Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.193
      1 /*	$NetBSD: vm.c,v 1.193 2022/08/21 10:18:20 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.193 2022/08/21 10:18:20 riastradh Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/vmem.h>
     52 #include <sys/mman.h>
     53 #include <sys/null.h>
     54 #include <sys/vnode.h>
     55 #include <sys/radixtree.h>
     56 
     57 #include <machine/pmap.h>
     58 
     59 #if defined(__i386__) || defined(__x86_64__)
     60 /*
     61  * This file abuses the pmap abstraction to create its own statically
     62  * allocated struct pmap object, even though it can't do anything
     63  * useful with such a thing from userland.  On x86 the struct pmap
     64  * definition is private, so we have to go to extra effort to abuse it
     65  * there.  This should be fixed -- all of the struct pmap definitions
     66  * should be private, and then rump can furnish its own fake struct
     67  * pmap without clashing with anything.
     68  */
     69 #include <machine/pmap_private.h>
     70 #endif
     71 
     72 #include <uvm/uvm.h>
     73 #include <uvm/uvm_ddb.h>
     74 #include <uvm/uvm_pdpolicy.h>
     75 #include <uvm/uvm_prot.h>
     76 #include <uvm/uvm_readahead.h>
     77 #include <uvm/uvm_device.h>
     78 
     79 #include <rump-sys/kern.h>
     80 #include <rump-sys/vfs.h>
     81 
     82 #include <rump/rumpuser.h>
     83 
     84 kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
     85 kmutex_t uvm_swap_data_lock;
     86 
     87 struct uvmexp uvmexp;
     88 struct uvm uvm;
     89 
     90 #ifdef __uvmexp_pagesize
     91 const int * const uvmexp_pagesize = &uvmexp.pagesize;
     92 const int * const uvmexp_pagemask = &uvmexp.pagemask;
     93 const int * const uvmexp_pageshift = &uvmexp.pageshift;
     94 #endif
     95 
     96 static struct vm_map kernel_map_store;
     97 struct vm_map *kernel_map = &kernel_map_store;
     98 
     99 static struct vm_map module_map_store;
    100 extern struct vm_map *module_map;
    101 
    102 static struct pmap pmap_kernel;
    103 struct pmap rump_pmap_local;
    104 struct pmap *const kernel_pmap_ptr = &pmap_kernel;
    105 
    106 vmem_t *kmem_arena;
    107 vmem_t *kmem_va_arena;
    108 
    109 static unsigned int pdaemon_waiters;
    110 static kmutex_t pdaemonmtx;
    111 static kcondvar_t pdaemoncv, oomwait;
    112 
    113 /* all local non-proc0 processes share this vmspace */
    114 struct vmspace *rump_vmspace_local;
    115 
    116 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
    117 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
    118 static unsigned long curphysmem;
    119 static unsigned long dddlim;		/* 90% of memory limit used */
    120 #define NEED_PAGEDAEMON() \
    121     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    122 #define PDRESERVE (2*MAXPHYS)
    123 
    124 /*
    125  * Try to free two pages worth of pages from objects.
    126  * If this successfully frees a full page cache page, we'll
    127  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    128  */
    129 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    130 
    131 /*
    132  * Keep a list of least recently used pages.  Since the only way a
    133  * rump kernel can "access" a page is via lookup, we put the page
    134  * at the back of queue every time a lookup for it is done.  If the
    135  * page is in front of this global queue and we're short of memory,
    136  * it's a candidate for pageout.
    137  */
    138 static struct pglist vmpage_lruqueue;
    139 static unsigned vmpage_onqueue;
    140 
    141 /*
    142  * vm pages
    143  */
    144 
    145 static int
    146 pgctor(void *arg, void *obj, int flags)
    147 {
    148 	struct vm_page *pg = obj;
    149 
    150 	memset(pg, 0, sizeof(*pg));
    151 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    152 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    153 	return pg->uanon == NULL;
    154 }
    155 
    156 static void
    157 pgdtor(void *arg, void *obj)
    158 {
    159 	struct vm_page *pg = obj;
    160 
    161 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    162 }
    163 
    164 static struct pool_cache pagecache;
    165 
    166 /*
    167  * Called with the object locked.  We don't support anons.
    168  */
    169 struct vm_page *
    170 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    171 	int flags, int strat, int free_list)
    172 {
    173 	struct vm_page *pg;
    174 
    175 	KASSERT(uobj && rw_write_held(uobj->vmobjlock));
    176 	KASSERT(anon == NULL);
    177 
    178 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    179 	if (__predict_false(pg == NULL)) {
    180 		return NULL;
    181 	}
    182 	mutex_init(&pg->interlock, MUTEX_DEFAULT, IPL_NONE);
    183 
    184 	pg->offset = off;
    185 	pg->uobject = uobj;
    186 
    187 	if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
    188 	    pg) != 0) {
    189 		pool_cache_put(&pagecache, pg);
    190 		return NULL;
    191 	}
    192 
    193 	if (UVM_OBJ_IS_VNODE(uobj)) {
    194 		if (uobj->uo_npages == 0) {
    195 			struct vnode *vp = (struct vnode *)uobj;
    196 			mutex_enter(vp->v_interlock);
    197 			vp->v_iflag |= VI_PAGES;
    198 			mutex_exit(vp->v_interlock);
    199 		}
    200 		pg->flags |= PG_FILE;
    201 	}
    202 	uobj->uo_npages++;
    203 
    204 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    205 	if (flags & UVM_PGA_ZERO) {
    206 		uvm_pagezero(pg);
    207 	}
    208 
    209 	/*
    210 	 * Don't put anons on the LRU page queue.  We can't flush them
    211 	 * (there's no concept of swap in a rump kernel), so no reason
    212 	 * to bother with them.
    213 	 */
    214 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    215 		atomic_inc_uint(&vmpage_onqueue);
    216 		mutex_enter(&vmpage_lruqueue_lock);
    217 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    218 		mutex_exit(&vmpage_lruqueue_lock);
    219 	} else {
    220 		pg->flags |= PG_AOBJ;
    221 	}
    222 
    223 	return pg;
    224 }
    225 
    226 /*
    227  * Release a page.
    228  *
    229  * Called with the vm object locked.
    230  */
    231 void
    232 uvm_pagefree(struct vm_page *pg)
    233 {
    234 	struct uvm_object *uobj = pg->uobject;
    235 	struct vm_page *pg2 __unused;
    236 
    237 	KASSERT(rw_write_held(uobj->vmobjlock));
    238 
    239 	mutex_enter(&pg->interlock);
    240 	uvm_pagewakeup(pg);
    241 	mutex_exit(&pg->interlock);
    242 
    243 	uobj->uo_npages--;
    244 	pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    245 	KASSERT(pg == pg2);
    246 
    247 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    248 		mutex_enter(&vmpage_lruqueue_lock);
    249 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    250 		mutex_exit(&vmpage_lruqueue_lock);
    251 		atomic_dec_uint(&vmpage_onqueue);
    252 	}
    253 
    254 	if (UVM_OBJ_IS_VNODE(uobj) && uobj->uo_npages == 0) {
    255 		struct vnode *vp = (struct vnode *)uobj;
    256 		mutex_enter(vp->v_interlock);
    257 		vp->v_iflag &= ~VI_PAGES;
    258 		mutex_exit(vp->v_interlock);
    259 	}
    260 
    261 	mutex_destroy(&pg->interlock);
    262 	pool_cache_put(&pagecache, pg);
    263 }
    264 
    265 void
    266 uvm_pagezero(struct vm_page *pg)
    267 {
    268 
    269 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    270 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    271 }
    272 
    273 /*
    274  * uvm_page_owner_locked_p: return true if object associated with page is
    275  * locked.  this is a weak check for runtime assertions only.
    276  */
    277 
    278 bool
    279 uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
    280 {
    281 
    282 	if (exclusive)
    283 		return rw_write_held(pg->uobject->vmobjlock);
    284 	else
    285 		return rw_lock_held(pg->uobject->vmobjlock);
    286 }
    287 
    288 /*
    289  * Misc routines
    290  */
    291 
    292 static kmutex_t pagermtx;
    293 
    294 void
    295 uvm_init(void)
    296 {
    297 	char buf[64];
    298 
    299 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    300 		unsigned long tmp;
    301 		char *ep;
    302 		int mult;
    303 
    304 		tmp = strtoul(buf, &ep, 10);
    305 		if (strlen(ep) > 1)
    306 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    307 
    308 		/* mini-dehumanize-number */
    309 		mult = 1;
    310 		switch (*ep) {
    311 		case 'k':
    312 			mult = 1024;
    313 			break;
    314 		case 'm':
    315 			mult = 1024*1024;
    316 			break;
    317 		case 'g':
    318 			mult = 1024*1024*1024;
    319 			break;
    320 		case 0:
    321 			break;
    322 		default:
    323 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    324 		}
    325 		rump_physmemlimit = tmp * mult;
    326 
    327 		if (rump_physmemlimit / mult != tmp)
    328 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    329 
    330 		/* reserve some memory for the pager */
    331 		if (rump_physmemlimit <= PDRESERVE)
    332 			panic("uvm_init: system reserves %d bytes of mem, "
    333 			    "only %lu bytes given",
    334 			    PDRESERVE, rump_physmemlimit);
    335 		pdlimit = rump_physmemlimit;
    336 		rump_physmemlimit -= PDRESERVE;
    337 
    338 		if (pdlimit < 1024*1024)
    339 			printf("uvm_init: WARNING: <1MB RAM limit, "
    340 			    "hope you know what you're doing\n");
    341 
    342 #define HUMANIZE_BYTES 9
    343 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    344 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    345 #undef HUMANIZE_BYTES
    346 		dddlim = 9 * (rump_physmemlimit / 10);
    347 	} else {
    348 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    349 	}
    350 	aprint_verbose("total memory = %s\n", buf);
    351 
    352 	TAILQ_INIT(&vmpage_lruqueue);
    353 
    354 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
    355 		uvmexp.npages = physmem;
    356 	} else {
    357 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
    358 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
    359 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
    360 	}
    361 	/*
    362 	 * uvmexp.free is not used internally or updated.  The reason is
    363 	 * that the memory hypercall allocator is allowed to allocate
    364 	 * non-page sized chunks.  We use a byte count in curphysmem
    365 	 * instead.
    366 	 */
    367 	uvmexp.free = uvmexp.npages;
    368 
    369 #ifndef __uvmexp_pagesize
    370 	uvmexp.pagesize = PAGE_SIZE;
    371 	uvmexp.pagemask = PAGE_MASK;
    372 	uvmexp.pageshift = PAGE_SHIFT;
    373 #else
    374 #define FAKE_PAGE_SHIFT 12
    375 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    376 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    377 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    378 #undef FAKE_PAGE_SHIFT
    379 #endif
    380 
    381 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    382 	mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
    383 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    384 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    385 
    386 	cv_init(&pdaemoncv, "pdaemon");
    387 	cv_init(&oomwait, "oomwait");
    388 
    389 	module_map = &module_map_store;
    390 
    391 	kernel_map->pmap = pmap_kernel();
    392 
    393 	pool_subsystem_init();
    394 
    395 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    396 	    NULL, NULL, NULL,
    397 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    398 
    399 	vmem_subsystem_init(kmem_arena);
    400 
    401 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    402 	    vmem_alloc, vmem_free, kmem_arena,
    403 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    404 
    405 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    406 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    407 
    408 	radix_tree_init();
    409 
    410 	/* create vmspace used by local clients */
    411 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
    412 	uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
    413 }
    414 
    415 void
    416 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    417     bool topdown)
    418 {
    419 
    420 	vm->vm_map.pmap = pmap;
    421 	vm->vm_refcnt = 1;
    422 }
    423 
    424 int
    425 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
    426     bool new_pageable, int lockflags)
    427 {
    428 	return 0;
    429 }
    430 
    431 void
    432 uvm_pagewire(struct vm_page *pg)
    433 {
    434 
    435 	/* nada */
    436 }
    437 
    438 void
    439 uvm_pageunwire(struct vm_page *pg)
    440 {
    441 
    442 	/* nada */
    443 }
    444 
    445 int
    446 uvm_availmem(bool cached)
    447 {
    448 
    449 	return uvmexp.free;
    450 }
    451 
    452 void
    453 uvm_pagelock(struct vm_page *pg)
    454 {
    455 
    456 	mutex_enter(&pg->interlock);
    457 }
    458 
    459 void
    460 uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
    461 {
    462 
    463 	if (pg1 < pg2) {
    464 		mutex_enter(&pg1->interlock);
    465 		mutex_enter(&pg2->interlock);
    466 	} else {
    467 		mutex_enter(&pg2->interlock);
    468 		mutex_enter(&pg1->interlock);
    469 	}
    470 }
    471 
    472 void
    473 uvm_pageunlock(struct vm_page *pg)
    474 {
    475 
    476 	mutex_exit(&pg->interlock);
    477 }
    478 
    479 void
    480 uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
    481 {
    482 
    483 	mutex_exit(&pg1->interlock);
    484 	mutex_exit(&pg2->interlock);
    485 }
    486 
    487 /* where's your schmonz now? */
    488 #define PUNLIMIT(a)	\
    489 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    490 void
    491 uvm_init_limits(struct proc *p)
    492 {
    493 
    494 #ifndef DFLSSIZ
    495 #define DFLSSIZ (16*1024*1024)
    496 #endif
    497 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    498 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    499 	PUNLIMIT(RLIMIT_DATA);
    500 	PUNLIMIT(RLIMIT_RSS);
    501 	PUNLIMIT(RLIMIT_AS);
    502 	/* nice, cascade */
    503 }
    504 #undef PUNLIMIT
    505 
    506 /*
    507  * This satisfies the "disgusting mmap hack" used by proplib.
    508  */
    509 int
    510 uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
    511 {
    512 	int error;
    513 
    514 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    515 	if (*addrp != NULL)
    516 		panic("uvm_mmap() variant unsupported");
    517 
    518 	if (RUMP_LOCALPROC_P(curproc)) {
    519 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
    520 	} else {
    521 		error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
    522 		    size, addrp);
    523 	}
    524 	return error;
    525 }
    526 
    527 /*
    528  * Stubs for things referenced from vfs_vnode.c but not used.
    529  */
    530 const dev_t zerodev;
    531 
    532 struct uvm_object *
    533 udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
    534 {
    535 	return NULL;
    536 }
    537 
    538 struct pagerinfo {
    539 	vaddr_t pgr_kva;
    540 	int pgr_npages;
    541 	struct vm_page **pgr_pgs;
    542 	bool pgr_read;
    543 
    544 	LIST_ENTRY(pagerinfo) pgr_entries;
    545 };
    546 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    547 
    548 /*
    549  * Pager "map" in routine.  Instead of mapping, we allocate memory
    550  * and copy page contents there.  The reason for copying instead of
    551  * mapping is simple: we do not assume we are running on virtual
    552  * memory.  Even if we could emulate virtual memory in some envs
    553  * such as userspace, copying is much faster than trying to awkardly
    554  * cope with remapping (see "Design and Implementation" pp.95-98).
    555  * The downside of the approach is that the pager requires MAXPHYS
    556  * free memory to perform paging, but short of virtual memory or
    557  * making the pager do I/O in page-sized chunks we cannot do much
    558  * about that.
    559  */
    560 vaddr_t
    561 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    562 {
    563 	struct pagerinfo *pgri;
    564 	vaddr_t curkva;
    565 	int i;
    566 
    567 	/* allocate structures */
    568 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    569 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    570 	pgri->pgr_npages = npages;
    571 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    572 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    573 
    574 	/* copy contents to "mapped" memory */
    575 	for (i = 0, curkva = pgri->pgr_kva;
    576 	    i < npages;
    577 	    i++, curkva += PAGE_SIZE) {
    578 		/*
    579 		 * We need to copy the previous contents of the pages to
    580 		 * the window even if we are reading from the
    581 		 * device, since the device might not fill the contents of
    582 		 * the full mapped range and we will end up corrupting
    583 		 * data when we unmap the window.
    584 		 */
    585 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    586 		pgri->pgr_pgs[i] = pgs[i];
    587 	}
    588 
    589 	mutex_enter(&pagermtx);
    590 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    591 	mutex_exit(&pagermtx);
    592 
    593 	return pgri->pgr_kva;
    594 }
    595 
    596 /*
    597  * map out the pager window.  return contents from VA to page storage
    598  * and free structures.
    599  *
    600  * Note: does not currently support partial frees
    601  */
    602 void
    603 uvm_pagermapout(vaddr_t kva, int npages)
    604 {
    605 	struct pagerinfo *pgri;
    606 	vaddr_t curkva;
    607 	int i;
    608 
    609 	mutex_enter(&pagermtx);
    610 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    611 		if (pgri->pgr_kva == kva)
    612 			break;
    613 	}
    614 	KASSERT(pgri);
    615 	if (pgri->pgr_npages != npages)
    616 		panic("uvm_pagermapout: partial unmapping not supported");
    617 	LIST_REMOVE(pgri, pgr_entries);
    618 	mutex_exit(&pagermtx);
    619 
    620 	if (pgri->pgr_read) {
    621 		for (i = 0, curkva = pgri->pgr_kva;
    622 		    i < pgri->pgr_npages;
    623 		    i++, curkva += PAGE_SIZE) {
    624 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    625 		}
    626 	}
    627 
    628 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    629 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    630 	kmem_free(pgri, sizeof(*pgri));
    631 }
    632 
    633 /*
    634  * convert va in pager window to page structure.
    635  * XXX: how expensive is this (global lock, list traversal)?
    636  */
    637 struct vm_page *
    638 uvm_pageratop(vaddr_t va)
    639 {
    640 	struct pagerinfo *pgri;
    641 	struct vm_page *pg = NULL;
    642 	int i;
    643 
    644 	mutex_enter(&pagermtx);
    645 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    646 		if (pgri->pgr_kva <= va
    647 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    648 			break;
    649 	}
    650 	if (pgri) {
    651 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    652 		pg = pgri->pgr_pgs[i];
    653 	}
    654 	mutex_exit(&pagermtx);
    655 
    656 	return pg;
    657 }
    658 
    659 /*
    660  * Called with the vm object locked.
    661  *
    662  * Put vnode object pages at the end of the access queue to indicate
    663  * they have been recently accessed and should not be immediate
    664  * candidates for pageout.  Do not do this for lookups done by
    665  * the pagedaemon to mimic pmap_kentered mappings which don't track
    666  * access information.
    667  */
    668 struct vm_page *
    669 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    670 {
    671 	struct vm_page *pg;
    672 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    673 
    674 	pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
    675 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    676 		mutex_enter(&vmpage_lruqueue_lock);
    677 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    678 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    679 		mutex_exit(&vmpage_lruqueue_lock);
    680 	}
    681 
    682 	return pg;
    683 }
    684 
    685 void
    686 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    687 {
    688 	struct vm_page *pg;
    689 	int i, pageout_done;
    690 
    691 	KASSERT(npgs > 0);
    692 
    693 	pageout_done = 0;
    694 	for (i = 0; i < npgs; i++) {
    695 		pg = pgs[i];
    696 		if (pg == NULL || pg == PGO_DONTCARE) {
    697 			continue;
    698 		}
    699 
    700 #if 0
    701 		KASSERT(uvm_page_owner_locked_p(pg, true));
    702 #else
    703 		/*
    704 		 * uvm_page_owner_locked_p() is not available in rump,
    705 		 * and rump doesn't support amaps anyway.
    706 		 */
    707 		KASSERT(rw_write_held(pg->uobject->vmobjlock));
    708 #endif
    709 		KASSERT(pg->flags & PG_BUSY);
    710 
    711 		if (pg->flags & PG_PAGEOUT) {
    712 			pg->flags &= ~PG_PAGEOUT;
    713 			pg->flags |= PG_RELEASED;
    714 			pageout_done++;
    715 			atomic_inc_uint(&uvmexp.pdfreed);
    716 		}
    717 		if (pg->flags & PG_RELEASED) {
    718 			KASSERT(pg->uobject != NULL ||
    719 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
    720 			pg->flags &= ~PG_RELEASED;
    721 			uvm_pagefree(pg);
    722 		} else {
    723 			KASSERT((pg->flags & PG_FAKE) == 0);
    724 			pg->flags &= ~PG_BUSY;
    725 			uvm_pagelock(pg);
    726 			uvm_pagewakeup(pg);
    727 			uvm_pageunlock(pg);
    728 			UVM_PAGE_OWN(pg, NULL);
    729 		}
    730 	}
    731 	if (pageout_done != 0) {
    732 		uvm_pageout_done(pageout_done);
    733 	}
    734 }
    735 
    736 void
    737 uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
    738 {
    739 
    740 	KASSERT(rw_lock_held(lock));
    741 	KASSERT((pg->flags & PG_BUSY) != 0);
    742 
    743 	mutex_enter(&pg->interlock);
    744 	pg->pqflags |= PQ_WANTED;
    745 	rw_exit(lock);
    746 	UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
    747 }
    748 
    749 void
    750 uvm_pagewakeup(struct vm_page *pg)
    751 {
    752 
    753 	KASSERT(mutex_owned(&pg->interlock));
    754 
    755 	if ((pg->pqflags & PQ_WANTED) != 0) {
    756 		pg->pqflags &= ~PQ_WANTED;
    757 		wakeup(pg);
    758 	}
    759 }
    760 
    761 void
    762 uvm_estimatepageable(int *active, int *inactive)
    763 {
    764 
    765 	/* XXX: guessing game */
    766 	*active = 1024;
    767 	*inactive = 1024;
    768 }
    769 
    770 int
    771 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    772 {
    773 
    774 	panic("%s: unimplemented", __func__);
    775 }
    776 
    777 void
    778 uvm_unloan(void *v, int npages, int flags)
    779 {
    780 
    781 	panic("%s: unimplemented", __func__);
    782 }
    783 
    784 int
    785 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    786 	struct vm_page **opp)
    787 {
    788 
    789 	return EBUSY;
    790 }
    791 
    792 struct vm_page *
    793 uvm_loanbreak(struct vm_page *pg)
    794 {
    795 
    796 	panic("%s: unimplemented", __func__);
    797 }
    798 
    799 void
    800 ubc_purge(struct uvm_object *uobj)
    801 {
    802 
    803 }
    804 
    805 vaddr_t
    806 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
    807 {
    808 
    809 	return 0;
    810 }
    811 
    812 int
    813 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    814 	vm_prot_t prot, bool set_max)
    815 {
    816 
    817 	return EOPNOTSUPP;
    818 }
    819 
    820 int
    821 uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
    822     struct uvm_object *uobj, voff_t uoffset, vsize_t align,
    823     uvm_flag_t flags)
    824 {
    825 
    826 	*startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
    827 	return *startp != 0 ? 0 : ENOMEM;
    828 }
    829 
    830 void
    831 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
    832 {
    833 
    834 	rump_hyperfree((void*)start, end-start);
    835 }
    836 
    837 
    838 /*
    839  * UVM km
    840  */
    841 
    842 vaddr_t
    843 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    844 {
    845 	void *rv, *desired = NULL;
    846 	int alignbit, error;
    847 
    848 #ifdef __x86_64__
    849 	/*
    850 	 * On amd64, allocate all module memory from the lowest 2GB.
    851 	 * This is because NetBSD kernel modules are compiled
    852 	 * with -mcmodel=kernel and reserve only 4 bytes for
    853 	 * offsets.  If we load code compiled with -mcmodel=kernel
    854 	 * anywhere except the lowest or highest 2GB, it will not
    855 	 * work.  Since userspace does not have access to the highest
    856 	 * 2GB, use the lowest 2GB.
    857 	 *
    858 	 * Note: this assumes the rump kernel resides in
    859 	 * the lowest 2GB as well.
    860 	 *
    861 	 * Note2: yes, it's a quick hack, but since this the only
    862 	 * place where we care about the map we're allocating from,
    863 	 * just use a simple "if" instead of coming up with a fancy
    864 	 * generic solution.
    865 	 */
    866 	if (map == module_map) {
    867 		desired = (void *)(0x80000000 - size);
    868 	}
    869 #endif
    870 
    871 	if (__predict_false(map == module_map)) {
    872 		alignbit = 0;
    873 		if (align) {
    874 			alignbit = ffs(align)-1;
    875 		}
    876 		error = rumpuser_anonmmap(desired, size, alignbit,
    877 		    flags & UVM_KMF_EXEC, &rv);
    878 	} else {
    879 		error = rumpuser_malloc(size, align, &rv);
    880 	}
    881 
    882 	if (error) {
    883 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    884 			return 0;
    885 		else
    886 			panic("uvm_km_alloc failed");
    887 	}
    888 
    889 	if (flags & UVM_KMF_ZERO)
    890 		memset(rv, 0, size);
    891 
    892 	return (vaddr_t)rv;
    893 }
    894 
    895 void
    896 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    897 {
    898 
    899 	if (__predict_false(map == module_map))
    900 		rumpuser_unmap((void *)vaddr, size);
    901 	else
    902 		rumpuser_free((void *)vaddr, size);
    903 }
    904 
    905 int
    906 uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
    907 {
    908 	return 0;
    909 }
    910 
    911 struct vm_map *
    912 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    913 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    914 {
    915 
    916 	return (struct vm_map *)417416;
    917 }
    918 
    919 int
    920 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    921     vmem_addr_t *addr)
    922 {
    923 	vaddr_t va;
    924 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    925 	    (flags & VM_SLEEP), "kmalloc");
    926 
    927 	if (va) {
    928 		*addr = va;
    929 		return 0;
    930 	} else {
    931 		return ENOMEM;
    932 	}
    933 }
    934 
    935 void
    936 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    937 {
    938 
    939 	rump_hyperfree((void *)addr, size);
    940 }
    941 
    942 /*
    943  * VM space locking routines.  We don't really have to do anything,
    944  * since the pages are always "wired" (both local and remote processes).
    945  */
    946 int
    947 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    948 {
    949 
    950 	return 0;
    951 }
    952 
    953 void
    954 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    955 {
    956 
    957 }
    958 
    959 /*
    960  * For the local case the buffer mappers don't need to do anything.
    961  * For the remote case we need to reserve space and copy data in or
    962  * out, depending on B_READ/B_WRITE.
    963  */
    964 int
    965 vmapbuf(struct buf *bp, vsize_t len)
    966 {
    967 	int error = 0;
    968 
    969 	bp->b_saveaddr = bp->b_data;
    970 
    971 	/* remote case */
    972 	if (!RUMP_LOCALPROC_P(curproc)) {
    973 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    974 		if (BUF_ISWRITE(bp)) {
    975 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    976 			if (error) {
    977 				rump_hyperfree(bp->b_data, len);
    978 				bp->b_data = bp->b_saveaddr;
    979 				bp->b_saveaddr = 0;
    980 			}
    981 		}
    982 	}
    983 
    984 	return error;
    985 }
    986 
    987 void
    988 vunmapbuf(struct buf *bp, vsize_t len)
    989 {
    990 
    991 	/* remote case */
    992 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    993 		if (BUF_ISREAD(bp)) {
    994 			bp->b_error = copyout_proc(bp->b_proc,
    995 			    bp->b_data, bp->b_saveaddr, len);
    996 		}
    997 		rump_hyperfree(bp->b_data, len);
    998 	}
    999 
   1000 	bp->b_data = bp->b_saveaddr;
   1001 	bp->b_saveaddr = 0;
   1002 }
   1003 
   1004 void
   1005 uvmspace_addref(struct vmspace *vm)
   1006 {
   1007 
   1008 	/*
   1009 	 * No dynamically allocated vmspaces exist.
   1010 	 */
   1011 }
   1012 
   1013 void
   1014 uvmspace_free(struct vmspace *vm)
   1015 {
   1016 
   1017 	/* nothing for now */
   1018 }
   1019 
   1020 /*
   1021  * page life cycle stuff.  it really doesn't exist, so just stubs.
   1022  */
   1023 
   1024 void
   1025 uvm_pageactivate(struct vm_page *pg)
   1026 {
   1027 
   1028 	/* nada */
   1029 }
   1030 
   1031 void
   1032 uvm_pagedeactivate(struct vm_page *pg)
   1033 {
   1034 
   1035 	/* nada */
   1036 }
   1037 
   1038 void
   1039 uvm_pagedequeue(struct vm_page *pg)
   1040 {
   1041 
   1042 	/* nada*/
   1043 }
   1044 
   1045 void
   1046 uvm_pageenqueue(struct vm_page *pg)
   1047 {
   1048 
   1049 	/* nada */
   1050 }
   1051 
   1052 void
   1053 uvmpdpol_anfree(struct vm_anon *an)
   1054 {
   1055 
   1056 	/* nada */
   1057 }
   1058 
   1059 /*
   1060  * Physical address accessors.
   1061  */
   1062 
   1063 struct vm_page *
   1064 uvm_phys_to_vm_page(paddr_t pa)
   1065 {
   1066 
   1067 	return NULL;
   1068 }
   1069 
   1070 paddr_t
   1071 uvm_vm_page_to_phys(const struct vm_page *pg)
   1072 {
   1073 
   1074 	return 0;
   1075 }
   1076 
   1077 vaddr_t
   1078 uvm_uarea_alloc(void)
   1079 {
   1080 
   1081 	/* non-zero */
   1082 	return (vaddr_t)11;
   1083 }
   1084 
   1085 void
   1086 uvm_uarea_free(vaddr_t uarea)
   1087 {
   1088 
   1089 	/* nata, so creamy */
   1090 }
   1091 
   1092 /*
   1093  * Routines related to the Page Baroness.
   1094  */
   1095 
   1096 void
   1097 uvm_wait(const char *msg)
   1098 {
   1099 
   1100 	if (__predict_false(rump_threads == 0))
   1101 		panic("pagedaemon missing (RUMP_THREADS = 0)");
   1102 
   1103 	if (curlwp == uvm.pagedaemon_lwp) {
   1104 		/* is it possible for us to later get memory? */
   1105 		if (!uvmexp.paging)
   1106 			panic("pagedaemon out of memory");
   1107 	}
   1108 
   1109 	mutex_enter(&pdaemonmtx);
   1110 	pdaemon_waiters++;
   1111 	cv_signal(&pdaemoncv);
   1112 	cv_wait(&oomwait, &pdaemonmtx);
   1113 	mutex_exit(&pdaemonmtx);
   1114 }
   1115 
   1116 void
   1117 uvm_pageout_start(int npages)
   1118 {
   1119 
   1120 	mutex_enter(&pdaemonmtx);
   1121 	uvmexp.paging += npages;
   1122 	mutex_exit(&pdaemonmtx);
   1123 }
   1124 
   1125 void
   1126 uvm_pageout_done(int npages)
   1127 {
   1128 
   1129 	if (!npages)
   1130 		return;
   1131 
   1132 	mutex_enter(&pdaemonmtx);
   1133 	KASSERT(uvmexp.paging >= npages);
   1134 	uvmexp.paging -= npages;
   1135 
   1136 	if (pdaemon_waiters) {
   1137 		pdaemon_waiters = 0;
   1138 		cv_broadcast(&oomwait);
   1139 	}
   1140 	mutex_exit(&pdaemonmtx);
   1141 }
   1142 
   1143 static bool
   1144 processpage(struct vm_page *pg)
   1145 {
   1146 	struct uvm_object *uobj;
   1147 
   1148 	uobj = pg->uobject;
   1149 	if (rw_tryenter(uobj->vmobjlock, RW_WRITER)) {
   1150 		if ((pg->flags & PG_BUSY) == 0) {
   1151 			mutex_exit(&vmpage_lruqueue_lock);
   1152 			uobj->pgops->pgo_put(uobj, pg->offset,
   1153 			    pg->offset + PAGE_SIZE,
   1154 			    PGO_CLEANIT|PGO_FREE);
   1155 			KASSERT(!rw_write_held(uobj->vmobjlock));
   1156 			return true;
   1157 		} else {
   1158 			rw_exit(uobj->vmobjlock);
   1159 		}
   1160 	}
   1161 
   1162 	return false;
   1163 }
   1164 
   1165 /*
   1166  * The Diabolical pageDaemon Director (DDD).
   1167  *
   1168  * This routine can always use better heuristics.
   1169  */
   1170 void
   1171 uvm_pageout(void *arg)
   1172 {
   1173 	struct vm_page *pg;
   1174 	struct pool *pp, *pp_first;
   1175 	int cleaned, skip, skipped;
   1176 	bool succ;
   1177 
   1178 	mutex_enter(&pdaemonmtx);
   1179 	for (;;) {
   1180 		if (pdaemon_waiters) {
   1181 			pdaemon_waiters = 0;
   1182 			cv_broadcast(&oomwait);
   1183 		}
   1184 		if (!NEED_PAGEDAEMON()) {
   1185 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1186 			cv_wait(&pdaemoncv, &pdaemonmtx);
   1187 		}
   1188 		uvmexp.pdwoke++;
   1189 
   1190 		/* tell the world that we are hungry */
   1191 		kernel_map->flags |= VM_MAP_WANTVA;
   1192 		mutex_exit(&pdaemonmtx);
   1193 
   1194 		/*
   1195 		 * step one: reclaim the page cache.  this should give
   1196 		 * us the biggest earnings since whole pages are released
   1197 		 * into backing memory.
   1198 		 */
   1199 		pool_cache_reclaim(&pagecache);
   1200 		if (!NEED_PAGEDAEMON()) {
   1201 			mutex_enter(&pdaemonmtx);
   1202 			continue;
   1203 		}
   1204 
   1205 		/*
   1206 		 * Ok, so that didn't help.  Next, try to hunt memory
   1207 		 * by pushing out vnode pages.  The pages might contain
   1208 		 * useful cached data, but we need the memory.
   1209 		 */
   1210 		cleaned = 0;
   1211 		skip = 0;
   1212  again:
   1213 		mutex_enter(&vmpage_lruqueue_lock);
   1214 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1215 			skipped = 0;
   1216 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1217 
   1218 				/*
   1219 				 * skip over pages we _might_ have tried
   1220 				 * to handle earlier.  they might not be
   1221 				 * exactly the same ones, but I'm not too
   1222 				 * concerned.
   1223 				 */
   1224 				while (skipped++ < skip)
   1225 					continue;
   1226 
   1227 				if (processpage(pg)) {
   1228 					cleaned++;
   1229 					goto again;
   1230 				}
   1231 
   1232 				skip++;
   1233 			}
   1234 			break;
   1235 		}
   1236 		mutex_exit(&vmpage_lruqueue_lock);
   1237 
   1238 		/*
   1239 		 * And of course we need to reclaim the page cache
   1240 		 * again to actually release memory.
   1241 		 */
   1242 		pool_cache_reclaim(&pagecache);
   1243 		if (!NEED_PAGEDAEMON()) {
   1244 			mutex_enter(&pdaemonmtx);
   1245 			continue;
   1246 		}
   1247 
   1248 		/*
   1249 		 * And then drain the pools.  Wipe them out ... all of them.
   1250 		 */
   1251 		for (pp_first = NULL;;) {
   1252 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1253 
   1254 			succ = pool_drain(&pp);
   1255 			if (succ || pp == pp_first)
   1256 				break;
   1257 
   1258 			if (pp_first == NULL)
   1259 				pp_first = pp;
   1260 		}
   1261 
   1262 		/*
   1263 		 * Need to use PYEC on our bag of tricks.
   1264 		 * Unfortunately, the wife just borrowed it.
   1265 		 */
   1266 
   1267 		mutex_enter(&pdaemonmtx);
   1268 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1269 		    uvmexp.paging == 0) {
   1270 			kpause("pddlk", false, hz, &pdaemonmtx);
   1271 		}
   1272 	}
   1273 
   1274 	panic("you can swap out any time you like, but you can never leave");
   1275 }
   1276 
   1277 void
   1278 uvm_kick_pdaemon()
   1279 {
   1280 
   1281 	/*
   1282 	 * Wake up the diabolical pagedaemon director if we are over
   1283 	 * 90% of the memory limit.  This is a complete and utter
   1284 	 * stetson-harrison decision which you are allowed to finetune.
   1285 	 * Don't bother locking.  If we have some unflushed caches,
   1286 	 * other waker-uppers will deal with the issue.
   1287 	 */
   1288 	if (NEED_PAGEDAEMON()) {
   1289 		cv_signal(&pdaemoncv);
   1290 	}
   1291 }
   1292 
   1293 void *
   1294 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1295 {
   1296 	const unsigned long thelimit =
   1297 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1298 	unsigned long newmem;
   1299 	void *rv;
   1300 	int error;
   1301 
   1302 	uvm_kick_pdaemon(); /* ouch */
   1303 
   1304 	/* first we must be within the limit */
   1305  limitagain:
   1306 	if (thelimit != RUMPMEM_UNLIMITED) {
   1307 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1308 		if (newmem > thelimit) {
   1309 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1310 			if (!waitok) {
   1311 				return NULL;
   1312 			}
   1313 			uvm_wait(wmsg);
   1314 			goto limitagain;
   1315 		}
   1316 	}
   1317 
   1318 	/* second, we must get something from the backend */
   1319  again:
   1320 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1321 	if (__predict_false(error && waitok)) {
   1322 		uvm_wait(wmsg);
   1323 		goto again;
   1324 	}
   1325 
   1326 	return rv;
   1327 }
   1328 
   1329 void
   1330 rump_hyperfree(void *what, size_t size)
   1331 {
   1332 
   1333 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1334 		atomic_add_long(&curphysmem, -size);
   1335 	}
   1336 	rumpuser_free(what, size);
   1337 }
   1338