Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.187
      1 /*	$NetBSD: vm.c,v 1.187 2020/03/17 18:31:38 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.187 2020/03/17 18:31:38 ad Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/vmem.h>
     52 #include <sys/mman.h>
     53 #include <sys/null.h>
     54 #include <sys/vnode.h>
     55 #include <sys/radixtree.h>
     56 
     57 #include <machine/pmap.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_ddb.h>
     61 #include <uvm/uvm_pdpolicy.h>
     62 #include <uvm/uvm_prot.h>
     63 #include <uvm/uvm_readahead.h>
     64 #include <uvm/uvm_device.h>
     65 
     66 #include <rump-sys/kern.h>
     67 #include <rump-sys/vfs.h>
     68 
     69 #include <rump/rumpuser.h>
     70 
     71 kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
     72 kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
     73 kmutex_t uvm_swap_data_lock;
     74 
     75 struct uvmexp uvmexp;
     76 struct uvm uvm;
     77 
     78 #ifdef __uvmexp_pagesize
     79 const int * const uvmexp_pagesize = &uvmexp.pagesize;
     80 const int * const uvmexp_pagemask = &uvmexp.pagemask;
     81 const int * const uvmexp_pageshift = &uvmexp.pageshift;
     82 #endif
     83 
     84 static struct vm_map kernel_map_store;
     85 struct vm_map *kernel_map = &kernel_map_store;
     86 
     87 static struct vm_map module_map_store;
     88 extern struct vm_map *module_map;
     89 
     90 static struct pmap pmap_kernel;
     91 struct pmap rump_pmap_local;
     92 struct pmap *const kernel_pmap_ptr = &pmap_kernel;
     93 
     94 vmem_t *kmem_arena;
     95 vmem_t *kmem_va_arena;
     96 
     97 static unsigned int pdaemon_waiters;
     98 static kmutex_t pdaemonmtx;
     99 static kcondvar_t pdaemoncv, oomwait;
    100 
    101 /* all local non-proc0 processes share this vmspace */
    102 struct vmspace *rump_vmspace_local;
    103 
    104 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
    105 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
    106 static unsigned long curphysmem;
    107 static unsigned long dddlim;		/* 90% of memory limit used */
    108 #define NEED_PAGEDAEMON() \
    109     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    110 #define PDRESERVE (2*MAXPHYS)
    111 
    112 /*
    113  * Try to free two pages worth of pages from objects.
    114  * If this succesfully frees a full page cache page, we'll
    115  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    116  */
    117 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    118 
    119 /*
    120  * Keep a list of least recently used pages.  Since the only way a
    121  * rump kernel can "access" a page is via lookup, we put the page
    122  * at the back of queue every time a lookup for it is done.  If the
    123  * page is in front of this global queue and we're short of memory,
    124  * it's a candidate for pageout.
    125  */
    126 static struct pglist vmpage_lruqueue;
    127 static unsigned vmpage_onqueue;
    128 
    129 /*
    130  * vm pages
    131  */
    132 
    133 static int
    134 pgctor(void *arg, void *obj, int flags)
    135 {
    136 	struct vm_page *pg = obj;
    137 
    138 	memset(pg, 0, sizeof(*pg));
    139 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    140 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    141 	return pg->uanon == NULL;
    142 }
    143 
    144 static void
    145 pgdtor(void *arg, void *obj)
    146 {
    147 	struct vm_page *pg = obj;
    148 
    149 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    150 }
    151 
    152 static struct pool_cache pagecache;
    153 
    154 /*
    155  * Called with the object locked.  We don't support anons.
    156  */
    157 struct vm_page *
    158 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    159 	int flags, int strat, int free_list)
    160 {
    161 	struct vm_page *pg;
    162 
    163 	KASSERT(uobj && rw_write_held(uobj->vmobjlock));
    164 	KASSERT(anon == NULL);
    165 
    166 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    167 	if (__predict_false(pg == NULL)) {
    168 		return NULL;
    169 	}
    170 	mutex_init(&pg->interlock, MUTEX_DEFAULT, IPL_NONE);
    171 
    172 	pg->offset = off;
    173 	pg->uobject = uobj;
    174 
    175 	if (UVM_OBJ_IS_VNODE(uobj) && uobj->uo_npages == 0) {
    176 		struct vnode *vp = (struct vnode *)uobj;
    177 		mutex_enter(vp->v_interlock);
    178 		vp->v_iflag |= VI_PAGES;
    179 		mutex_exit(vp->v_interlock);
    180 	}
    181 
    182 	if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
    183 	    pg) != 0) {
    184 		pool_cache_put(&pagecache, pg);
    185 		return NULL;
    186 	}
    187 	uobj->uo_npages++;
    188 
    189 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    190 	if (flags & UVM_PGA_ZERO) {
    191 		uvm_pagezero(pg);
    192 	}
    193 
    194 	/*
    195 	 * Don't put anons on the LRU page queue.  We can't flush them
    196 	 * (there's no concept of swap in a rump kernel), so no reason
    197 	 * to bother with them.
    198 	 */
    199 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    200 		atomic_inc_uint(&vmpage_onqueue);
    201 		mutex_enter(&vmpage_lruqueue_lock);
    202 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    203 		mutex_exit(&vmpage_lruqueue_lock);
    204 	}
    205 
    206 	return pg;
    207 }
    208 
    209 /*
    210  * Release a page.
    211  *
    212  * Called with the vm object locked.
    213  */
    214 void
    215 uvm_pagefree(struct vm_page *pg)
    216 {
    217 	struct uvm_object *uobj = pg->uobject;
    218 	struct vm_page *pg2 __unused;
    219 
    220 	KASSERT(rw_write_held(uobj->vmobjlock));
    221 
    222 	mutex_enter(&pg->interlock);
    223 	if (pg->pqflags & PQ_WANTED) {
    224 		pg->pqflags &= ~PQ_WANTED;
    225 		wakeup(pg);
    226 	}
    227 	mutex_exit(&pg->interlock);
    228 
    229 	uobj->uo_npages--;
    230 	pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    231 	KASSERT(pg == pg2);
    232 
    233 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    234 		mutex_enter(&vmpage_lruqueue_lock);
    235 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    236 		mutex_exit(&vmpage_lruqueue_lock);
    237 		atomic_dec_uint(&vmpage_onqueue);
    238 	}
    239 
    240 	if (UVM_OBJ_IS_VNODE(uobj) && uobj->uo_npages == 0) {
    241 		struct vnode *vp = (struct vnode *)uobj;
    242 		mutex_enter(vp->v_interlock);
    243 		vp->v_iflag &= ~VI_PAGES;
    244 		mutex_exit(vp->v_interlock);
    245 	}
    246 
    247 	mutex_destroy(&pg->interlock);
    248 	pool_cache_put(&pagecache, pg);
    249 }
    250 
    251 void
    252 uvm_pagezero(struct vm_page *pg)
    253 {
    254 
    255 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    256 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    257 }
    258 
    259 /*
    260  * uvm_page_owner_locked_p: return true if object associated with page is
    261  * locked.  this is a weak check for runtime assertions only.
    262  */
    263 
    264 bool
    265 uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
    266 {
    267 
    268 	if (exclusive)
    269 		return rw_write_held(pg->uobject->vmobjlock);
    270 	else
    271 		return rw_lock_held(pg->uobject->vmobjlock);
    272 }
    273 
    274 /*
    275  * Misc routines
    276  */
    277 
    278 static kmutex_t pagermtx;
    279 
    280 void
    281 uvm_init(void)
    282 {
    283 	char buf[64];
    284 
    285 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    286 		unsigned long tmp;
    287 		char *ep;
    288 		int mult;
    289 
    290 		tmp = strtoul(buf, &ep, 10);
    291 		if (strlen(ep) > 1)
    292 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    293 
    294 		/* mini-dehumanize-number */
    295 		mult = 1;
    296 		switch (*ep) {
    297 		case 'k':
    298 			mult = 1024;
    299 			break;
    300 		case 'm':
    301 			mult = 1024*1024;
    302 			break;
    303 		case 'g':
    304 			mult = 1024*1024*1024;
    305 			break;
    306 		case 0:
    307 			break;
    308 		default:
    309 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    310 		}
    311 		rump_physmemlimit = tmp * mult;
    312 
    313 		if (rump_physmemlimit / mult != tmp)
    314 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    315 
    316 		/* reserve some memory for the pager */
    317 		if (rump_physmemlimit <= PDRESERVE)
    318 			panic("uvm_init: system reserves %d bytes of mem, "
    319 			    "only %lu bytes given",
    320 			    PDRESERVE, rump_physmemlimit);
    321 		pdlimit = rump_physmemlimit;
    322 		rump_physmemlimit -= PDRESERVE;
    323 
    324 		if (pdlimit < 1024*1024)
    325 			printf("uvm_init: WARNING: <1MB RAM limit, "
    326 			    "hope you know what you're doing\n");
    327 
    328 #define HUMANIZE_BYTES 9
    329 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    330 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    331 #undef HUMANIZE_BYTES
    332 		dddlim = 9 * (rump_physmemlimit / 10);
    333 	} else {
    334 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    335 	}
    336 	aprint_verbose("total memory = %s\n", buf);
    337 
    338 	TAILQ_INIT(&vmpage_lruqueue);
    339 
    340 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
    341 		uvmexp.npages = physmem;
    342 	} else {
    343 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
    344 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
    345 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
    346 	}
    347 	/*
    348 	 * uvmexp.free is not used internally or updated.  The reason is
    349 	 * that the memory hypercall allocator is allowed to allocate
    350 	 * non-page sized chunks.  We use a byte count in curphysmem
    351 	 * instead.
    352 	 */
    353 	uvmexp.free = uvmexp.npages;
    354 
    355 #ifndef __uvmexp_pagesize
    356 	uvmexp.pagesize = PAGE_SIZE;
    357 	uvmexp.pagemask = PAGE_MASK;
    358 	uvmexp.pageshift = PAGE_SHIFT;
    359 #else
    360 #define FAKE_PAGE_SHIFT 12
    361 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    362 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    363 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    364 #undef FAKE_PAGE_SHIFT
    365 #endif
    366 
    367 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    368 	mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
    369 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    370 
    371 	/* just to appease linkage */
    372 	mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
    373 
    374 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    375 	cv_init(&pdaemoncv, "pdaemon");
    376 	cv_init(&oomwait, "oomwait");
    377 
    378 	module_map = &module_map_store;
    379 
    380 	kernel_map->pmap = pmap_kernel();
    381 
    382 	pool_subsystem_init();
    383 
    384 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    385 	    NULL, NULL, NULL,
    386 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    387 
    388 	vmem_subsystem_init(kmem_arena);
    389 
    390 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    391 	    vmem_alloc, vmem_free, kmem_arena,
    392 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    393 
    394 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    395 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    396 
    397 	radix_tree_init();
    398 
    399 	/* create vmspace used by local clients */
    400 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
    401 	uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
    402 }
    403 
    404 void
    405 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    406     bool topdown)
    407 {
    408 
    409 	vm->vm_map.pmap = pmap;
    410 	vm->vm_refcnt = 1;
    411 }
    412 
    413 int
    414 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
    415     bool new_pageable, int lockflags)
    416 {
    417 	return 0;
    418 }
    419 
    420 void
    421 uvm_pagewire(struct vm_page *pg)
    422 {
    423 
    424 	/* nada */
    425 }
    426 
    427 void
    428 uvm_pageunwire(struct vm_page *pg)
    429 {
    430 
    431 	/* nada */
    432 }
    433 
    434 int
    435 uvm_availmem(void)
    436 {
    437 
    438 	return uvmexp.free;
    439 }
    440 
    441 void
    442 uvm_pagelock(struct vm_page *pg)
    443 {
    444 
    445 	mutex_enter(&pg->interlock);
    446 }
    447 
    448 void
    449 uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
    450 {
    451 
    452 	if (pg1 < pg2) {
    453 		mutex_enter(&pg1->interlock);
    454 		mutex_enter(&pg2->interlock);
    455 	} else {
    456 		mutex_enter(&pg2->interlock);
    457 		mutex_enter(&pg1->interlock);
    458 	}
    459 }
    460 
    461 void
    462 uvm_pageunlock(struct vm_page *pg)
    463 {
    464 
    465 	mutex_exit(&pg->interlock);
    466 }
    467 
    468 void
    469 uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
    470 {
    471 
    472 	mutex_exit(&pg1->interlock);
    473 	mutex_exit(&pg2->interlock);
    474 }
    475 
    476 /* where's your schmonz now? */
    477 #define PUNLIMIT(a)	\
    478 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    479 void
    480 uvm_init_limits(struct proc *p)
    481 {
    482 
    483 #ifndef DFLSSIZ
    484 #define DFLSSIZ (16*1024*1024)
    485 #endif
    486 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    487 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    488 	PUNLIMIT(RLIMIT_DATA);
    489 	PUNLIMIT(RLIMIT_RSS);
    490 	PUNLIMIT(RLIMIT_AS);
    491 	/* nice, cascade */
    492 }
    493 #undef PUNLIMIT
    494 
    495 /*
    496  * This satisfies the "disgusting mmap hack" used by proplib.
    497  */
    498 int
    499 uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
    500 {
    501 	int error;
    502 
    503 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    504 	if (*addrp != NULL)
    505 		panic("uvm_mmap() variant unsupported");
    506 
    507 	if (RUMP_LOCALPROC_P(curproc)) {
    508 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
    509 	} else {
    510 		error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
    511 		    size, addrp);
    512 	}
    513 	return error;
    514 }
    515 
    516 /*
    517  * Stubs for things referenced from vfs_vnode.c but not used.
    518  */
    519 const dev_t zerodev;
    520 
    521 struct uvm_object *
    522 udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
    523 {
    524 	return NULL;
    525 }
    526 
    527 struct pagerinfo {
    528 	vaddr_t pgr_kva;
    529 	int pgr_npages;
    530 	struct vm_page **pgr_pgs;
    531 	bool pgr_read;
    532 
    533 	LIST_ENTRY(pagerinfo) pgr_entries;
    534 };
    535 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    536 
    537 /*
    538  * Pager "map" in routine.  Instead of mapping, we allocate memory
    539  * and copy page contents there.  The reason for copying instead of
    540  * mapping is simple: we do not assume we are running on virtual
    541  * memory.  Even if we could emulate virtual memory in some envs
    542  * such as userspace, copying is much faster than trying to awkardly
    543  * cope with remapping (see "Design and Implementation" pp.95-98).
    544  * The downside of the approach is that the pager requires MAXPHYS
    545  * free memory to perform paging, but short of virtual memory or
    546  * making the pager do I/O in page-sized chunks we cannot do much
    547  * about that.
    548  */
    549 vaddr_t
    550 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    551 {
    552 	struct pagerinfo *pgri;
    553 	vaddr_t curkva;
    554 	int i;
    555 
    556 	/* allocate structures */
    557 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    558 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    559 	pgri->pgr_npages = npages;
    560 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    561 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    562 
    563 	/* copy contents to "mapped" memory */
    564 	for (i = 0, curkva = pgri->pgr_kva;
    565 	    i < npages;
    566 	    i++, curkva += PAGE_SIZE) {
    567 		/*
    568 		 * We need to copy the previous contents of the pages to
    569 		 * the window even if we are reading from the
    570 		 * device, since the device might not fill the contents of
    571 		 * the full mapped range and we will end up corrupting
    572 		 * data when we unmap the window.
    573 		 */
    574 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    575 		pgri->pgr_pgs[i] = pgs[i];
    576 	}
    577 
    578 	mutex_enter(&pagermtx);
    579 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    580 	mutex_exit(&pagermtx);
    581 
    582 	return pgri->pgr_kva;
    583 }
    584 
    585 /*
    586  * map out the pager window.  return contents from VA to page storage
    587  * and free structures.
    588  *
    589  * Note: does not currently support partial frees
    590  */
    591 void
    592 uvm_pagermapout(vaddr_t kva, int npages)
    593 {
    594 	struct pagerinfo *pgri;
    595 	vaddr_t curkva;
    596 	int i;
    597 
    598 	mutex_enter(&pagermtx);
    599 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    600 		if (pgri->pgr_kva == kva)
    601 			break;
    602 	}
    603 	KASSERT(pgri);
    604 	if (pgri->pgr_npages != npages)
    605 		panic("uvm_pagermapout: partial unmapping not supported");
    606 	LIST_REMOVE(pgri, pgr_entries);
    607 	mutex_exit(&pagermtx);
    608 
    609 	if (pgri->pgr_read) {
    610 		for (i = 0, curkva = pgri->pgr_kva;
    611 		    i < pgri->pgr_npages;
    612 		    i++, curkva += PAGE_SIZE) {
    613 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    614 		}
    615 	}
    616 
    617 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    618 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    619 	kmem_free(pgri, sizeof(*pgri));
    620 }
    621 
    622 /*
    623  * convert va in pager window to page structure.
    624  * XXX: how expensive is this (global lock, list traversal)?
    625  */
    626 struct vm_page *
    627 uvm_pageratop(vaddr_t va)
    628 {
    629 	struct pagerinfo *pgri;
    630 	struct vm_page *pg = NULL;
    631 	int i;
    632 
    633 	mutex_enter(&pagermtx);
    634 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    635 		if (pgri->pgr_kva <= va
    636 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    637 			break;
    638 	}
    639 	if (pgri) {
    640 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    641 		pg = pgri->pgr_pgs[i];
    642 	}
    643 	mutex_exit(&pagermtx);
    644 
    645 	return pg;
    646 }
    647 
    648 /*
    649  * Called with the vm object locked.
    650  *
    651  * Put vnode object pages at the end of the access queue to indicate
    652  * they have been recently accessed and should not be immediate
    653  * candidates for pageout.  Do not do this for lookups done by
    654  * the pagedaemon to mimic pmap_kentered mappings which don't track
    655  * access information.
    656  */
    657 struct vm_page *
    658 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    659 {
    660 	struct vm_page *pg;
    661 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    662 
    663 	pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
    664 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    665 		mutex_enter(&vmpage_lruqueue_lock);
    666 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    667 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    668 		mutex_exit(&vmpage_lruqueue_lock);
    669 	}
    670 
    671 	return pg;
    672 }
    673 
    674 void
    675 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    676 {
    677 	struct vm_page *pg;
    678 	int i;
    679 
    680 	KASSERT(npgs > 0);
    681 	KASSERT(rw_write_held(pgs[0]->uobject->vmobjlock));
    682 
    683 	for (i = 0; i < npgs; i++) {
    684 		pg = pgs[i];
    685 		if (pg == NULL)
    686 			continue;
    687 
    688 		KASSERT(pg->flags & PG_BUSY);
    689 		if (pg->flags & PG_RELEASED) {
    690 			uvm_pagefree(pg);
    691 		} else {
    692 			pg->flags &= ~PG_BUSY;
    693 			uvm_pagelock(pg);
    694 			uvm_pagewakeup(pg);
    695 			uvm_pageunlock(pg);
    696 		}
    697 	}
    698 }
    699 
    700 void
    701 uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
    702 {
    703 
    704 	KASSERT(rw_lock_held(lock));
    705 	KASSERT((pg->flags & PG_BUSY) != 0);
    706 
    707 	mutex_enter(&pg->interlock);
    708 	pg->pqflags |= PQ_WANTED;
    709 	rw_exit(lock);
    710 	UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
    711 }
    712 
    713 void
    714 uvm_pagewakeup(struct vm_page *pg)
    715 {
    716 
    717 	KASSERT(mutex_owned(&pg->interlock));
    718 
    719 	if ((pg->pqflags & PQ_WANTED) != 0) {
    720 		pg->pqflags &= ~PQ_WANTED;
    721 		wakeup(pg);
    722 	}
    723 }
    724 
    725 void
    726 uvm_estimatepageable(int *active, int *inactive)
    727 {
    728 
    729 	/* XXX: guessing game */
    730 	*active = 1024;
    731 	*inactive = 1024;
    732 }
    733 
    734 int
    735 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    736 {
    737 
    738 	panic("%s: unimplemented", __func__);
    739 }
    740 
    741 void
    742 uvm_unloan(void *v, int npages, int flags)
    743 {
    744 
    745 	panic("%s: unimplemented", __func__);
    746 }
    747 
    748 int
    749 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    750 	struct vm_page **opp)
    751 {
    752 
    753 	return EBUSY;
    754 }
    755 
    756 struct vm_page *
    757 uvm_loanbreak(struct vm_page *pg)
    758 {
    759 
    760 	panic("%s: unimplemented", __func__);
    761 }
    762 
    763 void
    764 ubc_purge(struct uvm_object *uobj)
    765 {
    766 
    767 }
    768 
    769 vaddr_t
    770 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
    771 {
    772 
    773 	return 0;
    774 }
    775 
    776 int
    777 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    778 	vm_prot_t prot, bool set_max)
    779 {
    780 
    781 	return EOPNOTSUPP;
    782 }
    783 
    784 int
    785 uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
    786     struct uvm_object *uobj, voff_t uoffset, vsize_t align,
    787     uvm_flag_t flags)
    788 {
    789 
    790 	*startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
    791 	return *startp != 0 ? 0 : ENOMEM;
    792 }
    793 
    794 void
    795 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
    796 {
    797 
    798 	rump_hyperfree((void*)start, end-start);
    799 }
    800 
    801 
    802 /*
    803  * UVM km
    804  */
    805 
    806 vaddr_t
    807 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    808 {
    809 	void *rv, *desired = NULL;
    810 	int alignbit, error;
    811 
    812 #ifdef __x86_64__
    813 	/*
    814 	 * On amd64, allocate all module memory from the lowest 2GB.
    815 	 * This is because NetBSD kernel modules are compiled
    816 	 * with -mcmodel=kernel and reserve only 4 bytes for
    817 	 * offsets.  If we load code compiled with -mcmodel=kernel
    818 	 * anywhere except the lowest or highest 2GB, it will not
    819 	 * work.  Since userspace does not have access to the highest
    820 	 * 2GB, use the lowest 2GB.
    821 	 *
    822 	 * Note: this assumes the rump kernel resides in
    823 	 * the lowest 2GB as well.
    824 	 *
    825 	 * Note2: yes, it's a quick hack, but since this the only
    826 	 * place where we care about the map we're allocating from,
    827 	 * just use a simple "if" instead of coming up with a fancy
    828 	 * generic solution.
    829 	 */
    830 	if (map == module_map) {
    831 		desired = (void *)(0x80000000 - size);
    832 	}
    833 #endif
    834 
    835 	if (__predict_false(map == module_map)) {
    836 		alignbit = 0;
    837 		if (align) {
    838 			alignbit = ffs(align)-1;
    839 		}
    840 		error = rumpuser_anonmmap(desired, size, alignbit,
    841 		    flags & UVM_KMF_EXEC, &rv);
    842 	} else {
    843 		error = rumpuser_malloc(size, align, &rv);
    844 	}
    845 
    846 	if (error) {
    847 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    848 			return 0;
    849 		else
    850 			panic("uvm_km_alloc failed");
    851 	}
    852 
    853 	if (flags & UVM_KMF_ZERO)
    854 		memset(rv, 0, size);
    855 
    856 	return (vaddr_t)rv;
    857 }
    858 
    859 void
    860 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    861 {
    862 
    863 	if (__predict_false(map == module_map))
    864 		rumpuser_unmap((void *)vaddr, size);
    865 	else
    866 		rumpuser_free((void *)vaddr, size);
    867 }
    868 
    869 int
    870 uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
    871 {
    872 	return 0;
    873 }
    874 
    875 struct vm_map *
    876 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    877 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    878 {
    879 
    880 	return (struct vm_map *)417416;
    881 }
    882 
    883 int
    884 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    885     vmem_addr_t *addr)
    886 {
    887 	vaddr_t va;
    888 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    889 	    (flags & VM_SLEEP), "kmalloc");
    890 
    891 	if (va) {
    892 		*addr = va;
    893 		return 0;
    894 	} else {
    895 		return ENOMEM;
    896 	}
    897 }
    898 
    899 void
    900 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    901 {
    902 
    903 	rump_hyperfree((void *)addr, size);
    904 }
    905 
    906 /*
    907  * VM space locking routines.  We don't really have to do anything,
    908  * since the pages are always "wired" (both local and remote processes).
    909  */
    910 int
    911 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    912 {
    913 
    914 	return 0;
    915 }
    916 
    917 void
    918 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    919 {
    920 
    921 }
    922 
    923 /*
    924  * For the local case the buffer mappers don't need to do anything.
    925  * For the remote case we need to reserve space and copy data in or
    926  * out, depending on B_READ/B_WRITE.
    927  */
    928 int
    929 vmapbuf(struct buf *bp, vsize_t len)
    930 {
    931 	int error = 0;
    932 
    933 	bp->b_saveaddr = bp->b_data;
    934 
    935 	/* remote case */
    936 	if (!RUMP_LOCALPROC_P(curproc)) {
    937 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    938 		if (BUF_ISWRITE(bp)) {
    939 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    940 			if (error) {
    941 				rump_hyperfree(bp->b_data, len);
    942 				bp->b_data = bp->b_saveaddr;
    943 				bp->b_saveaddr = 0;
    944 			}
    945 		}
    946 	}
    947 
    948 	return error;
    949 }
    950 
    951 void
    952 vunmapbuf(struct buf *bp, vsize_t len)
    953 {
    954 
    955 	/* remote case */
    956 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    957 		if (BUF_ISREAD(bp)) {
    958 			bp->b_error = copyout_proc(bp->b_proc,
    959 			    bp->b_data, bp->b_saveaddr, len);
    960 		}
    961 		rump_hyperfree(bp->b_data, len);
    962 	}
    963 
    964 	bp->b_data = bp->b_saveaddr;
    965 	bp->b_saveaddr = 0;
    966 }
    967 
    968 void
    969 uvmspace_addref(struct vmspace *vm)
    970 {
    971 
    972 	/*
    973 	 * No dynamically allocated vmspaces exist.
    974 	 */
    975 }
    976 
    977 void
    978 uvmspace_free(struct vmspace *vm)
    979 {
    980 
    981 	/* nothing for now */
    982 }
    983 
    984 /*
    985  * page life cycle stuff.  it really doesn't exist, so just stubs.
    986  */
    987 
    988 void
    989 uvm_pageactivate(struct vm_page *pg)
    990 {
    991 
    992 	/* nada */
    993 }
    994 
    995 void
    996 uvm_pagedeactivate(struct vm_page *pg)
    997 {
    998 
    999 	/* nada */
   1000 }
   1001 
   1002 void
   1003 uvm_pagedequeue(struct vm_page *pg)
   1004 {
   1005 
   1006 	/* nada*/
   1007 }
   1008 
   1009 void
   1010 uvm_pageenqueue(struct vm_page *pg)
   1011 {
   1012 
   1013 	/* nada */
   1014 }
   1015 
   1016 void
   1017 uvmpdpol_anfree(struct vm_anon *an)
   1018 {
   1019 
   1020 	/* nada */
   1021 }
   1022 
   1023 /*
   1024  * Physical address accessors.
   1025  */
   1026 
   1027 struct vm_page *
   1028 uvm_phys_to_vm_page(paddr_t pa)
   1029 {
   1030 
   1031 	return NULL;
   1032 }
   1033 
   1034 paddr_t
   1035 uvm_vm_page_to_phys(const struct vm_page *pg)
   1036 {
   1037 
   1038 	return 0;
   1039 }
   1040 
   1041 vaddr_t
   1042 uvm_uarea_alloc(void)
   1043 {
   1044 
   1045 	/* non-zero */
   1046 	return (vaddr_t)11;
   1047 }
   1048 
   1049 void
   1050 uvm_uarea_free(vaddr_t uarea)
   1051 {
   1052 
   1053 	/* nata, so creamy */
   1054 }
   1055 
   1056 /*
   1057  * Routines related to the Page Baroness.
   1058  */
   1059 
   1060 void
   1061 uvm_wait(const char *msg)
   1062 {
   1063 
   1064 	if (__predict_false(rump_threads == 0))
   1065 		panic("pagedaemon missing (RUMP_THREADS = 0)");
   1066 
   1067 	if (curlwp == uvm.pagedaemon_lwp) {
   1068 		/* is it possible for us to later get memory? */
   1069 		if (!uvmexp.paging)
   1070 			panic("pagedaemon out of memory");
   1071 	}
   1072 
   1073 	mutex_enter(&pdaemonmtx);
   1074 	pdaemon_waiters++;
   1075 	cv_signal(&pdaemoncv);
   1076 	cv_wait(&oomwait, &pdaemonmtx);
   1077 	mutex_exit(&pdaemonmtx);
   1078 }
   1079 
   1080 void
   1081 uvm_pageout_start(int npages)
   1082 {
   1083 
   1084 	mutex_enter(&pdaemonmtx);
   1085 	uvmexp.paging += npages;
   1086 	mutex_exit(&pdaemonmtx);
   1087 }
   1088 
   1089 void
   1090 uvm_pageout_done(int npages)
   1091 {
   1092 
   1093 	if (!npages)
   1094 		return;
   1095 
   1096 	mutex_enter(&pdaemonmtx);
   1097 	KASSERT(uvmexp.paging >= npages);
   1098 	uvmexp.paging -= npages;
   1099 
   1100 	if (pdaemon_waiters) {
   1101 		pdaemon_waiters = 0;
   1102 		cv_broadcast(&oomwait);
   1103 	}
   1104 	mutex_exit(&pdaemonmtx);
   1105 }
   1106 
   1107 static bool
   1108 processpage(struct vm_page *pg)
   1109 {
   1110 	struct uvm_object *uobj;
   1111 
   1112 	uobj = pg->uobject;
   1113 	if (rw_tryenter(uobj->vmobjlock, RW_WRITER)) {
   1114 		if ((pg->flags & PG_BUSY) == 0) {
   1115 			mutex_exit(&vmpage_lruqueue_lock);
   1116 			uobj->pgops->pgo_put(uobj, pg->offset,
   1117 			    pg->offset + PAGE_SIZE,
   1118 			    PGO_CLEANIT|PGO_FREE);
   1119 			KASSERT(!rw_write_held(uobj->vmobjlock));
   1120 			return true;
   1121 		} else {
   1122 			rw_exit(uobj->vmobjlock);
   1123 		}
   1124 	}
   1125 
   1126 	return false;
   1127 }
   1128 
   1129 /*
   1130  * The Diabolical pageDaemon Director (DDD).
   1131  *
   1132  * This routine can always use better heuristics.
   1133  */
   1134 void
   1135 uvm_pageout(void *arg)
   1136 {
   1137 	struct vm_page *pg;
   1138 	struct pool *pp, *pp_first;
   1139 	int cleaned, skip, skipped;
   1140 	bool succ;
   1141 
   1142 	mutex_enter(&pdaemonmtx);
   1143 	for (;;) {
   1144 		if (!NEED_PAGEDAEMON()) {
   1145 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1146 		}
   1147 
   1148 		if (pdaemon_waiters) {
   1149 			pdaemon_waiters = 0;
   1150 			cv_broadcast(&oomwait);
   1151 		}
   1152 
   1153 		cv_wait(&pdaemoncv, &pdaemonmtx);
   1154 		uvmexp.pdwoke++;
   1155 
   1156 		/* tell the world that we are hungry */
   1157 		kernel_map->flags |= VM_MAP_WANTVA;
   1158 		mutex_exit(&pdaemonmtx);
   1159 
   1160 		/*
   1161 		 * step one: reclaim the page cache.  this should give
   1162 		 * us the biggest earnings since whole pages are released
   1163 		 * into backing memory.
   1164 		 */
   1165 		pool_cache_reclaim(&pagecache);
   1166 		if (!NEED_PAGEDAEMON()) {
   1167 			mutex_enter(&pdaemonmtx);
   1168 			continue;
   1169 		}
   1170 
   1171 		/*
   1172 		 * Ok, so that didn't help.  Next, try to hunt memory
   1173 		 * by pushing out vnode pages.  The pages might contain
   1174 		 * useful cached data, but we need the memory.
   1175 		 */
   1176 		cleaned = 0;
   1177 		skip = 0;
   1178  again:
   1179 		mutex_enter(&vmpage_lruqueue_lock);
   1180 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1181 			skipped = 0;
   1182 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1183 
   1184 				/*
   1185 				 * skip over pages we _might_ have tried
   1186 				 * to handle earlier.  they might not be
   1187 				 * exactly the same ones, but I'm not too
   1188 				 * concerned.
   1189 				 */
   1190 				while (skipped++ < skip)
   1191 					continue;
   1192 
   1193 				if (processpage(pg)) {
   1194 					cleaned++;
   1195 					goto again;
   1196 				}
   1197 
   1198 				skip++;
   1199 			}
   1200 			break;
   1201 		}
   1202 		mutex_exit(&vmpage_lruqueue_lock);
   1203 
   1204 		/*
   1205 		 * Ok, someone is running with an object lock held.
   1206 		 * We want to yield the host CPU to make sure the
   1207 		 * thread is not parked on the host.  nanosleep
   1208 		 * for the smallest possible time and hope we're back in
   1209 		 * the game soon.
   1210 		 */
   1211 		if (cleaned == 0) {
   1212 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
   1213 
   1214 			skip = 0;
   1215 
   1216 			/* and here we go again */
   1217 			goto again;
   1218 		}
   1219 
   1220 		/*
   1221 		 * And of course we need to reclaim the page cache
   1222 		 * again to actually release memory.
   1223 		 */
   1224 		pool_cache_reclaim(&pagecache);
   1225 		if (!NEED_PAGEDAEMON()) {
   1226 			mutex_enter(&pdaemonmtx);
   1227 			continue;
   1228 		}
   1229 
   1230 		/*
   1231 		 * And then drain the pools.  Wipe them out ... all of them.
   1232 		 */
   1233 		for (pp_first = NULL;;) {
   1234 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1235 
   1236 			succ = pool_drain(&pp);
   1237 			if (succ || pp == pp_first)
   1238 				break;
   1239 
   1240 			if (pp_first == NULL)
   1241 				pp_first = pp;
   1242 		}
   1243 
   1244 		/*
   1245 		 * Need to use PYEC on our bag of tricks.
   1246 		 * Unfortunately, the wife just borrowed it.
   1247 		 */
   1248 
   1249 		mutex_enter(&pdaemonmtx);
   1250 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1251 		    uvmexp.paging == 0) {
   1252 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
   1253 			    "memory ... sleeping (deadlock?)\n");
   1254 			kpause("pddlk", false, hz, &pdaemonmtx);
   1255 		}
   1256 	}
   1257 
   1258 	panic("you can swap out any time you like, but you can never leave");
   1259 }
   1260 
   1261 void
   1262 uvm_kick_pdaemon()
   1263 {
   1264 
   1265 	/*
   1266 	 * Wake up the diabolical pagedaemon director if we are over
   1267 	 * 90% of the memory limit.  This is a complete and utter
   1268 	 * stetson-harrison decision which you are allowed to finetune.
   1269 	 * Don't bother locking.  If we have some unflushed caches,
   1270 	 * other waker-uppers will deal with the issue.
   1271 	 */
   1272 	if (NEED_PAGEDAEMON()) {
   1273 		cv_signal(&pdaemoncv);
   1274 	}
   1275 }
   1276 
   1277 void *
   1278 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1279 {
   1280 	const unsigned long thelimit =
   1281 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1282 	unsigned long newmem;
   1283 	void *rv;
   1284 	int error;
   1285 
   1286 	uvm_kick_pdaemon(); /* ouch */
   1287 
   1288 	/* first we must be within the limit */
   1289  limitagain:
   1290 	if (thelimit != RUMPMEM_UNLIMITED) {
   1291 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1292 		if (newmem > thelimit) {
   1293 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1294 			if (!waitok) {
   1295 				return NULL;
   1296 			}
   1297 			uvm_wait(wmsg);
   1298 			goto limitagain;
   1299 		}
   1300 	}
   1301 
   1302 	/* second, we must get something from the backend */
   1303  again:
   1304 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1305 	if (__predict_false(error && waitok)) {
   1306 		uvm_wait(wmsg);
   1307 		goto again;
   1308 	}
   1309 
   1310 	return rv;
   1311 }
   1312 
   1313 void
   1314 rump_hyperfree(void *what, size_t size)
   1315 {
   1316 
   1317 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1318 		atomic_add_long(&curphysmem, -size);
   1319 	}
   1320 	rumpuser_free(what, size);
   1321 }
   1322