vm.c revision 1.193 1 /* $NetBSD: vm.c,v 1.193 2022/08/21 10:18:20 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.193 2022/08/21 10:18:20 riastradh Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/vmem.h>
52 #include <sys/mman.h>
53 #include <sys/null.h>
54 #include <sys/vnode.h>
55 #include <sys/radixtree.h>
56
57 #include <machine/pmap.h>
58
59 #if defined(__i386__) || defined(__x86_64__)
60 /*
61 * This file abuses the pmap abstraction to create its own statically
62 * allocated struct pmap object, even though it can't do anything
63 * useful with such a thing from userland. On x86 the struct pmap
64 * definition is private, so we have to go to extra effort to abuse it
65 * there. This should be fixed -- all of the struct pmap definitions
66 * should be private, and then rump can furnish its own fake struct
67 * pmap without clashing with anything.
68 */
69 #include <machine/pmap_private.h>
70 #endif
71
72 #include <uvm/uvm.h>
73 #include <uvm/uvm_ddb.h>
74 #include <uvm/uvm_pdpolicy.h>
75 #include <uvm/uvm_prot.h>
76 #include <uvm/uvm_readahead.h>
77 #include <uvm/uvm_device.h>
78
79 #include <rump-sys/kern.h>
80 #include <rump-sys/vfs.h>
81
82 #include <rump/rumpuser.h>
83
84 kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
85 kmutex_t uvm_swap_data_lock;
86
87 struct uvmexp uvmexp;
88 struct uvm uvm;
89
90 #ifdef __uvmexp_pagesize
91 const int * const uvmexp_pagesize = &uvmexp.pagesize;
92 const int * const uvmexp_pagemask = &uvmexp.pagemask;
93 const int * const uvmexp_pageshift = &uvmexp.pageshift;
94 #endif
95
96 static struct vm_map kernel_map_store;
97 struct vm_map *kernel_map = &kernel_map_store;
98
99 static struct vm_map module_map_store;
100 extern struct vm_map *module_map;
101
102 static struct pmap pmap_kernel;
103 struct pmap rump_pmap_local;
104 struct pmap *const kernel_pmap_ptr = &pmap_kernel;
105
106 vmem_t *kmem_arena;
107 vmem_t *kmem_va_arena;
108
109 static unsigned int pdaemon_waiters;
110 static kmutex_t pdaemonmtx;
111 static kcondvar_t pdaemoncv, oomwait;
112
113 /* all local non-proc0 processes share this vmspace */
114 struct vmspace *rump_vmspace_local;
115
116 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
117 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
118 static unsigned long curphysmem;
119 static unsigned long dddlim; /* 90% of memory limit used */
120 #define NEED_PAGEDAEMON() \
121 (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
122 #define PDRESERVE (2*MAXPHYS)
123
124 /*
125 * Try to free two pages worth of pages from objects.
126 * If this successfully frees a full page cache page, we'll
127 * free the released page plus PAGE_SIZE/sizeof(vm_page).
128 */
129 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
130
131 /*
132 * Keep a list of least recently used pages. Since the only way a
133 * rump kernel can "access" a page is via lookup, we put the page
134 * at the back of queue every time a lookup for it is done. If the
135 * page is in front of this global queue and we're short of memory,
136 * it's a candidate for pageout.
137 */
138 static struct pglist vmpage_lruqueue;
139 static unsigned vmpage_onqueue;
140
141 /*
142 * vm pages
143 */
144
145 static int
146 pgctor(void *arg, void *obj, int flags)
147 {
148 struct vm_page *pg = obj;
149
150 memset(pg, 0, sizeof(*pg));
151 pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
152 (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
153 return pg->uanon == NULL;
154 }
155
156 static void
157 pgdtor(void *arg, void *obj)
158 {
159 struct vm_page *pg = obj;
160
161 rump_hyperfree(pg->uanon, PAGE_SIZE);
162 }
163
164 static struct pool_cache pagecache;
165
166 /*
167 * Called with the object locked. We don't support anons.
168 */
169 struct vm_page *
170 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
171 int flags, int strat, int free_list)
172 {
173 struct vm_page *pg;
174
175 KASSERT(uobj && rw_write_held(uobj->vmobjlock));
176 KASSERT(anon == NULL);
177
178 pg = pool_cache_get(&pagecache, PR_NOWAIT);
179 if (__predict_false(pg == NULL)) {
180 return NULL;
181 }
182 mutex_init(&pg->interlock, MUTEX_DEFAULT, IPL_NONE);
183
184 pg->offset = off;
185 pg->uobject = uobj;
186
187 if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
188 pg) != 0) {
189 pool_cache_put(&pagecache, pg);
190 return NULL;
191 }
192
193 if (UVM_OBJ_IS_VNODE(uobj)) {
194 if (uobj->uo_npages == 0) {
195 struct vnode *vp = (struct vnode *)uobj;
196 mutex_enter(vp->v_interlock);
197 vp->v_iflag |= VI_PAGES;
198 mutex_exit(vp->v_interlock);
199 }
200 pg->flags |= PG_FILE;
201 }
202 uobj->uo_npages++;
203
204 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
205 if (flags & UVM_PGA_ZERO) {
206 uvm_pagezero(pg);
207 }
208
209 /*
210 * Don't put anons on the LRU page queue. We can't flush them
211 * (there's no concept of swap in a rump kernel), so no reason
212 * to bother with them.
213 */
214 if (!UVM_OBJ_IS_AOBJ(uobj)) {
215 atomic_inc_uint(&vmpage_onqueue);
216 mutex_enter(&vmpage_lruqueue_lock);
217 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
218 mutex_exit(&vmpage_lruqueue_lock);
219 } else {
220 pg->flags |= PG_AOBJ;
221 }
222
223 return pg;
224 }
225
226 /*
227 * Release a page.
228 *
229 * Called with the vm object locked.
230 */
231 void
232 uvm_pagefree(struct vm_page *pg)
233 {
234 struct uvm_object *uobj = pg->uobject;
235 struct vm_page *pg2 __unused;
236
237 KASSERT(rw_write_held(uobj->vmobjlock));
238
239 mutex_enter(&pg->interlock);
240 uvm_pagewakeup(pg);
241 mutex_exit(&pg->interlock);
242
243 uobj->uo_npages--;
244 pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
245 KASSERT(pg == pg2);
246
247 if (!UVM_OBJ_IS_AOBJ(uobj)) {
248 mutex_enter(&vmpage_lruqueue_lock);
249 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
250 mutex_exit(&vmpage_lruqueue_lock);
251 atomic_dec_uint(&vmpage_onqueue);
252 }
253
254 if (UVM_OBJ_IS_VNODE(uobj) && uobj->uo_npages == 0) {
255 struct vnode *vp = (struct vnode *)uobj;
256 mutex_enter(vp->v_interlock);
257 vp->v_iflag &= ~VI_PAGES;
258 mutex_exit(vp->v_interlock);
259 }
260
261 mutex_destroy(&pg->interlock);
262 pool_cache_put(&pagecache, pg);
263 }
264
265 void
266 uvm_pagezero(struct vm_page *pg)
267 {
268
269 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
270 memset((void *)pg->uanon, 0, PAGE_SIZE);
271 }
272
273 /*
274 * uvm_page_owner_locked_p: return true if object associated with page is
275 * locked. this is a weak check for runtime assertions only.
276 */
277
278 bool
279 uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
280 {
281
282 if (exclusive)
283 return rw_write_held(pg->uobject->vmobjlock);
284 else
285 return rw_lock_held(pg->uobject->vmobjlock);
286 }
287
288 /*
289 * Misc routines
290 */
291
292 static kmutex_t pagermtx;
293
294 void
295 uvm_init(void)
296 {
297 char buf[64];
298
299 if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
300 unsigned long tmp;
301 char *ep;
302 int mult;
303
304 tmp = strtoul(buf, &ep, 10);
305 if (strlen(ep) > 1)
306 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
307
308 /* mini-dehumanize-number */
309 mult = 1;
310 switch (*ep) {
311 case 'k':
312 mult = 1024;
313 break;
314 case 'm':
315 mult = 1024*1024;
316 break;
317 case 'g':
318 mult = 1024*1024*1024;
319 break;
320 case 0:
321 break;
322 default:
323 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
324 }
325 rump_physmemlimit = tmp * mult;
326
327 if (rump_physmemlimit / mult != tmp)
328 panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
329
330 /* reserve some memory for the pager */
331 if (rump_physmemlimit <= PDRESERVE)
332 panic("uvm_init: system reserves %d bytes of mem, "
333 "only %lu bytes given",
334 PDRESERVE, rump_physmemlimit);
335 pdlimit = rump_physmemlimit;
336 rump_physmemlimit -= PDRESERVE;
337
338 if (pdlimit < 1024*1024)
339 printf("uvm_init: WARNING: <1MB RAM limit, "
340 "hope you know what you're doing\n");
341
342 #define HUMANIZE_BYTES 9
343 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
344 format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
345 #undef HUMANIZE_BYTES
346 dddlim = 9 * (rump_physmemlimit / 10);
347 } else {
348 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
349 }
350 aprint_verbose("total memory = %s\n", buf);
351
352 TAILQ_INIT(&vmpage_lruqueue);
353
354 if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
355 uvmexp.npages = physmem;
356 } else {
357 uvmexp.npages = pdlimit >> PAGE_SHIFT;
358 uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
359 uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
360 }
361 /*
362 * uvmexp.free is not used internally or updated. The reason is
363 * that the memory hypercall allocator is allowed to allocate
364 * non-page sized chunks. We use a byte count in curphysmem
365 * instead.
366 */
367 uvmexp.free = uvmexp.npages;
368
369 #ifndef __uvmexp_pagesize
370 uvmexp.pagesize = PAGE_SIZE;
371 uvmexp.pagemask = PAGE_MASK;
372 uvmexp.pageshift = PAGE_SHIFT;
373 #else
374 #define FAKE_PAGE_SHIFT 12
375 uvmexp.pageshift = FAKE_PAGE_SHIFT;
376 uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
377 uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
378 #undef FAKE_PAGE_SHIFT
379 #endif
380
381 mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
382 mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
383 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
384 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
385
386 cv_init(&pdaemoncv, "pdaemon");
387 cv_init(&oomwait, "oomwait");
388
389 module_map = &module_map_store;
390
391 kernel_map->pmap = pmap_kernel();
392
393 pool_subsystem_init();
394
395 kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
396 NULL, NULL, NULL,
397 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
398
399 vmem_subsystem_init(kmem_arena);
400
401 kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
402 vmem_alloc, vmem_free, kmem_arena,
403 8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
404
405 pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
406 "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
407
408 radix_tree_init();
409
410 /* create vmspace used by local clients */
411 rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
412 uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
413 }
414
415 void
416 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
417 bool topdown)
418 {
419
420 vm->vm_map.pmap = pmap;
421 vm->vm_refcnt = 1;
422 }
423
424 int
425 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
426 bool new_pageable, int lockflags)
427 {
428 return 0;
429 }
430
431 void
432 uvm_pagewire(struct vm_page *pg)
433 {
434
435 /* nada */
436 }
437
438 void
439 uvm_pageunwire(struct vm_page *pg)
440 {
441
442 /* nada */
443 }
444
445 int
446 uvm_availmem(bool cached)
447 {
448
449 return uvmexp.free;
450 }
451
452 void
453 uvm_pagelock(struct vm_page *pg)
454 {
455
456 mutex_enter(&pg->interlock);
457 }
458
459 void
460 uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
461 {
462
463 if (pg1 < pg2) {
464 mutex_enter(&pg1->interlock);
465 mutex_enter(&pg2->interlock);
466 } else {
467 mutex_enter(&pg2->interlock);
468 mutex_enter(&pg1->interlock);
469 }
470 }
471
472 void
473 uvm_pageunlock(struct vm_page *pg)
474 {
475
476 mutex_exit(&pg->interlock);
477 }
478
479 void
480 uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
481 {
482
483 mutex_exit(&pg1->interlock);
484 mutex_exit(&pg2->interlock);
485 }
486
487 /* where's your schmonz now? */
488 #define PUNLIMIT(a) \
489 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
490 void
491 uvm_init_limits(struct proc *p)
492 {
493
494 #ifndef DFLSSIZ
495 #define DFLSSIZ (16*1024*1024)
496 #endif
497 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
498 p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
499 PUNLIMIT(RLIMIT_DATA);
500 PUNLIMIT(RLIMIT_RSS);
501 PUNLIMIT(RLIMIT_AS);
502 /* nice, cascade */
503 }
504 #undef PUNLIMIT
505
506 /*
507 * This satisfies the "disgusting mmap hack" used by proplib.
508 */
509 int
510 uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
511 {
512 int error;
513
514 /* no reason in particular, but cf. uvm_default_mapaddr() */
515 if (*addrp != NULL)
516 panic("uvm_mmap() variant unsupported");
517
518 if (RUMP_LOCALPROC_P(curproc)) {
519 error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
520 } else {
521 error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
522 size, addrp);
523 }
524 return error;
525 }
526
527 /*
528 * Stubs for things referenced from vfs_vnode.c but not used.
529 */
530 const dev_t zerodev;
531
532 struct uvm_object *
533 udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
534 {
535 return NULL;
536 }
537
538 struct pagerinfo {
539 vaddr_t pgr_kva;
540 int pgr_npages;
541 struct vm_page **pgr_pgs;
542 bool pgr_read;
543
544 LIST_ENTRY(pagerinfo) pgr_entries;
545 };
546 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
547
548 /*
549 * Pager "map" in routine. Instead of mapping, we allocate memory
550 * and copy page contents there. The reason for copying instead of
551 * mapping is simple: we do not assume we are running on virtual
552 * memory. Even if we could emulate virtual memory in some envs
553 * such as userspace, copying is much faster than trying to awkardly
554 * cope with remapping (see "Design and Implementation" pp.95-98).
555 * The downside of the approach is that the pager requires MAXPHYS
556 * free memory to perform paging, but short of virtual memory or
557 * making the pager do I/O in page-sized chunks we cannot do much
558 * about that.
559 */
560 vaddr_t
561 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
562 {
563 struct pagerinfo *pgri;
564 vaddr_t curkva;
565 int i;
566
567 /* allocate structures */
568 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
569 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
570 pgri->pgr_npages = npages;
571 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
572 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
573
574 /* copy contents to "mapped" memory */
575 for (i = 0, curkva = pgri->pgr_kva;
576 i < npages;
577 i++, curkva += PAGE_SIZE) {
578 /*
579 * We need to copy the previous contents of the pages to
580 * the window even if we are reading from the
581 * device, since the device might not fill the contents of
582 * the full mapped range and we will end up corrupting
583 * data when we unmap the window.
584 */
585 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
586 pgri->pgr_pgs[i] = pgs[i];
587 }
588
589 mutex_enter(&pagermtx);
590 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
591 mutex_exit(&pagermtx);
592
593 return pgri->pgr_kva;
594 }
595
596 /*
597 * map out the pager window. return contents from VA to page storage
598 * and free structures.
599 *
600 * Note: does not currently support partial frees
601 */
602 void
603 uvm_pagermapout(vaddr_t kva, int npages)
604 {
605 struct pagerinfo *pgri;
606 vaddr_t curkva;
607 int i;
608
609 mutex_enter(&pagermtx);
610 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
611 if (pgri->pgr_kva == kva)
612 break;
613 }
614 KASSERT(pgri);
615 if (pgri->pgr_npages != npages)
616 panic("uvm_pagermapout: partial unmapping not supported");
617 LIST_REMOVE(pgri, pgr_entries);
618 mutex_exit(&pagermtx);
619
620 if (pgri->pgr_read) {
621 for (i = 0, curkva = pgri->pgr_kva;
622 i < pgri->pgr_npages;
623 i++, curkva += PAGE_SIZE) {
624 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
625 }
626 }
627
628 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
629 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
630 kmem_free(pgri, sizeof(*pgri));
631 }
632
633 /*
634 * convert va in pager window to page structure.
635 * XXX: how expensive is this (global lock, list traversal)?
636 */
637 struct vm_page *
638 uvm_pageratop(vaddr_t va)
639 {
640 struct pagerinfo *pgri;
641 struct vm_page *pg = NULL;
642 int i;
643
644 mutex_enter(&pagermtx);
645 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
646 if (pgri->pgr_kva <= va
647 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
648 break;
649 }
650 if (pgri) {
651 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
652 pg = pgri->pgr_pgs[i];
653 }
654 mutex_exit(&pagermtx);
655
656 return pg;
657 }
658
659 /*
660 * Called with the vm object locked.
661 *
662 * Put vnode object pages at the end of the access queue to indicate
663 * they have been recently accessed and should not be immediate
664 * candidates for pageout. Do not do this for lookups done by
665 * the pagedaemon to mimic pmap_kentered mappings which don't track
666 * access information.
667 */
668 struct vm_page *
669 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
670 {
671 struct vm_page *pg;
672 bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
673
674 pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
675 if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
676 mutex_enter(&vmpage_lruqueue_lock);
677 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
678 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
679 mutex_exit(&vmpage_lruqueue_lock);
680 }
681
682 return pg;
683 }
684
685 void
686 uvm_page_unbusy(struct vm_page **pgs, int npgs)
687 {
688 struct vm_page *pg;
689 int i, pageout_done;
690
691 KASSERT(npgs > 0);
692
693 pageout_done = 0;
694 for (i = 0; i < npgs; i++) {
695 pg = pgs[i];
696 if (pg == NULL || pg == PGO_DONTCARE) {
697 continue;
698 }
699
700 #if 0
701 KASSERT(uvm_page_owner_locked_p(pg, true));
702 #else
703 /*
704 * uvm_page_owner_locked_p() is not available in rump,
705 * and rump doesn't support amaps anyway.
706 */
707 KASSERT(rw_write_held(pg->uobject->vmobjlock));
708 #endif
709 KASSERT(pg->flags & PG_BUSY);
710
711 if (pg->flags & PG_PAGEOUT) {
712 pg->flags &= ~PG_PAGEOUT;
713 pg->flags |= PG_RELEASED;
714 pageout_done++;
715 atomic_inc_uint(&uvmexp.pdfreed);
716 }
717 if (pg->flags & PG_RELEASED) {
718 KASSERT(pg->uobject != NULL ||
719 (pg->uanon != NULL && pg->uanon->an_ref > 0));
720 pg->flags &= ~PG_RELEASED;
721 uvm_pagefree(pg);
722 } else {
723 KASSERT((pg->flags & PG_FAKE) == 0);
724 pg->flags &= ~PG_BUSY;
725 uvm_pagelock(pg);
726 uvm_pagewakeup(pg);
727 uvm_pageunlock(pg);
728 UVM_PAGE_OWN(pg, NULL);
729 }
730 }
731 if (pageout_done != 0) {
732 uvm_pageout_done(pageout_done);
733 }
734 }
735
736 void
737 uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
738 {
739
740 KASSERT(rw_lock_held(lock));
741 KASSERT((pg->flags & PG_BUSY) != 0);
742
743 mutex_enter(&pg->interlock);
744 pg->pqflags |= PQ_WANTED;
745 rw_exit(lock);
746 UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
747 }
748
749 void
750 uvm_pagewakeup(struct vm_page *pg)
751 {
752
753 KASSERT(mutex_owned(&pg->interlock));
754
755 if ((pg->pqflags & PQ_WANTED) != 0) {
756 pg->pqflags &= ~PQ_WANTED;
757 wakeup(pg);
758 }
759 }
760
761 void
762 uvm_estimatepageable(int *active, int *inactive)
763 {
764
765 /* XXX: guessing game */
766 *active = 1024;
767 *inactive = 1024;
768 }
769
770 int
771 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
772 {
773
774 panic("%s: unimplemented", __func__);
775 }
776
777 void
778 uvm_unloan(void *v, int npages, int flags)
779 {
780
781 panic("%s: unimplemented", __func__);
782 }
783
784 int
785 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
786 struct vm_page **opp)
787 {
788
789 return EBUSY;
790 }
791
792 struct vm_page *
793 uvm_loanbreak(struct vm_page *pg)
794 {
795
796 panic("%s: unimplemented", __func__);
797 }
798
799 void
800 ubc_purge(struct uvm_object *uobj)
801 {
802
803 }
804
805 vaddr_t
806 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
807 {
808
809 return 0;
810 }
811
812 int
813 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
814 vm_prot_t prot, bool set_max)
815 {
816
817 return EOPNOTSUPP;
818 }
819
820 int
821 uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
822 struct uvm_object *uobj, voff_t uoffset, vsize_t align,
823 uvm_flag_t flags)
824 {
825
826 *startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
827 return *startp != 0 ? 0 : ENOMEM;
828 }
829
830 void
831 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
832 {
833
834 rump_hyperfree((void*)start, end-start);
835 }
836
837
838 /*
839 * UVM km
840 */
841
842 vaddr_t
843 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
844 {
845 void *rv, *desired = NULL;
846 int alignbit, error;
847
848 #ifdef __x86_64__
849 /*
850 * On amd64, allocate all module memory from the lowest 2GB.
851 * This is because NetBSD kernel modules are compiled
852 * with -mcmodel=kernel and reserve only 4 bytes for
853 * offsets. If we load code compiled with -mcmodel=kernel
854 * anywhere except the lowest or highest 2GB, it will not
855 * work. Since userspace does not have access to the highest
856 * 2GB, use the lowest 2GB.
857 *
858 * Note: this assumes the rump kernel resides in
859 * the lowest 2GB as well.
860 *
861 * Note2: yes, it's a quick hack, but since this the only
862 * place where we care about the map we're allocating from,
863 * just use a simple "if" instead of coming up with a fancy
864 * generic solution.
865 */
866 if (map == module_map) {
867 desired = (void *)(0x80000000 - size);
868 }
869 #endif
870
871 if (__predict_false(map == module_map)) {
872 alignbit = 0;
873 if (align) {
874 alignbit = ffs(align)-1;
875 }
876 error = rumpuser_anonmmap(desired, size, alignbit,
877 flags & UVM_KMF_EXEC, &rv);
878 } else {
879 error = rumpuser_malloc(size, align, &rv);
880 }
881
882 if (error) {
883 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
884 return 0;
885 else
886 panic("uvm_km_alloc failed");
887 }
888
889 if (flags & UVM_KMF_ZERO)
890 memset(rv, 0, size);
891
892 return (vaddr_t)rv;
893 }
894
895 void
896 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
897 {
898
899 if (__predict_false(map == module_map))
900 rumpuser_unmap((void *)vaddr, size);
901 else
902 rumpuser_free((void *)vaddr, size);
903 }
904
905 int
906 uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
907 {
908 return 0;
909 }
910
911 struct vm_map *
912 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
913 vsize_t size, int pageable, bool fixed, struct vm_map *submap)
914 {
915
916 return (struct vm_map *)417416;
917 }
918
919 int
920 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
921 vmem_addr_t *addr)
922 {
923 vaddr_t va;
924 va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
925 (flags & VM_SLEEP), "kmalloc");
926
927 if (va) {
928 *addr = va;
929 return 0;
930 } else {
931 return ENOMEM;
932 }
933 }
934
935 void
936 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
937 {
938
939 rump_hyperfree((void *)addr, size);
940 }
941
942 /*
943 * VM space locking routines. We don't really have to do anything,
944 * since the pages are always "wired" (both local and remote processes).
945 */
946 int
947 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
948 {
949
950 return 0;
951 }
952
953 void
954 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
955 {
956
957 }
958
959 /*
960 * For the local case the buffer mappers don't need to do anything.
961 * For the remote case we need to reserve space and copy data in or
962 * out, depending on B_READ/B_WRITE.
963 */
964 int
965 vmapbuf(struct buf *bp, vsize_t len)
966 {
967 int error = 0;
968
969 bp->b_saveaddr = bp->b_data;
970
971 /* remote case */
972 if (!RUMP_LOCALPROC_P(curproc)) {
973 bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
974 if (BUF_ISWRITE(bp)) {
975 error = copyin(bp->b_saveaddr, bp->b_data, len);
976 if (error) {
977 rump_hyperfree(bp->b_data, len);
978 bp->b_data = bp->b_saveaddr;
979 bp->b_saveaddr = 0;
980 }
981 }
982 }
983
984 return error;
985 }
986
987 void
988 vunmapbuf(struct buf *bp, vsize_t len)
989 {
990
991 /* remote case */
992 if (!RUMP_LOCALPROC_P(bp->b_proc)) {
993 if (BUF_ISREAD(bp)) {
994 bp->b_error = copyout_proc(bp->b_proc,
995 bp->b_data, bp->b_saveaddr, len);
996 }
997 rump_hyperfree(bp->b_data, len);
998 }
999
1000 bp->b_data = bp->b_saveaddr;
1001 bp->b_saveaddr = 0;
1002 }
1003
1004 void
1005 uvmspace_addref(struct vmspace *vm)
1006 {
1007
1008 /*
1009 * No dynamically allocated vmspaces exist.
1010 */
1011 }
1012
1013 void
1014 uvmspace_free(struct vmspace *vm)
1015 {
1016
1017 /* nothing for now */
1018 }
1019
1020 /*
1021 * page life cycle stuff. it really doesn't exist, so just stubs.
1022 */
1023
1024 void
1025 uvm_pageactivate(struct vm_page *pg)
1026 {
1027
1028 /* nada */
1029 }
1030
1031 void
1032 uvm_pagedeactivate(struct vm_page *pg)
1033 {
1034
1035 /* nada */
1036 }
1037
1038 void
1039 uvm_pagedequeue(struct vm_page *pg)
1040 {
1041
1042 /* nada*/
1043 }
1044
1045 void
1046 uvm_pageenqueue(struct vm_page *pg)
1047 {
1048
1049 /* nada */
1050 }
1051
1052 void
1053 uvmpdpol_anfree(struct vm_anon *an)
1054 {
1055
1056 /* nada */
1057 }
1058
1059 /*
1060 * Physical address accessors.
1061 */
1062
1063 struct vm_page *
1064 uvm_phys_to_vm_page(paddr_t pa)
1065 {
1066
1067 return NULL;
1068 }
1069
1070 paddr_t
1071 uvm_vm_page_to_phys(const struct vm_page *pg)
1072 {
1073
1074 return 0;
1075 }
1076
1077 vaddr_t
1078 uvm_uarea_alloc(void)
1079 {
1080
1081 /* non-zero */
1082 return (vaddr_t)11;
1083 }
1084
1085 void
1086 uvm_uarea_free(vaddr_t uarea)
1087 {
1088
1089 /* nata, so creamy */
1090 }
1091
1092 /*
1093 * Routines related to the Page Baroness.
1094 */
1095
1096 void
1097 uvm_wait(const char *msg)
1098 {
1099
1100 if (__predict_false(rump_threads == 0))
1101 panic("pagedaemon missing (RUMP_THREADS = 0)");
1102
1103 if (curlwp == uvm.pagedaemon_lwp) {
1104 /* is it possible for us to later get memory? */
1105 if (!uvmexp.paging)
1106 panic("pagedaemon out of memory");
1107 }
1108
1109 mutex_enter(&pdaemonmtx);
1110 pdaemon_waiters++;
1111 cv_signal(&pdaemoncv);
1112 cv_wait(&oomwait, &pdaemonmtx);
1113 mutex_exit(&pdaemonmtx);
1114 }
1115
1116 void
1117 uvm_pageout_start(int npages)
1118 {
1119
1120 mutex_enter(&pdaemonmtx);
1121 uvmexp.paging += npages;
1122 mutex_exit(&pdaemonmtx);
1123 }
1124
1125 void
1126 uvm_pageout_done(int npages)
1127 {
1128
1129 if (!npages)
1130 return;
1131
1132 mutex_enter(&pdaemonmtx);
1133 KASSERT(uvmexp.paging >= npages);
1134 uvmexp.paging -= npages;
1135
1136 if (pdaemon_waiters) {
1137 pdaemon_waiters = 0;
1138 cv_broadcast(&oomwait);
1139 }
1140 mutex_exit(&pdaemonmtx);
1141 }
1142
1143 static bool
1144 processpage(struct vm_page *pg)
1145 {
1146 struct uvm_object *uobj;
1147
1148 uobj = pg->uobject;
1149 if (rw_tryenter(uobj->vmobjlock, RW_WRITER)) {
1150 if ((pg->flags & PG_BUSY) == 0) {
1151 mutex_exit(&vmpage_lruqueue_lock);
1152 uobj->pgops->pgo_put(uobj, pg->offset,
1153 pg->offset + PAGE_SIZE,
1154 PGO_CLEANIT|PGO_FREE);
1155 KASSERT(!rw_write_held(uobj->vmobjlock));
1156 return true;
1157 } else {
1158 rw_exit(uobj->vmobjlock);
1159 }
1160 }
1161
1162 return false;
1163 }
1164
1165 /*
1166 * The Diabolical pageDaemon Director (DDD).
1167 *
1168 * This routine can always use better heuristics.
1169 */
1170 void
1171 uvm_pageout(void *arg)
1172 {
1173 struct vm_page *pg;
1174 struct pool *pp, *pp_first;
1175 int cleaned, skip, skipped;
1176 bool succ;
1177
1178 mutex_enter(&pdaemonmtx);
1179 for (;;) {
1180 if (pdaemon_waiters) {
1181 pdaemon_waiters = 0;
1182 cv_broadcast(&oomwait);
1183 }
1184 if (!NEED_PAGEDAEMON()) {
1185 kernel_map->flags &= ~VM_MAP_WANTVA;
1186 cv_wait(&pdaemoncv, &pdaemonmtx);
1187 }
1188 uvmexp.pdwoke++;
1189
1190 /* tell the world that we are hungry */
1191 kernel_map->flags |= VM_MAP_WANTVA;
1192 mutex_exit(&pdaemonmtx);
1193
1194 /*
1195 * step one: reclaim the page cache. this should give
1196 * us the biggest earnings since whole pages are released
1197 * into backing memory.
1198 */
1199 pool_cache_reclaim(&pagecache);
1200 if (!NEED_PAGEDAEMON()) {
1201 mutex_enter(&pdaemonmtx);
1202 continue;
1203 }
1204
1205 /*
1206 * Ok, so that didn't help. Next, try to hunt memory
1207 * by pushing out vnode pages. The pages might contain
1208 * useful cached data, but we need the memory.
1209 */
1210 cleaned = 0;
1211 skip = 0;
1212 again:
1213 mutex_enter(&vmpage_lruqueue_lock);
1214 while (cleaned < PAGEDAEMON_OBJCHUNK) {
1215 skipped = 0;
1216 TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1217
1218 /*
1219 * skip over pages we _might_ have tried
1220 * to handle earlier. they might not be
1221 * exactly the same ones, but I'm not too
1222 * concerned.
1223 */
1224 while (skipped++ < skip)
1225 continue;
1226
1227 if (processpage(pg)) {
1228 cleaned++;
1229 goto again;
1230 }
1231
1232 skip++;
1233 }
1234 break;
1235 }
1236 mutex_exit(&vmpage_lruqueue_lock);
1237
1238 /*
1239 * And of course we need to reclaim the page cache
1240 * again to actually release memory.
1241 */
1242 pool_cache_reclaim(&pagecache);
1243 if (!NEED_PAGEDAEMON()) {
1244 mutex_enter(&pdaemonmtx);
1245 continue;
1246 }
1247
1248 /*
1249 * And then drain the pools. Wipe them out ... all of them.
1250 */
1251 for (pp_first = NULL;;) {
1252 rump_vfs_drainbufs(10 /* XXX: estimate! */);
1253
1254 succ = pool_drain(&pp);
1255 if (succ || pp == pp_first)
1256 break;
1257
1258 if (pp_first == NULL)
1259 pp_first = pp;
1260 }
1261
1262 /*
1263 * Need to use PYEC on our bag of tricks.
1264 * Unfortunately, the wife just borrowed it.
1265 */
1266
1267 mutex_enter(&pdaemonmtx);
1268 if (!succ && cleaned == 0 && pdaemon_waiters &&
1269 uvmexp.paging == 0) {
1270 kpause("pddlk", false, hz, &pdaemonmtx);
1271 }
1272 }
1273
1274 panic("you can swap out any time you like, but you can never leave");
1275 }
1276
1277 void
1278 uvm_kick_pdaemon()
1279 {
1280
1281 /*
1282 * Wake up the diabolical pagedaemon director if we are over
1283 * 90% of the memory limit. This is a complete and utter
1284 * stetson-harrison decision which you are allowed to finetune.
1285 * Don't bother locking. If we have some unflushed caches,
1286 * other waker-uppers will deal with the issue.
1287 */
1288 if (NEED_PAGEDAEMON()) {
1289 cv_signal(&pdaemoncv);
1290 }
1291 }
1292
1293 void *
1294 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1295 {
1296 const unsigned long thelimit =
1297 curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
1298 unsigned long newmem;
1299 void *rv;
1300 int error;
1301
1302 uvm_kick_pdaemon(); /* ouch */
1303
1304 /* first we must be within the limit */
1305 limitagain:
1306 if (thelimit != RUMPMEM_UNLIMITED) {
1307 newmem = atomic_add_long_nv(&curphysmem, howmuch);
1308 if (newmem > thelimit) {
1309 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1310 if (!waitok) {
1311 return NULL;
1312 }
1313 uvm_wait(wmsg);
1314 goto limitagain;
1315 }
1316 }
1317
1318 /* second, we must get something from the backend */
1319 again:
1320 error = rumpuser_malloc(howmuch, alignment, &rv);
1321 if (__predict_false(error && waitok)) {
1322 uvm_wait(wmsg);
1323 goto again;
1324 }
1325
1326 return rv;
1327 }
1328
1329 void
1330 rump_hyperfree(void *what, size_t size)
1331 {
1332
1333 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1334 atomic_add_long(&curphysmem, -size);
1335 }
1336 rumpuser_free(what, size);
1337 }
1338