Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.190
      1 /*	$NetBSD: vm.c,v 1.190 2020/06/11 19:20:46 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.190 2020/06/11 19:20:46 ad Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/vmem.h>
     52 #include <sys/mman.h>
     53 #include <sys/null.h>
     54 #include <sys/vnode.h>
     55 #include <sys/radixtree.h>
     56 
     57 #include <machine/pmap.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_ddb.h>
     61 #include <uvm/uvm_pdpolicy.h>
     62 #include <uvm/uvm_prot.h>
     63 #include <uvm/uvm_readahead.h>
     64 #include <uvm/uvm_device.h>
     65 
     66 #include <rump-sys/kern.h>
     67 #include <rump-sys/vfs.h>
     68 
     69 #include <rump/rumpuser.h>
     70 
     71 kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
     72 kmutex_t uvm_swap_data_lock;
     73 
     74 struct uvmexp uvmexp;
     75 struct uvm uvm;
     76 
     77 #ifdef __uvmexp_pagesize
     78 const int * const uvmexp_pagesize = &uvmexp.pagesize;
     79 const int * const uvmexp_pagemask = &uvmexp.pagemask;
     80 const int * const uvmexp_pageshift = &uvmexp.pageshift;
     81 #endif
     82 
     83 static struct vm_map kernel_map_store;
     84 struct vm_map *kernel_map = &kernel_map_store;
     85 
     86 static struct vm_map module_map_store;
     87 extern struct vm_map *module_map;
     88 
     89 static struct pmap pmap_kernel;
     90 struct pmap rump_pmap_local;
     91 struct pmap *const kernel_pmap_ptr = &pmap_kernel;
     92 
     93 vmem_t *kmem_arena;
     94 vmem_t *kmem_va_arena;
     95 
     96 static unsigned int pdaemon_waiters;
     97 static kmutex_t pdaemonmtx;
     98 static kcondvar_t pdaemoncv, oomwait;
     99 
    100 /* all local non-proc0 processes share this vmspace */
    101 struct vmspace *rump_vmspace_local;
    102 
    103 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
    104 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
    105 static unsigned long curphysmem;
    106 static unsigned long dddlim;		/* 90% of memory limit used */
    107 #define NEED_PAGEDAEMON() \
    108     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    109 #define PDRESERVE (2*MAXPHYS)
    110 
    111 /*
    112  * Try to free two pages worth of pages from objects.
    113  * If this succesfully frees a full page cache page, we'll
    114  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    115  */
    116 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    117 
    118 /*
    119  * Keep a list of least recently used pages.  Since the only way a
    120  * rump kernel can "access" a page is via lookup, we put the page
    121  * at the back of queue every time a lookup for it is done.  If the
    122  * page is in front of this global queue and we're short of memory,
    123  * it's a candidate for pageout.
    124  */
    125 static struct pglist vmpage_lruqueue;
    126 static unsigned vmpage_onqueue;
    127 
    128 /*
    129  * vm pages
    130  */
    131 
    132 static int
    133 pgctor(void *arg, void *obj, int flags)
    134 {
    135 	struct vm_page *pg = obj;
    136 
    137 	memset(pg, 0, sizeof(*pg));
    138 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    139 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    140 	return pg->uanon == NULL;
    141 }
    142 
    143 static void
    144 pgdtor(void *arg, void *obj)
    145 {
    146 	struct vm_page *pg = obj;
    147 
    148 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    149 }
    150 
    151 static struct pool_cache pagecache;
    152 
    153 /*
    154  * Called with the object locked.  We don't support anons.
    155  */
    156 struct vm_page *
    157 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    158 	int flags, int strat, int free_list)
    159 {
    160 	struct vm_page *pg;
    161 
    162 	KASSERT(uobj && rw_write_held(uobj->vmobjlock));
    163 	KASSERT(anon == NULL);
    164 
    165 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    166 	if (__predict_false(pg == NULL)) {
    167 		return NULL;
    168 	}
    169 	mutex_init(&pg->interlock, MUTEX_DEFAULT, IPL_NONE);
    170 
    171 	pg->offset = off;
    172 	pg->uobject = uobj;
    173 
    174 	if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
    175 	    pg) != 0) {
    176 		pool_cache_put(&pagecache, pg);
    177 		return NULL;
    178 	}
    179 
    180 	if (UVM_OBJ_IS_VNODE(uobj)) {
    181 		if (uobj->uo_npages == 0) {
    182 			struct vnode *vp = (struct vnode *)uobj;
    183 			mutex_enter(vp->v_interlock);
    184 			vp->v_iflag |= VI_PAGES;
    185 			mutex_exit(vp->v_interlock);
    186 		}
    187 		pg->flags |= PG_FILE;
    188 	}
    189 	uobj->uo_npages++;
    190 
    191 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    192 	if (flags & UVM_PGA_ZERO) {
    193 		uvm_pagezero(pg);
    194 	}
    195 
    196 	/*
    197 	 * Don't put anons on the LRU page queue.  We can't flush them
    198 	 * (there's no concept of swap in a rump kernel), so no reason
    199 	 * to bother with them.
    200 	 */
    201 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    202 		atomic_inc_uint(&vmpage_onqueue);
    203 		mutex_enter(&vmpage_lruqueue_lock);
    204 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    205 		mutex_exit(&vmpage_lruqueue_lock);
    206 	} else {
    207 		pg->flags |= PG_AOBJ;
    208 	}
    209 
    210 	return pg;
    211 }
    212 
    213 /*
    214  * Release a page.
    215  *
    216  * Called with the vm object locked.
    217  */
    218 void
    219 uvm_pagefree(struct vm_page *pg)
    220 {
    221 	struct uvm_object *uobj = pg->uobject;
    222 	struct vm_page *pg2 __unused;
    223 
    224 	KASSERT(rw_write_held(uobj->vmobjlock));
    225 
    226 	mutex_enter(&pg->interlock);
    227 	uvm_pagewakeup(pg);
    228 	mutex_exit(&pg->interlock);
    229 
    230 	uobj->uo_npages--;
    231 	pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    232 	KASSERT(pg == pg2);
    233 
    234 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    235 		mutex_enter(&vmpage_lruqueue_lock);
    236 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    237 		mutex_exit(&vmpage_lruqueue_lock);
    238 		atomic_dec_uint(&vmpage_onqueue);
    239 	}
    240 
    241 	if (UVM_OBJ_IS_VNODE(uobj) && uobj->uo_npages == 0) {
    242 		struct vnode *vp = (struct vnode *)uobj;
    243 		mutex_enter(vp->v_interlock);
    244 		vp->v_iflag &= ~VI_PAGES;
    245 		mutex_exit(vp->v_interlock);
    246 	}
    247 
    248 	mutex_destroy(&pg->interlock);
    249 	pool_cache_put(&pagecache, pg);
    250 }
    251 
    252 void
    253 uvm_pagezero(struct vm_page *pg)
    254 {
    255 
    256 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    257 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    258 }
    259 
    260 /*
    261  * uvm_page_owner_locked_p: return true if object associated with page is
    262  * locked.  this is a weak check for runtime assertions only.
    263  */
    264 
    265 bool
    266 uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
    267 {
    268 
    269 	if (exclusive)
    270 		return rw_write_held(pg->uobject->vmobjlock);
    271 	else
    272 		return rw_lock_held(pg->uobject->vmobjlock);
    273 }
    274 
    275 /*
    276  * Misc routines
    277  */
    278 
    279 static kmutex_t pagermtx;
    280 
    281 void
    282 uvm_init(void)
    283 {
    284 	char buf[64];
    285 
    286 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    287 		unsigned long tmp;
    288 		char *ep;
    289 		int mult;
    290 
    291 		tmp = strtoul(buf, &ep, 10);
    292 		if (strlen(ep) > 1)
    293 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    294 
    295 		/* mini-dehumanize-number */
    296 		mult = 1;
    297 		switch (*ep) {
    298 		case 'k':
    299 			mult = 1024;
    300 			break;
    301 		case 'm':
    302 			mult = 1024*1024;
    303 			break;
    304 		case 'g':
    305 			mult = 1024*1024*1024;
    306 			break;
    307 		case 0:
    308 			break;
    309 		default:
    310 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    311 		}
    312 		rump_physmemlimit = tmp * mult;
    313 
    314 		if (rump_physmemlimit / mult != tmp)
    315 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    316 
    317 		/* reserve some memory for the pager */
    318 		if (rump_physmemlimit <= PDRESERVE)
    319 			panic("uvm_init: system reserves %d bytes of mem, "
    320 			    "only %lu bytes given",
    321 			    PDRESERVE, rump_physmemlimit);
    322 		pdlimit = rump_physmemlimit;
    323 		rump_physmemlimit -= PDRESERVE;
    324 
    325 		if (pdlimit < 1024*1024)
    326 			printf("uvm_init: WARNING: <1MB RAM limit, "
    327 			    "hope you know what you're doing\n");
    328 
    329 #define HUMANIZE_BYTES 9
    330 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    331 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    332 #undef HUMANIZE_BYTES
    333 		dddlim = 9 * (rump_physmemlimit / 10);
    334 	} else {
    335 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    336 	}
    337 	aprint_verbose("total memory = %s\n", buf);
    338 
    339 	TAILQ_INIT(&vmpage_lruqueue);
    340 
    341 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
    342 		uvmexp.npages = physmem;
    343 	} else {
    344 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
    345 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
    346 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
    347 	}
    348 	/*
    349 	 * uvmexp.free is not used internally or updated.  The reason is
    350 	 * that the memory hypercall allocator is allowed to allocate
    351 	 * non-page sized chunks.  We use a byte count in curphysmem
    352 	 * instead.
    353 	 */
    354 	uvmexp.free = uvmexp.npages;
    355 
    356 #ifndef __uvmexp_pagesize
    357 	uvmexp.pagesize = PAGE_SIZE;
    358 	uvmexp.pagemask = PAGE_MASK;
    359 	uvmexp.pageshift = PAGE_SHIFT;
    360 #else
    361 #define FAKE_PAGE_SHIFT 12
    362 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    363 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    364 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    365 #undef FAKE_PAGE_SHIFT
    366 #endif
    367 
    368 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    369 	mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
    370 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    371 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    372 
    373 	cv_init(&pdaemoncv, "pdaemon");
    374 	cv_init(&oomwait, "oomwait");
    375 
    376 	module_map = &module_map_store;
    377 
    378 	kernel_map->pmap = pmap_kernel();
    379 
    380 	pool_subsystem_init();
    381 
    382 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    383 	    NULL, NULL, NULL,
    384 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    385 
    386 	vmem_subsystem_init(kmem_arena);
    387 
    388 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    389 	    vmem_alloc, vmem_free, kmem_arena,
    390 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    391 
    392 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    393 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    394 
    395 	radix_tree_init();
    396 
    397 	/* create vmspace used by local clients */
    398 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
    399 	uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
    400 }
    401 
    402 void
    403 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    404     bool topdown)
    405 {
    406 
    407 	vm->vm_map.pmap = pmap;
    408 	vm->vm_refcnt = 1;
    409 }
    410 
    411 int
    412 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
    413     bool new_pageable, int lockflags)
    414 {
    415 	return 0;
    416 }
    417 
    418 void
    419 uvm_pagewire(struct vm_page *pg)
    420 {
    421 
    422 	/* nada */
    423 }
    424 
    425 void
    426 uvm_pageunwire(struct vm_page *pg)
    427 {
    428 
    429 	/* nada */
    430 }
    431 
    432 int
    433 uvm_availmem(bool cached)
    434 {
    435 
    436 	return uvmexp.free;
    437 }
    438 
    439 void
    440 uvm_pagelock(struct vm_page *pg)
    441 {
    442 
    443 	mutex_enter(&pg->interlock);
    444 }
    445 
    446 void
    447 uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
    448 {
    449 
    450 	if (pg1 < pg2) {
    451 		mutex_enter(&pg1->interlock);
    452 		mutex_enter(&pg2->interlock);
    453 	} else {
    454 		mutex_enter(&pg2->interlock);
    455 		mutex_enter(&pg1->interlock);
    456 	}
    457 }
    458 
    459 void
    460 uvm_pageunlock(struct vm_page *pg)
    461 {
    462 
    463 	mutex_exit(&pg->interlock);
    464 }
    465 
    466 void
    467 uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
    468 {
    469 
    470 	mutex_exit(&pg1->interlock);
    471 	mutex_exit(&pg2->interlock);
    472 }
    473 
    474 /* where's your schmonz now? */
    475 #define PUNLIMIT(a)	\
    476 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    477 void
    478 uvm_init_limits(struct proc *p)
    479 {
    480 
    481 #ifndef DFLSSIZ
    482 #define DFLSSIZ (16*1024*1024)
    483 #endif
    484 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    485 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    486 	PUNLIMIT(RLIMIT_DATA);
    487 	PUNLIMIT(RLIMIT_RSS);
    488 	PUNLIMIT(RLIMIT_AS);
    489 	/* nice, cascade */
    490 }
    491 #undef PUNLIMIT
    492 
    493 /*
    494  * This satisfies the "disgusting mmap hack" used by proplib.
    495  */
    496 int
    497 uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
    498 {
    499 	int error;
    500 
    501 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    502 	if (*addrp != NULL)
    503 		panic("uvm_mmap() variant unsupported");
    504 
    505 	if (RUMP_LOCALPROC_P(curproc)) {
    506 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
    507 	} else {
    508 		error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
    509 		    size, addrp);
    510 	}
    511 	return error;
    512 }
    513 
    514 /*
    515  * Stubs for things referenced from vfs_vnode.c but not used.
    516  */
    517 const dev_t zerodev;
    518 
    519 struct uvm_object *
    520 udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
    521 {
    522 	return NULL;
    523 }
    524 
    525 struct pagerinfo {
    526 	vaddr_t pgr_kva;
    527 	int pgr_npages;
    528 	struct vm_page **pgr_pgs;
    529 	bool pgr_read;
    530 
    531 	LIST_ENTRY(pagerinfo) pgr_entries;
    532 };
    533 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    534 
    535 /*
    536  * Pager "map" in routine.  Instead of mapping, we allocate memory
    537  * and copy page contents there.  The reason for copying instead of
    538  * mapping is simple: we do not assume we are running on virtual
    539  * memory.  Even if we could emulate virtual memory in some envs
    540  * such as userspace, copying is much faster than trying to awkardly
    541  * cope with remapping (see "Design and Implementation" pp.95-98).
    542  * The downside of the approach is that the pager requires MAXPHYS
    543  * free memory to perform paging, but short of virtual memory or
    544  * making the pager do I/O in page-sized chunks we cannot do much
    545  * about that.
    546  */
    547 vaddr_t
    548 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    549 {
    550 	struct pagerinfo *pgri;
    551 	vaddr_t curkva;
    552 	int i;
    553 
    554 	/* allocate structures */
    555 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    556 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    557 	pgri->pgr_npages = npages;
    558 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    559 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    560 
    561 	/* copy contents to "mapped" memory */
    562 	for (i = 0, curkva = pgri->pgr_kva;
    563 	    i < npages;
    564 	    i++, curkva += PAGE_SIZE) {
    565 		/*
    566 		 * We need to copy the previous contents of the pages to
    567 		 * the window even if we are reading from the
    568 		 * device, since the device might not fill the contents of
    569 		 * the full mapped range and we will end up corrupting
    570 		 * data when we unmap the window.
    571 		 */
    572 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    573 		pgri->pgr_pgs[i] = pgs[i];
    574 	}
    575 
    576 	mutex_enter(&pagermtx);
    577 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    578 	mutex_exit(&pagermtx);
    579 
    580 	return pgri->pgr_kva;
    581 }
    582 
    583 /*
    584  * map out the pager window.  return contents from VA to page storage
    585  * and free structures.
    586  *
    587  * Note: does not currently support partial frees
    588  */
    589 void
    590 uvm_pagermapout(vaddr_t kva, int npages)
    591 {
    592 	struct pagerinfo *pgri;
    593 	vaddr_t curkva;
    594 	int i;
    595 
    596 	mutex_enter(&pagermtx);
    597 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    598 		if (pgri->pgr_kva == kva)
    599 			break;
    600 	}
    601 	KASSERT(pgri);
    602 	if (pgri->pgr_npages != npages)
    603 		panic("uvm_pagermapout: partial unmapping not supported");
    604 	LIST_REMOVE(pgri, pgr_entries);
    605 	mutex_exit(&pagermtx);
    606 
    607 	if (pgri->pgr_read) {
    608 		for (i = 0, curkva = pgri->pgr_kva;
    609 		    i < pgri->pgr_npages;
    610 		    i++, curkva += PAGE_SIZE) {
    611 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    612 		}
    613 	}
    614 
    615 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    616 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    617 	kmem_free(pgri, sizeof(*pgri));
    618 }
    619 
    620 /*
    621  * convert va in pager window to page structure.
    622  * XXX: how expensive is this (global lock, list traversal)?
    623  */
    624 struct vm_page *
    625 uvm_pageratop(vaddr_t va)
    626 {
    627 	struct pagerinfo *pgri;
    628 	struct vm_page *pg = NULL;
    629 	int i;
    630 
    631 	mutex_enter(&pagermtx);
    632 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    633 		if (pgri->pgr_kva <= va
    634 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    635 			break;
    636 	}
    637 	if (pgri) {
    638 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    639 		pg = pgri->pgr_pgs[i];
    640 	}
    641 	mutex_exit(&pagermtx);
    642 
    643 	return pg;
    644 }
    645 
    646 /*
    647  * Called with the vm object locked.
    648  *
    649  * Put vnode object pages at the end of the access queue to indicate
    650  * they have been recently accessed and should not be immediate
    651  * candidates for pageout.  Do not do this for lookups done by
    652  * the pagedaemon to mimic pmap_kentered mappings which don't track
    653  * access information.
    654  */
    655 struct vm_page *
    656 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    657 {
    658 	struct vm_page *pg;
    659 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    660 
    661 	pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
    662 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    663 		mutex_enter(&vmpage_lruqueue_lock);
    664 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    665 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    666 		mutex_exit(&vmpage_lruqueue_lock);
    667 	}
    668 
    669 	return pg;
    670 }
    671 
    672 void
    673 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    674 {
    675 	struct vm_page *pg;
    676 	int i;
    677 
    678 	KASSERT(npgs > 0);
    679 	KASSERT(rw_write_held(pgs[0]->uobject->vmobjlock));
    680 
    681 	for (i = 0; i < npgs; i++) {
    682 		pg = pgs[i];
    683 		if (pg == NULL)
    684 			continue;
    685 
    686 		KASSERT(pg->flags & PG_BUSY);
    687 		if (pg->flags & PG_RELEASED) {
    688 			uvm_pagefree(pg);
    689 		} else {
    690 			pg->flags &= ~PG_BUSY;
    691 			uvm_pagelock(pg);
    692 			uvm_pagewakeup(pg);
    693 			uvm_pageunlock(pg);
    694 		}
    695 	}
    696 }
    697 
    698 void
    699 uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
    700 {
    701 
    702 	KASSERT(rw_lock_held(lock));
    703 	KASSERT((pg->flags & PG_BUSY) != 0);
    704 
    705 	mutex_enter(&pg->interlock);
    706 	pg->pqflags |= PQ_WANTED;
    707 	rw_exit(lock);
    708 	UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
    709 }
    710 
    711 void
    712 uvm_pagewakeup(struct vm_page *pg)
    713 {
    714 
    715 	KASSERT(mutex_owned(&pg->interlock));
    716 
    717 	if ((pg->pqflags & PQ_WANTED) != 0) {
    718 		pg->pqflags &= ~PQ_WANTED;
    719 		wakeup(pg);
    720 	}
    721 }
    722 
    723 void
    724 uvm_estimatepageable(int *active, int *inactive)
    725 {
    726 
    727 	/* XXX: guessing game */
    728 	*active = 1024;
    729 	*inactive = 1024;
    730 }
    731 
    732 int
    733 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    734 {
    735 
    736 	panic("%s: unimplemented", __func__);
    737 }
    738 
    739 void
    740 uvm_unloan(void *v, int npages, int flags)
    741 {
    742 
    743 	panic("%s: unimplemented", __func__);
    744 }
    745 
    746 int
    747 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    748 	struct vm_page **opp)
    749 {
    750 
    751 	return EBUSY;
    752 }
    753 
    754 struct vm_page *
    755 uvm_loanbreak(struct vm_page *pg)
    756 {
    757 
    758 	panic("%s: unimplemented", __func__);
    759 }
    760 
    761 void
    762 ubc_purge(struct uvm_object *uobj)
    763 {
    764 
    765 }
    766 
    767 vaddr_t
    768 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
    769 {
    770 
    771 	return 0;
    772 }
    773 
    774 int
    775 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    776 	vm_prot_t prot, bool set_max)
    777 {
    778 
    779 	return EOPNOTSUPP;
    780 }
    781 
    782 int
    783 uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
    784     struct uvm_object *uobj, voff_t uoffset, vsize_t align,
    785     uvm_flag_t flags)
    786 {
    787 
    788 	*startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
    789 	return *startp != 0 ? 0 : ENOMEM;
    790 }
    791 
    792 void
    793 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
    794 {
    795 
    796 	rump_hyperfree((void*)start, end-start);
    797 }
    798 
    799 
    800 /*
    801  * UVM km
    802  */
    803 
    804 vaddr_t
    805 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    806 {
    807 	void *rv, *desired = NULL;
    808 	int alignbit, error;
    809 
    810 #ifdef __x86_64__
    811 	/*
    812 	 * On amd64, allocate all module memory from the lowest 2GB.
    813 	 * This is because NetBSD kernel modules are compiled
    814 	 * with -mcmodel=kernel and reserve only 4 bytes for
    815 	 * offsets.  If we load code compiled with -mcmodel=kernel
    816 	 * anywhere except the lowest or highest 2GB, it will not
    817 	 * work.  Since userspace does not have access to the highest
    818 	 * 2GB, use the lowest 2GB.
    819 	 *
    820 	 * Note: this assumes the rump kernel resides in
    821 	 * the lowest 2GB as well.
    822 	 *
    823 	 * Note2: yes, it's a quick hack, but since this the only
    824 	 * place where we care about the map we're allocating from,
    825 	 * just use a simple "if" instead of coming up with a fancy
    826 	 * generic solution.
    827 	 */
    828 	if (map == module_map) {
    829 		desired = (void *)(0x80000000 - size);
    830 	}
    831 #endif
    832 
    833 	if (__predict_false(map == module_map)) {
    834 		alignbit = 0;
    835 		if (align) {
    836 			alignbit = ffs(align)-1;
    837 		}
    838 		error = rumpuser_anonmmap(desired, size, alignbit,
    839 		    flags & UVM_KMF_EXEC, &rv);
    840 	} else {
    841 		error = rumpuser_malloc(size, align, &rv);
    842 	}
    843 
    844 	if (error) {
    845 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    846 			return 0;
    847 		else
    848 			panic("uvm_km_alloc failed");
    849 	}
    850 
    851 	if (flags & UVM_KMF_ZERO)
    852 		memset(rv, 0, size);
    853 
    854 	return (vaddr_t)rv;
    855 }
    856 
    857 void
    858 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    859 {
    860 
    861 	if (__predict_false(map == module_map))
    862 		rumpuser_unmap((void *)vaddr, size);
    863 	else
    864 		rumpuser_free((void *)vaddr, size);
    865 }
    866 
    867 int
    868 uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
    869 {
    870 	return 0;
    871 }
    872 
    873 struct vm_map *
    874 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    875 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    876 {
    877 
    878 	return (struct vm_map *)417416;
    879 }
    880 
    881 int
    882 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    883     vmem_addr_t *addr)
    884 {
    885 	vaddr_t va;
    886 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    887 	    (flags & VM_SLEEP), "kmalloc");
    888 
    889 	if (va) {
    890 		*addr = va;
    891 		return 0;
    892 	} else {
    893 		return ENOMEM;
    894 	}
    895 }
    896 
    897 void
    898 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    899 {
    900 
    901 	rump_hyperfree((void *)addr, size);
    902 }
    903 
    904 /*
    905  * VM space locking routines.  We don't really have to do anything,
    906  * since the pages are always "wired" (both local and remote processes).
    907  */
    908 int
    909 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    910 {
    911 
    912 	return 0;
    913 }
    914 
    915 void
    916 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    917 {
    918 
    919 }
    920 
    921 /*
    922  * For the local case the buffer mappers don't need to do anything.
    923  * For the remote case we need to reserve space and copy data in or
    924  * out, depending on B_READ/B_WRITE.
    925  */
    926 int
    927 vmapbuf(struct buf *bp, vsize_t len)
    928 {
    929 	int error = 0;
    930 
    931 	bp->b_saveaddr = bp->b_data;
    932 
    933 	/* remote case */
    934 	if (!RUMP_LOCALPROC_P(curproc)) {
    935 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    936 		if (BUF_ISWRITE(bp)) {
    937 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    938 			if (error) {
    939 				rump_hyperfree(bp->b_data, len);
    940 				bp->b_data = bp->b_saveaddr;
    941 				bp->b_saveaddr = 0;
    942 			}
    943 		}
    944 	}
    945 
    946 	return error;
    947 }
    948 
    949 void
    950 vunmapbuf(struct buf *bp, vsize_t len)
    951 {
    952 
    953 	/* remote case */
    954 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    955 		if (BUF_ISREAD(bp)) {
    956 			bp->b_error = copyout_proc(bp->b_proc,
    957 			    bp->b_data, bp->b_saveaddr, len);
    958 		}
    959 		rump_hyperfree(bp->b_data, len);
    960 	}
    961 
    962 	bp->b_data = bp->b_saveaddr;
    963 	bp->b_saveaddr = 0;
    964 }
    965 
    966 void
    967 uvmspace_addref(struct vmspace *vm)
    968 {
    969 
    970 	/*
    971 	 * No dynamically allocated vmspaces exist.
    972 	 */
    973 }
    974 
    975 void
    976 uvmspace_free(struct vmspace *vm)
    977 {
    978 
    979 	/* nothing for now */
    980 }
    981 
    982 /*
    983  * page life cycle stuff.  it really doesn't exist, so just stubs.
    984  */
    985 
    986 void
    987 uvm_pageactivate(struct vm_page *pg)
    988 {
    989 
    990 	/* nada */
    991 }
    992 
    993 void
    994 uvm_pagedeactivate(struct vm_page *pg)
    995 {
    996 
    997 	/* nada */
    998 }
    999 
   1000 void
   1001 uvm_pagedequeue(struct vm_page *pg)
   1002 {
   1003 
   1004 	/* nada*/
   1005 }
   1006 
   1007 void
   1008 uvm_pageenqueue(struct vm_page *pg)
   1009 {
   1010 
   1011 	/* nada */
   1012 }
   1013 
   1014 void
   1015 uvmpdpol_anfree(struct vm_anon *an)
   1016 {
   1017 
   1018 	/* nada */
   1019 }
   1020 
   1021 /*
   1022  * Physical address accessors.
   1023  */
   1024 
   1025 struct vm_page *
   1026 uvm_phys_to_vm_page(paddr_t pa)
   1027 {
   1028 
   1029 	return NULL;
   1030 }
   1031 
   1032 paddr_t
   1033 uvm_vm_page_to_phys(const struct vm_page *pg)
   1034 {
   1035 
   1036 	return 0;
   1037 }
   1038 
   1039 vaddr_t
   1040 uvm_uarea_alloc(void)
   1041 {
   1042 
   1043 	/* non-zero */
   1044 	return (vaddr_t)11;
   1045 }
   1046 
   1047 void
   1048 uvm_uarea_free(vaddr_t uarea)
   1049 {
   1050 
   1051 	/* nata, so creamy */
   1052 }
   1053 
   1054 /*
   1055  * Routines related to the Page Baroness.
   1056  */
   1057 
   1058 void
   1059 uvm_wait(const char *msg)
   1060 {
   1061 
   1062 	if (__predict_false(rump_threads == 0))
   1063 		panic("pagedaemon missing (RUMP_THREADS = 0)");
   1064 
   1065 	if (curlwp == uvm.pagedaemon_lwp) {
   1066 		/* is it possible for us to later get memory? */
   1067 		if (!uvmexp.paging)
   1068 			panic("pagedaemon out of memory");
   1069 	}
   1070 
   1071 	mutex_enter(&pdaemonmtx);
   1072 	pdaemon_waiters++;
   1073 	cv_signal(&pdaemoncv);
   1074 	cv_wait(&oomwait, &pdaemonmtx);
   1075 	mutex_exit(&pdaemonmtx);
   1076 }
   1077 
   1078 void
   1079 uvm_pageout_start(int npages)
   1080 {
   1081 
   1082 	mutex_enter(&pdaemonmtx);
   1083 	uvmexp.paging += npages;
   1084 	mutex_exit(&pdaemonmtx);
   1085 }
   1086 
   1087 void
   1088 uvm_pageout_done(int npages)
   1089 {
   1090 
   1091 	if (!npages)
   1092 		return;
   1093 
   1094 	mutex_enter(&pdaemonmtx);
   1095 	KASSERT(uvmexp.paging >= npages);
   1096 	uvmexp.paging -= npages;
   1097 
   1098 	if (pdaemon_waiters) {
   1099 		pdaemon_waiters = 0;
   1100 		cv_broadcast(&oomwait);
   1101 	}
   1102 	mutex_exit(&pdaemonmtx);
   1103 }
   1104 
   1105 static bool
   1106 processpage(struct vm_page *pg)
   1107 {
   1108 	struct uvm_object *uobj;
   1109 
   1110 	uobj = pg->uobject;
   1111 	if (rw_tryenter(uobj->vmobjlock, RW_WRITER)) {
   1112 		if ((pg->flags & PG_BUSY) == 0) {
   1113 			mutex_exit(&vmpage_lruqueue_lock);
   1114 			uobj->pgops->pgo_put(uobj, pg->offset,
   1115 			    pg->offset + PAGE_SIZE,
   1116 			    PGO_CLEANIT|PGO_FREE);
   1117 			KASSERT(!rw_write_held(uobj->vmobjlock));
   1118 			return true;
   1119 		} else {
   1120 			rw_exit(uobj->vmobjlock);
   1121 		}
   1122 	}
   1123 
   1124 	return false;
   1125 }
   1126 
   1127 /*
   1128  * The Diabolical pageDaemon Director (DDD).
   1129  *
   1130  * This routine can always use better heuristics.
   1131  */
   1132 void
   1133 uvm_pageout(void *arg)
   1134 {
   1135 	struct vm_page *pg;
   1136 	struct pool *pp, *pp_first;
   1137 	int cleaned, skip, skipped;
   1138 	bool succ;
   1139 
   1140 	mutex_enter(&pdaemonmtx);
   1141 	for (;;) {
   1142 		if (pdaemon_waiters) {
   1143 			pdaemon_waiters = 0;
   1144 			cv_broadcast(&oomwait);
   1145 		}
   1146 		if (!NEED_PAGEDAEMON()) {
   1147 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1148 			cv_wait(&pdaemoncv, &pdaemonmtx);
   1149 		}
   1150 		uvmexp.pdwoke++;
   1151 
   1152 		/* tell the world that we are hungry */
   1153 		kernel_map->flags |= VM_MAP_WANTVA;
   1154 		mutex_exit(&pdaemonmtx);
   1155 
   1156 		/*
   1157 		 * step one: reclaim the page cache.  this should give
   1158 		 * us the biggest earnings since whole pages are released
   1159 		 * into backing memory.
   1160 		 */
   1161 		pool_cache_reclaim(&pagecache);
   1162 		if (!NEED_PAGEDAEMON()) {
   1163 			mutex_enter(&pdaemonmtx);
   1164 			continue;
   1165 		}
   1166 
   1167 		/*
   1168 		 * Ok, so that didn't help.  Next, try to hunt memory
   1169 		 * by pushing out vnode pages.  The pages might contain
   1170 		 * useful cached data, but we need the memory.
   1171 		 */
   1172 		cleaned = 0;
   1173 		skip = 0;
   1174  again:
   1175 		mutex_enter(&vmpage_lruqueue_lock);
   1176 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1177 			skipped = 0;
   1178 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1179 
   1180 				/*
   1181 				 * skip over pages we _might_ have tried
   1182 				 * to handle earlier.  they might not be
   1183 				 * exactly the same ones, but I'm not too
   1184 				 * concerned.
   1185 				 */
   1186 				while (skipped++ < skip)
   1187 					continue;
   1188 
   1189 				if (processpage(pg)) {
   1190 					cleaned++;
   1191 					goto again;
   1192 				}
   1193 
   1194 				skip++;
   1195 			}
   1196 			break;
   1197 		}
   1198 		mutex_exit(&vmpage_lruqueue_lock);
   1199 
   1200 		/*
   1201 		 * And of course we need to reclaim the page cache
   1202 		 * again to actually release memory.
   1203 		 */
   1204 		pool_cache_reclaim(&pagecache);
   1205 		if (!NEED_PAGEDAEMON()) {
   1206 			mutex_enter(&pdaemonmtx);
   1207 			continue;
   1208 		}
   1209 
   1210 		/*
   1211 		 * And then drain the pools.  Wipe them out ... all of them.
   1212 		 */
   1213 		for (pp_first = NULL;;) {
   1214 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1215 
   1216 			succ = pool_drain(&pp);
   1217 			if (succ || pp == pp_first)
   1218 				break;
   1219 
   1220 			if (pp_first == NULL)
   1221 				pp_first = pp;
   1222 		}
   1223 
   1224 		/*
   1225 		 * Need to use PYEC on our bag of tricks.
   1226 		 * Unfortunately, the wife just borrowed it.
   1227 		 */
   1228 
   1229 		mutex_enter(&pdaemonmtx);
   1230 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1231 		    uvmexp.paging == 0) {
   1232 			kpause("pddlk", false, hz, &pdaemonmtx);
   1233 		}
   1234 	}
   1235 
   1236 	panic("you can swap out any time you like, but you can never leave");
   1237 }
   1238 
   1239 void
   1240 uvm_kick_pdaemon()
   1241 {
   1242 
   1243 	/*
   1244 	 * Wake up the diabolical pagedaemon director if we are over
   1245 	 * 90% of the memory limit.  This is a complete and utter
   1246 	 * stetson-harrison decision which you are allowed to finetune.
   1247 	 * Don't bother locking.  If we have some unflushed caches,
   1248 	 * other waker-uppers will deal with the issue.
   1249 	 */
   1250 	if (NEED_PAGEDAEMON()) {
   1251 		cv_signal(&pdaemoncv);
   1252 	}
   1253 }
   1254 
   1255 void *
   1256 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1257 {
   1258 	const unsigned long thelimit =
   1259 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1260 	unsigned long newmem;
   1261 	void *rv;
   1262 	int error;
   1263 
   1264 	uvm_kick_pdaemon(); /* ouch */
   1265 
   1266 	/* first we must be within the limit */
   1267  limitagain:
   1268 	if (thelimit != RUMPMEM_UNLIMITED) {
   1269 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1270 		if (newmem > thelimit) {
   1271 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1272 			if (!waitok) {
   1273 				return NULL;
   1274 			}
   1275 			uvm_wait(wmsg);
   1276 			goto limitagain;
   1277 		}
   1278 	}
   1279 
   1280 	/* second, we must get something from the backend */
   1281  again:
   1282 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1283 	if (__predict_false(error && waitok)) {
   1284 		uvm_wait(wmsg);
   1285 		goto again;
   1286 	}
   1287 
   1288 	return rv;
   1289 }
   1290 
   1291 void
   1292 rump_hyperfree(void *what, size_t size)
   1293 {
   1294 
   1295 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1296 		atomic_add_long(&curphysmem, -size);
   1297 	}
   1298 	rumpuser_free(what, size);
   1299 }
   1300