroness.
   1014  */
   1015 
   1016 void
   1017 uvm_wait(const char *msg)
   1018 {
   1019 
   1020 	if (__predict_false(rump_threads == 0))
   1021 		panic("pagedaemon missing (RUMP_THREADS = 0)");
   1022 
   1023 	if (curlwp == uvm.pagedaemon_lwp) {
   1024 		/* is it possible for us to later get memory? */
   1025 		if (!uvmexp.paging)
   1026 			panic("pagedaemon out of memory");
   1027 	}
   1028 
   1029 	mutex_enter(&pdaemonmtx);
   1030 	pdaemon_waiters++;
   1031 	cv_signal(&pdaemoncv);
   1032 	cv_wait(&oomwait, &pdaemonmtx);
   1033 	mutex_exit(&pdaemonmtx);
   1034 }
   1035 
   1036 void
   1037 uvm_pageout_start(int npages)
   1038 {
   1039 
   1040 	mutex_enter(&pdaemonmtx);
   1041 	uvmexp.paging += npages;
   1042 	mutex_exit(&pdaemonmtx);
   1043 }
   1044 
   1045 void
   1046 uvm_pageout_done(int npages)
   1047 {
   1048 
   1049 	if (!npages)
   1050 		return;
   1051 
   1052 	mutex_enter(&pdaemonmtx);
   1053 	KASSERT(uvmexp.paging >= npages);
   1054 	uvmexp.paging -= npages;
   1055 
   1056 	if (pdaemon_waiters) {
   1057 		pdaemon_waiters = 0;
   1058 		cv_broadcast(&oomwait);
   1059 	}
   1060 	mutex_exit(&pdaemonmtx);
   1061 }
   1062 
   1063 static bool
   1064 processpage(struct vm_page *pg)
   1065 {
   1066 	struct uvm_object *uobj;
   1067 
   1068 	uobj = pg->uobject;
   1069 	if (rw_tryenter(uobj->vmobjlock, RW_WRITER)) {
   1070 		if ((pg->flags & PG_BUSY) == 0) {
   1071 			mutex_exit(&vmpage_lruqueue_lock);
   1072 			uobj->pgops->pgo_put(uobj, pg->offset,
   1073 			    pg->offset + PAGE_SIZE,
   1074 			    PGO_CLEANIT|PGO_FREE);
   1075 			KASSERT(!rw_write_held(uobj->vmobjlock));
   1076 			return true;
   1077 		} else {
   1078 			rw_exit(uobj->vmobjlock);
   1079 		}
   1080 	}
   1081 
   1082 	return false;
   1083 }
   1084 
   1085 /*
   1086  * The Diabolical pageDaemon Director (DDD).
   1087  *
   1088  * This routine can always use better heuristics.
   1089  */
   1090 void
   1091 uvm_pageout(void *arg)
   1092 {
   1093 	struct vm_page *pg;
   1094 	struct pool *pp, *pp_first;
   1095 	int cleaned, skip, skipped;
   1096 	bool succ;
   1097 
   1098 	mutex_enter(&pdaemonmtx);
   1099 	for (;;) {
   1100 		if (!NEED_PAGEDAEMON()) {
   1101 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1102 		}
   1103 
   1104 		if (pdaemon_waiters) {
   1105 			pdaemon_waiters = 0;
   1106 			cv_broadcast(&oomwait);
   1107 		}
   1108 
   1109 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1110 		uvmexp.pdwoke++;
   1111 
   1112 		/* tell the world that we are hungry */
   1113 		kernel_map->flags |= VM_MAP_WANTVA;
   1114 		mutex_exit(&pdaemonmtx);
   1115 
   1116 		/*
   1117 		 * step one: reclaim the page cache.  this should give
   1118 		 * us the biggest earnings since whole pages are released
   1119 		 * into backing memory.
   1120 		 */
   1121 		pool_cache_reclaim(&pagecache);
   1122 		if (!NEED_PAGEDAEMON()) {
   1123 			mutex_enter(&pdaemonmtx);
   1124 			continue;
   1125 		}
   1126 
   1127 		/*
   1128 		 * Ok, so that didn't help.  Next, try to hunt memory
   1129 		 * by pushing out vnode pages.  The pages might contain
   1130 		 * useful cached data, but we need the memory.
   1131 		 */
   1132 		cleaned = 0;
   1133 		skip = 0;
   1134  again:
   1135 		mutex_enter(&vmpage_lruqueue_lock);
   1136 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1137 			skipped = 0;
   1138 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1139 
   1140 				/*
   1141 				 * skip over pages we _might_ have tried
   1142 				 * to handle earlier.  they might not be
   1143 				 * exactly the same ones, but I'm not too
   1144 				 * concerned.
   1145 				 */
   1146 				while (skipped++ < skip)
   1147 					continue;
   1148 
   1149 				if (processpage(pg)) {
   1150 					cleaned++;
   1151 					goto again;
   1152 				}
   1153 
   1154 				skip++;
   1155 			}
   1156 			break;
   1157 		}
   1158 		mutex_exit(&vmpage_lruqueue_lock);
   1159 
   1160 		/*
   1161 		 * Ok, someone is running with an object lock held.
   1162 		 * We want to yield the host CPU to make sure the
   1163 		 * thread is not parked on the host.  nanosleep
   1164 		 * for the smallest possible time and hope we're back in
   1165 		 * the game soon.
   1166 		 */
   1167 		if (cleaned == 0) {
   1168 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
   1169 
   1170 			skip = 0;
   1171 
   1172 			/* and here we go again */
   1173 			goto again;
   1174 		}
   1175 
   1176 		/*
   1177 		 * And of course we need to reclaim the page cache
   1178 		 * again to actually release memory.
   1179 		 */
   1180 		pool_cache_reclaim(&pagecache);
   1181 		if (!NEED_PAGEDAEMON()) {
   1182 			mutex_enter(&pdaemonmtx);
   1183 			continue;
   1184 		}
   1185 
   1186 		/*
   1187 		 * And then drain the pools.  Wipe them out ... all of them.
   1188 		 */
   1189 		for (pp_first = NULL;;) {
   1190 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1191 
   1192 			succ = pool_drain(&pp);
   1193 			if (succ || pp == pp_first)
   1194 				break;
   1195 
   1196 			if (pp_first == NULL)
   1197 				pp_first = pp;
   1198 		}
   1199 
   1200 		/*
   1201 		 * Need to use PYEC on our bag of tricks.
   1202 		 * Unfortunately, the wife just borrowed it.
   1203 		 */
   1204 
   1205 		mutex_enter(&pdaemonmtx);
   1206 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1207 		    uvmexp.paging == 0) {
   1208 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1209 			    "memory ... sleeping (deadlock?)\n");
   1210 			kpause("pddlk", false, hz, &pdaemonmtx);
   1211 		}
   1212 	}
   1213 
   1214 	panic("you can swap out any time you like, but you can never leave");
   1215 }
   1216 
   1217 void
   1218 uvm_kick_pdaemon()
   1219 {
   1220 
   1221 	/*
   1222 	 * Wake up the diabolical pagedaemon director if we are over
   1223 	 * 90% of the memory limit.  This is a complete and utter
   1224 	 * stetson-harrison decision which you are allowed to finetune.
   1225 	 * Don't bother locking.  If we have some unflushed caches,
   1226 	 * other waker-uppers will deal with the issue.
   1227 	 */
   1228 	if (NEED_PAGEDAEMON()) {
   1229 		cv_signal(&pdaemoncv);
   1230 	}
   1231 }
   1232 
   1233 void *
   1234 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1235 {
   1236 	const unsigned long thelimit =
   1237 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1238 	unsigned long newmem;
   1239 	void *rv;
   1240 	int error;
   1241 
   1242 	uvm_kick_pdaemon(); /* ouch */
   1243 
   1244 	/* first we must be within the limit */
   1245  limitagain:
   1246 	if (thelimit != RUMPMEM_UNLIMITED) {
   1247 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1248 		if (newmem > thelimit) {
   1249 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1250 			if (!waitok) {
   1251 				return NULL;
   1252 			}
   1253 			uvm_wait(wmsg);
   1254 			goto limitagain;
   1255 		}
   1256 	}
   1257 
   1258 	/* second, we must get something from the backend */
   1259  again:
   1260 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1261 	if (__predict_false(error && waitok)) {
   1262 		uvm_wait(wmsg);
   1263 		goto again;
   1264 	}
   1265 
   1266 	return rv;
   1267 }
   1268 
   1269 void
   1270 rump_hyperfree(void *what, size_t size)
   1271 {
   1272 
   1273 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1274 		atomic_add_long(&curphysmem, -size);
   1275 	}
   1276 	rumpuser_free(what, size);
   1277 }
   1278