Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.196
      1 /*	$NetBSD: vm.c,v 1.196 2023/04/22 13:53:53 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.196 2023/04/22 13:53:53 riastradh Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/vmem.h>
     52 #include <sys/mman.h>
     53 #include <sys/null.h>
     54 #include <sys/vnode.h>
     55 #include <sys/radixtree.h>
     56 #include <sys/module.h>
     57 
     58 #include <machine/pmap.h>
     59 
     60 #if defined(__i386__) || defined(__x86_64__)
     61 /*
     62  * This file abuses the pmap abstraction to create its own statically
     63  * allocated struct pmap object, even though it can't do anything
     64  * useful with such a thing from userland.  On x86 the struct pmap
     65  * definition is private, so we have to go to extra effort to abuse it
     66  * there.  This should be fixed -- all of the struct pmap definitions
     67  * should be private, and then rump can furnish its own fake struct
     68  * pmap without clashing with anything.
     69  */
     70 #include <machine/pmap_private.h>
     71 #endif
     72 
     73 #include <uvm/uvm.h>
     74 #include <uvm/uvm_ddb.h>
     75 #include <uvm/uvm_pdpolicy.h>
     76 #include <uvm/uvm_prot.h>
     77 #include <uvm/uvm_readahead.h>
     78 #include <uvm/uvm_device.h>
     79 
     80 #include <rump-sys/kern.h>
     81 #include <rump-sys/vfs.h>
     82 
     83 #include <rump/rumpuser.h>
     84 
     85 kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
     86 kmutex_t uvm_swap_data_lock;
     87 
     88 struct uvmexp uvmexp;
     89 struct uvm uvm;
     90 
     91 #ifdef __uvmexp_pagesize
     92 const int * const uvmexp_pagesize = &uvmexp.pagesize;
     93 const int * const uvmexp_pagemask = &uvmexp.pagemask;
     94 const int * const uvmexp_pageshift = &uvmexp.pageshift;
     95 #endif
     96 
     97 static struct vm_map kernel_map_store;
     98 struct vm_map *kernel_map = &kernel_map_store;
     99 
    100 static struct vm_map module_map_store;
    101 
    102 static struct pmap pmap_kernel;
    103 struct pmap rump_pmap_local;
    104 struct pmap *const kernel_pmap_ptr = &pmap_kernel;
    105 
    106 vmem_t *kmem_arena;
    107 vmem_t *kmem_va_arena;
    108 
    109 static unsigned int pdaemon_waiters;
    110 static kmutex_t pdaemonmtx;
    111 static kcondvar_t pdaemoncv, oomwait;
    112 
    113 /* all local non-proc0 processes share this vmspace */
    114 struct vmspace *rump_vmspace_local;
    115 
    116 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
    117 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
    118 static unsigned long curphysmem;
    119 static unsigned long dddlim;		/* 90% of memory limit used */
    120 #define NEED_PAGEDAEMON() \
    121     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
    122 #define PDRESERVE (2*MAXPHYS)
    123 
    124 /*
    125  * Try to free two pages worth of pages from objects.
    126  * If this successfully frees a full page cache page, we'll
    127  * free the released page plus PAGE_SIZE/sizeof(vm_page).
    128  */
    129 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
    130 
    131 /*
    132  * Keep a list of least recently used pages.  Since the only way a
    133  * rump kernel can "access" a page is via lookup, we put the page
    134  * at the back of queue every time a lookup for it is done.  If the
    135  * page is in front of this global queue and we're short of memory,
    136  * it's a candidate for pageout.
    137  */
    138 static struct pglist vmpage_lruqueue;
    139 static unsigned vmpage_onqueue;
    140 
    141 /*
    142  * vm pages
    143  */
    144 
    145 static int
    146 pgctor(void *arg, void *obj, int flags)
    147 {
    148 	struct vm_page *pg = obj;
    149 
    150 	memset(pg, 0, sizeof(*pg));
    151 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    152 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
    153 	return pg->uanon == NULL;
    154 }
    155 
    156 static void
    157 pgdtor(void *arg, void *obj)
    158 {
    159 	struct vm_page *pg = obj;
    160 
    161 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    162 }
    163 
    164 static struct pool_cache pagecache;
    165 
    166 /* stub for UVM_OBJ_IS_VNODE */
    167 struct uvm_pagerops rump_uvm_vnodeops;
    168 __weak_alias(uvm_vnodeops,rump_uvm_vnodeops);
    169 
    170 /*
    171  * Called with the object locked.  We don't support anons.
    172  */
    173 struct vm_page *
    174 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    175 	int flags, int strat, int free_list)
    176 {
    177 	struct vm_page *pg;
    178 
    179 	KASSERT(uobj && rw_write_held(uobj->vmobjlock));
    180 	KASSERT(anon == NULL);
    181 
    182 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
    183 	if (__predict_false(pg == NULL)) {
    184 		return NULL;
    185 	}
    186 	mutex_init(&pg->interlock, MUTEX_DEFAULT, IPL_NONE);
    187 
    188 	pg->offset = off;
    189 	pg->uobject = uobj;
    190 
    191 	if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
    192 	    pg) != 0) {
    193 		pool_cache_put(&pagecache, pg);
    194 		return NULL;
    195 	}
    196 
    197 	if (UVM_OBJ_IS_VNODE(uobj)) {
    198 		if (uobj->uo_npages == 0) {
    199 			struct vnode *vp = (struct vnode *)uobj;
    200 			mutex_enter(vp->v_interlock);
    201 			vp->v_iflag |= VI_PAGES;
    202 			mutex_exit(vp->v_interlock);
    203 		}
    204 		pg->flags |= PG_FILE;
    205 	}
    206 	uobj->uo_npages++;
    207 
    208 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    209 	if (flags & UVM_PGA_ZERO) {
    210 		uvm_pagezero(pg);
    211 	}
    212 
    213 	/*
    214 	 * Don't put anons on the LRU page queue.  We can't flush them
    215 	 * (there's no concept of swap in a rump kernel), so no reason
    216 	 * to bother with them.
    217 	 */
    218 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    219 		atomic_inc_uint(&vmpage_onqueue);
    220 		mutex_enter(&vmpage_lruqueue_lock);
    221 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    222 		mutex_exit(&vmpage_lruqueue_lock);
    223 	} else {
    224 		pg->flags |= PG_AOBJ;
    225 	}
    226 
    227 	return pg;
    228 }
    229 
    230 /*
    231  * Release a page.
    232  *
    233  * Called with the vm object locked.
    234  */
    235 void
    236 uvm_pagefree(struct vm_page *pg)
    237 {
    238 	struct uvm_object *uobj = pg->uobject;
    239 	struct vm_page *pg2 __unused;
    240 
    241 	KASSERT(rw_write_held(uobj->vmobjlock));
    242 
    243 	mutex_enter(&pg->interlock);
    244 	uvm_pagewakeup(pg);
    245 	mutex_exit(&pg->interlock);
    246 
    247 	uobj->uo_npages--;
    248 	pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    249 	KASSERT(pg == pg2);
    250 
    251 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    252 		mutex_enter(&vmpage_lruqueue_lock);
    253 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    254 		mutex_exit(&vmpage_lruqueue_lock);
    255 		atomic_dec_uint(&vmpage_onqueue);
    256 	}
    257 
    258 	if (UVM_OBJ_IS_VNODE(uobj) && uobj->uo_npages == 0) {
    259 		struct vnode *vp = (struct vnode *)uobj;
    260 		mutex_enter(vp->v_interlock);
    261 		vp->v_iflag &= ~VI_PAGES;
    262 		mutex_exit(vp->v_interlock);
    263 	}
    264 
    265 	mutex_destroy(&pg->interlock);
    266 	pool_cache_put(&pagecache, pg);
    267 }
    268 
    269 void
    270 uvm_pagezero(struct vm_page *pg)
    271 {
    272 
    273 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    274 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    275 }
    276 
    277 /*
    278  * uvm_page_owner_locked_p: return true if object associated with page is
    279  * locked.  this is a weak check for runtime assertions only.
    280  */
    281 
    282 bool
    283 uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
    284 {
    285 
    286 	if (exclusive)
    287 		return rw_write_held(pg->uobject->vmobjlock);
    288 	else
    289 		return rw_lock_held(pg->uobject->vmobjlock);
    290 }
    291 
    292 /*
    293  * Misc routines
    294  */
    295 
    296 static kmutex_t pagermtx;
    297 
    298 void
    299 uvm_init(void)
    300 {
    301 	char buf[64];
    302 
    303 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
    304 		unsigned long tmp;
    305 		char *ep;
    306 		int mult;
    307 
    308 		tmp = strtoul(buf, &ep, 10);
    309 		if (strlen(ep) > 1)
    310 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    311 
    312 		/* mini-dehumanize-number */
    313 		mult = 1;
    314 		switch (*ep) {
    315 		case 'k':
    316 			mult = 1024;
    317 			break;
    318 		case 'm':
    319 			mult = 1024*1024;
    320 			break;
    321 		case 'g':
    322 			mult = 1024*1024*1024;
    323 			break;
    324 		case 0:
    325 			break;
    326 		default:
    327 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
    328 		}
    329 		rump_physmemlimit = tmp * mult;
    330 
    331 		if (rump_physmemlimit / mult != tmp)
    332 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
    333 
    334 		/* reserve some memory for the pager */
    335 		if (rump_physmemlimit <= PDRESERVE)
    336 			panic("uvm_init: system reserves %d bytes of mem, "
    337 			    "only %lu bytes given",
    338 			    PDRESERVE, rump_physmemlimit);
    339 		pdlimit = rump_physmemlimit;
    340 		rump_physmemlimit -= PDRESERVE;
    341 
    342 		if (pdlimit < 1024*1024)
    343 			printf("uvm_init: WARNING: <1MB RAM limit, "
    344 			    "hope you know what you're doing\n");
    345 
    346 #define HUMANIZE_BYTES 9
    347 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    348 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    349 #undef HUMANIZE_BYTES
    350 		dddlim = 9 * (rump_physmemlimit / 10);
    351 	} else {
    352 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    353 	}
    354 	aprint_verbose("total memory = %s\n", buf);
    355 
    356 	TAILQ_INIT(&vmpage_lruqueue);
    357 
    358 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
    359 		uvmexp.npages = physmem;
    360 	} else {
    361 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
    362 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
    363 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
    364 	}
    365 	/*
    366 	 * uvmexp.free is not used internally or updated.  The reason is
    367 	 * that the memory hypercall allocator is allowed to allocate
    368 	 * non-page sized chunks.  We use a byte count in curphysmem
    369 	 * instead.
    370 	 */
    371 	uvmexp.free = uvmexp.npages;
    372 
    373 #ifndef __uvmexp_pagesize
    374 	uvmexp.pagesize = PAGE_SIZE;
    375 	uvmexp.pagemask = PAGE_MASK;
    376 	uvmexp.pageshift = PAGE_SHIFT;
    377 #else
    378 #define FAKE_PAGE_SHIFT 12
    379 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
    380 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
    381 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
    382 #undef FAKE_PAGE_SHIFT
    383 #endif
    384 
    385 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
    386 	mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
    387 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    388 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
    389 
    390 	cv_init(&pdaemoncv, "pdaemon");
    391 	cv_init(&oomwait, "oomwait");
    392 
    393 	module_map = &module_map_store;
    394 
    395 	kernel_map->pmap = pmap_kernel();
    396 
    397 	pool_subsystem_init();
    398 
    399 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
    400 	    NULL, NULL, NULL,
    401 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    402 
    403 	vmem_subsystem_init(kmem_arena);
    404 
    405 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    406 	    vmem_alloc, vmem_free, kmem_arena,
    407 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    408 
    409 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    410 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    411 
    412 	radix_tree_init();
    413 
    414 	/* create vmspace used by local clients */
    415 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
    416 	uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
    417 }
    418 
    419 void
    420 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
    421     bool topdown)
    422 {
    423 
    424 	vm->vm_map.pmap = pmap;
    425 	vm->vm_refcnt = 1;
    426 }
    427 
    428 int
    429 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
    430     bool new_pageable, int lockflags)
    431 {
    432 	return 0;
    433 }
    434 
    435 void
    436 uvm_pagewire(struct vm_page *pg)
    437 {
    438 
    439 	/* nada */
    440 }
    441 
    442 void
    443 uvm_pageunwire(struct vm_page *pg)
    444 {
    445 
    446 	/* nada */
    447 }
    448 
    449 int
    450 uvm_availmem(bool cached)
    451 {
    452 
    453 	return uvmexp.free;
    454 }
    455 
    456 void
    457 uvm_pagelock(struct vm_page *pg)
    458 {
    459 
    460 	mutex_enter(&pg->interlock);
    461 }
    462 
    463 void
    464 uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
    465 {
    466 
    467 	if (pg1 < pg2) {
    468 		mutex_enter(&pg1->interlock);
    469 		mutex_enter(&pg2->interlock);
    470 	} else {
    471 		mutex_enter(&pg2->interlock);
    472 		mutex_enter(&pg1->interlock);
    473 	}
    474 }
    475 
    476 void
    477 uvm_pageunlock(struct vm_page *pg)
    478 {
    479 
    480 	mutex_exit(&pg->interlock);
    481 }
    482 
    483 void
    484 uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
    485 {
    486 
    487 	mutex_exit(&pg1->interlock);
    488 	mutex_exit(&pg2->interlock);
    489 }
    490 
    491 /* where's your schmonz now? */
    492 #define PUNLIMIT(a)	\
    493 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    494 void
    495 uvm_init_limits(struct proc *p)
    496 {
    497 
    498 #ifndef DFLSSIZ
    499 #define DFLSSIZ (16*1024*1024)
    500 #endif
    501 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    502 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    503 	PUNLIMIT(RLIMIT_DATA);
    504 	PUNLIMIT(RLIMIT_RSS);
    505 	PUNLIMIT(RLIMIT_AS);
    506 	/* nice, cascade */
    507 }
    508 #undef PUNLIMIT
    509 
    510 /*
    511  * This satisfies the "disgusting mmap hack" used by proplib.
    512  */
    513 int
    514 uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
    515 {
    516 	int error;
    517 
    518 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    519 	if (*addrp != NULL)
    520 		panic("uvm_mmap() variant unsupported");
    521 
    522 	if (RUMP_LOCALPROC_P(curproc)) {
    523 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
    524 	} else {
    525 		error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
    526 		    size, addrp);
    527 	}
    528 	return error;
    529 }
    530 
    531 /*
    532  * Stubs for things referenced from vfs_vnode.c but not used.
    533  */
    534 const dev_t zerodev;
    535 
    536 struct uvm_object *
    537 udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
    538 {
    539 	return NULL;
    540 }
    541 
    542 struct pagerinfo {
    543 	vaddr_t pgr_kva;
    544 	int pgr_npages;
    545 	struct vm_page **pgr_pgs;
    546 	bool pgr_read;
    547 
    548 	LIST_ENTRY(pagerinfo) pgr_entries;
    549 };
    550 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    551 
    552 /*
    553  * Pager "map" in routine.  Instead of mapping, we allocate memory
    554  * and copy page contents there.  The reason for copying instead of
    555  * mapping is simple: we do not assume we are running on virtual
    556  * memory.  Even if we could emulate virtual memory in some envs
    557  * such as userspace, copying is much faster than trying to awkardly
    558  * cope with remapping (see "Design and Implementation" pp.95-98).
    559  * The downside of the approach is that the pager requires MAXPHYS
    560  * free memory to perform paging, but short of virtual memory or
    561  * making the pager do I/O in page-sized chunks we cannot do much
    562  * about that.
    563  */
    564 vaddr_t
    565 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    566 {
    567 	struct pagerinfo *pgri;
    568 	vaddr_t curkva;
    569 	int i;
    570 
    571 	/* allocate structures */
    572 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    573 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    574 	pgri->pgr_npages = npages;
    575 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    576 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    577 
    578 	/* copy contents to "mapped" memory */
    579 	for (i = 0, curkva = pgri->pgr_kva;
    580 	    i < npages;
    581 	    i++, curkva += PAGE_SIZE) {
    582 		/*
    583 		 * We need to copy the previous contents of the pages to
    584 		 * the window even if we are reading from the
    585 		 * device, since the device might not fill the contents of
    586 		 * the full mapped range and we will end up corrupting
    587 		 * data when we unmap the window.
    588 		 */
    589 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    590 		pgri->pgr_pgs[i] = pgs[i];
    591 	}
    592 
    593 	mutex_enter(&pagermtx);
    594 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    595 	mutex_exit(&pagermtx);
    596 
    597 	return pgri->pgr_kva;
    598 }
    599 
    600 /*
    601  * map out the pager window.  return contents from VA to page storage
    602  * and free structures.
    603  *
    604  * Note: does not currently support partial frees
    605  */
    606 void
    607 uvm_pagermapout(vaddr_t kva, int npages)
    608 {
    609 	struct pagerinfo *pgri;
    610 	vaddr_t curkva;
    611 	int i;
    612 
    613 	mutex_enter(&pagermtx);
    614 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    615 		if (pgri->pgr_kva == kva)
    616 			break;
    617 	}
    618 	KASSERT(pgri);
    619 	if (pgri->pgr_npages != npages)
    620 		panic("uvm_pagermapout: partial unmapping not supported");
    621 	LIST_REMOVE(pgri, pgr_entries);
    622 	mutex_exit(&pagermtx);
    623 
    624 	if (pgri->pgr_read) {
    625 		for (i = 0, curkva = pgri->pgr_kva;
    626 		    i < pgri->pgr_npages;
    627 		    i++, curkva += PAGE_SIZE) {
    628 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    629 		}
    630 	}
    631 
    632 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    633 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    634 	kmem_free(pgri, sizeof(*pgri));
    635 }
    636 
    637 /*
    638  * convert va in pager window to page structure.
    639  * XXX: how expensive is this (global lock, list traversal)?
    640  */
    641 struct vm_page *
    642 uvm_pageratop(vaddr_t va)
    643 {
    644 	struct pagerinfo *pgri;
    645 	struct vm_page *pg = NULL;
    646 	int i;
    647 
    648 	mutex_enter(&pagermtx);
    649 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    650 		if (pgri->pgr_kva <= va
    651 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    652 			break;
    653 	}
    654 	if (pgri) {
    655 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    656 		pg = pgri->pgr_pgs[i];
    657 	}
    658 	mutex_exit(&pagermtx);
    659 
    660 	return pg;
    661 }
    662 
    663 /*
    664  * Called with the vm object locked.
    665  *
    666  * Put vnode object pages at the end of the access queue to indicate
    667  * they have been recently accessed and should not be immediate
    668  * candidates for pageout.  Do not do this for lookups done by
    669  * the pagedaemon to mimic pmap_kentered mappings which don't track
    670  * access information.
    671  */
    672 struct vm_page *
    673 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    674 {
    675 	struct vm_page *pg;
    676 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
    677 
    678 	pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
    679 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
    680 		mutex_enter(&vmpage_lruqueue_lock);
    681 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    682 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    683 		mutex_exit(&vmpage_lruqueue_lock);
    684 	}
    685 
    686 	return pg;
    687 }
    688 
    689 void
    690 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    691 {
    692 	struct vm_page *pg;
    693 	int i, pageout_done;
    694 
    695 	KASSERT(npgs > 0);
    696 
    697 	pageout_done = 0;
    698 	for (i = 0; i < npgs; i++) {
    699 		pg = pgs[i];
    700 		if (pg == NULL || pg == PGO_DONTCARE) {
    701 			continue;
    702 		}
    703 
    704 #if 0
    705 		KASSERT(uvm_page_owner_locked_p(pg, true));
    706 #else
    707 		/*
    708 		 * uvm_page_owner_locked_p() is not available in rump,
    709 		 * and rump doesn't support amaps anyway.
    710 		 */
    711 		KASSERT(rw_write_held(pg->uobject->vmobjlock));
    712 #endif
    713 		KASSERT(pg->flags & PG_BUSY);
    714 
    715 		if (pg->flags & PG_PAGEOUT) {
    716 			pg->flags &= ~PG_PAGEOUT;
    717 			pg->flags |= PG_RELEASED;
    718 			pageout_done++;
    719 			atomic_inc_uint(&uvmexp.pdfreed);
    720 		}
    721 		if (pg->flags & PG_RELEASED) {
    722 			KASSERT(pg->uobject != NULL ||
    723 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
    724 			pg->flags &= ~PG_RELEASED;
    725 			uvm_pagefree(pg);
    726 		} else {
    727 			KASSERT((pg->flags & PG_FAKE) == 0);
    728 			pg->flags &= ~PG_BUSY;
    729 			uvm_pagelock(pg);
    730 			uvm_pagewakeup(pg);
    731 			uvm_pageunlock(pg);
    732 			UVM_PAGE_OWN(pg, NULL);
    733 		}
    734 	}
    735 	if (pageout_done != 0) {
    736 		uvm_pageout_done(pageout_done);
    737 	}
    738 }
    739 
    740 void
    741 uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
    742 {
    743 
    744 	KASSERT(rw_lock_held(lock));
    745 	KASSERT((pg->flags & PG_BUSY) != 0);
    746 
    747 	mutex_enter(&pg->interlock);
    748 	pg->pqflags |= PQ_WANTED;
    749 	rw_exit(lock);
    750 	UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
    751 }
    752 
    753 void
    754 uvm_pagewakeup(struct vm_page *pg)
    755 {
    756 
    757 	KASSERT(mutex_owned(&pg->interlock));
    758 
    759 	if ((pg->pqflags & PQ_WANTED) != 0) {
    760 		pg->pqflags &= ~PQ_WANTED;
    761 		wakeup(pg);
    762 	}
    763 }
    764 
    765 void
    766 uvm_estimatepageable(int *active, int *inactive)
    767 {
    768 
    769 	/* XXX: guessing game */
    770 	*active = 1024;
    771 	*inactive = 1024;
    772 }
    773 
    774 int
    775 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    776 {
    777 
    778 	panic("%s: unimplemented", __func__);
    779 }
    780 
    781 void
    782 uvm_unloan(void *v, int npages, int flags)
    783 {
    784 
    785 	panic("%s: unimplemented", __func__);
    786 }
    787 
    788 int
    789 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    790 	struct vm_page **opp)
    791 {
    792 
    793 	return EBUSY;
    794 }
    795 
    796 struct vm_page *
    797 uvm_loanbreak(struct vm_page *pg)
    798 {
    799 
    800 	panic("%s: unimplemented", __func__);
    801 }
    802 
    803 void
    804 ubc_purge(struct uvm_object *uobj)
    805 {
    806 
    807 }
    808 
    809 vaddr_t
    810 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
    811 {
    812 
    813 	return 0;
    814 }
    815 
    816 int
    817 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    818 	vm_prot_t prot, bool set_max)
    819 {
    820 
    821 	return EOPNOTSUPP;
    822 }
    823 
    824 int
    825 uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
    826     struct uvm_object *uobj, voff_t uoffset, vsize_t align,
    827     uvm_flag_t flags)
    828 {
    829 
    830 	*startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
    831 	return *startp != 0 ? 0 : ENOMEM;
    832 }
    833 
    834 void
    835 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
    836 {
    837 
    838 	rump_hyperfree((void*)start, end-start);
    839 }
    840 
    841 
    842 /*
    843  * UVM km
    844  */
    845 
    846 vaddr_t
    847 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    848 {
    849 	void *rv, *desired = NULL;
    850 	int alignbit, error;
    851 
    852 #ifdef __x86_64__
    853 	/*
    854 	 * On amd64, allocate all module memory from the lowest 2GB.
    855 	 * This is because NetBSD kernel modules are compiled
    856 	 * with -mcmodel=kernel and reserve only 4 bytes for
    857 	 * offsets.  If we load code compiled with -mcmodel=kernel
    858 	 * anywhere except the lowest or highest 2GB, it will not
    859 	 * work.  Since userspace does not have access to the highest
    860 	 * 2GB, use the lowest 2GB.
    861 	 *
    862 	 * Note: this assumes the rump kernel resides in
    863 	 * the lowest 2GB as well.
    864 	 *
    865 	 * Note2: yes, it's a quick hack, but since this the only
    866 	 * place where we care about the map we're allocating from,
    867 	 * just use a simple "if" instead of coming up with a fancy
    868 	 * generic solution.
    869 	 */
    870 	if (map == module_map) {
    871 		desired = (void *)(0x80000000 - size);
    872 	}
    873 #endif
    874 
    875 	if (__predict_false(map == module_map)) {
    876 		alignbit = 0;
    877 		if (align) {
    878 			alignbit = ffs(align)-1;
    879 		}
    880 		error = rumpuser_anonmmap(desired, size, alignbit,
    881 		    flags & UVM_KMF_EXEC, &rv);
    882 	} else {
    883 		error = rumpuser_malloc(size, align, &rv);
    884 	}
    885 
    886 	if (error) {
    887 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    888 			return 0;
    889 		else
    890 			panic("uvm_km_alloc failed");
    891 	}
    892 
    893 	if (flags & UVM_KMF_ZERO)
    894 		memset(rv, 0, size);
    895 
    896 	return (vaddr_t)rv;
    897 }
    898 
    899 void
    900 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    901 {
    902 
    903 	if (__predict_false(map == module_map))
    904 		rumpuser_unmap((void *)vaddr, size);
    905 	else
    906 		rumpuser_free((void *)vaddr, size);
    907 }
    908 
    909 int
    910 uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
    911 {
    912 	return 0;
    913 }
    914 
    915 struct vm_map *
    916 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    917 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
    918 {
    919 
    920 	return (struct vm_map *)417416;
    921 }
    922 
    923 int
    924 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    925     vmem_addr_t *addr)
    926 {
    927 	vaddr_t va;
    928 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
    929 	    (flags & VM_SLEEP), "kmalloc");
    930 
    931 	if (va) {
    932 		*addr = va;
    933 		return 0;
    934 	} else {
    935 		return ENOMEM;
    936 	}
    937 }
    938 
    939 void
    940 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    941 {
    942 
    943 	rump_hyperfree((void *)addr, size);
    944 }
    945 
    946 /*
    947  * VM space locking routines.  We don't really have to do anything,
    948  * since the pages are always "wired" (both local and remote processes).
    949  */
    950 int
    951 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    952 {
    953 
    954 	return 0;
    955 }
    956 
    957 void
    958 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    959 {
    960 
    961 }
    962 
    963 /*
    964  * For the local case the buffer mappers don't need to do anything.
    965  * For the remote case we need to reserve space and copy data in or
    966  * out, depending on B_READ/B_WRITE.
    967  */
    968 int
    969 vmapbuf(struct buf *bp, vsize_t len)
    970 {
    971 	int error = 0;
    972 
    973 	bp->b_saveaddr = bp->b_data;
    974 
    975 	/* remote case */
    976 	if (!RUMP_LOCALPROC_P(curproc)) {
    977 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
    978 		if (BUF_ISWRITE(bp)) {
    979 			error = copyin(bp->b_saveaddr, bp->b_data, len);
    980 			if (error) {
    981 				rump_hyperfree(bp->b_data, len);
    982 				bp->b_data = bp->b_saveaddr;
    983 				bp->b_saveaddr = 0;
    984 			}
    985 		}
    986 	}
    987 
    988 	return error;
    989 }
    990 
    991 void
    992 vunmapbuf(struct buf *bp, vsize_t len)
    993 {
    994 
    995 	/* remote case */
    996 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
    997 		if (BUF_ISREAD(bp)) {
    998 			bp->b_error = copyout_proc(bp->b_proc,
    999 			    bp->b_data, bp->b_saveaddr, len);
   1000 		}
   1001 		rump_hyperfree(bp->b_data, len);
   1002 	}
   1003 
   1004 	bp->b_data = bp->b_saveaddr;
   1005 	bp->b_saveaddr = 0;
   1006 }
   1007 
   1008 void
   1009 uvmspace_addref(struct vmspace *vm)
   1010 {
   1011 
   1012 	/*
   1013 	 * No dynamically allocated vmspaces exist.
   1014 	 */
   1015 }
   1016 
   1017 void
   1018 uvmspace_free(struct vmspace *vm)
   1019 {
   1020 
   1021 	/* nothing for now */
   1022 }
   1023 
   1024 /*
   1025  * page life cycle stuff.  it really doesn't exist, so just stubs.
   1026  */
   1027 
   1028 void
   1029 uvm_pageactivate(struct vm_page *pg)
   1030 {
   1031 
   1032 	/* nada */
   1033 }
   1034 
   1035 void
   1036 uvm_pagedeactivate(struct vm_page *pg)
   1037 {
   1038 
   1039 	/* nada */
   1040 }
   1041 
   1042 void
   1043 uvm_pagedequeue(struct vm_page *pg)
   1044 {
   1045 
   1046 	/* nada*/
   1047 }
   1048 
   1049 void
   1050 uvm_pageenqueue(struct vm_page *pg)
   1051 {
   1052 
   1053 	/* nada */
   1054 }
   1055 
   1056 void
   1057 uvmpdpol_anfree(struct vm_anon *an)
   1058 {
   1059 
   1060 	/* nada */
   1061 }
   1062 
   1063 /*
   1064  * Physical address accessors.
   1065  */
   1066 
   1067 struct vm_page *
   1068 uvm_phys_to_vm_page(paddr_t pa)
   1069 {
   1070 
   1071 	return NULL;
   1072 }
   1073 
   1074 paddr_t
   1075 uvm_vm_page_to_phys(const struct vm_page *pg)
   1076 {
   1077 
   1078 	return 0;
   1079 }
   1080 
   1081 vaddr_t
   1082 uvm_uarea_alloc(void)
   1083 {
   1084 
   1085 	/* non-zero */
   1086 	return (vaddr_t)11;
   1087 }
   1088 
   1089 void
   1090 uvm_uarea_free(vaddr_t uarea)
   1091 {
   1092 
   1093 	/* nata, so creamy */
   1094 }
   1095 
   1096 /*
   1097  * Routines related to the Page Baroness.
   1098  */
   1099 
   1100 void
   1101 uvm_wait(const char *msg)
   1102 {
   1103 
   1104 	if (__predict_false(rump_threads == 0))
   1105 		panic("pagedaemon missing (RUMP_THREADS = 0)");
   1106 
   1107 	if (curlwp == uvm.pagedaemon_lwp) {
   1108 		/* is it possible for us to later get memory? */
   1109 		if (!uvmexp.paging)
   1110 			panic("pagedaemon out of memory");
   1111 	}
   1112 
   1113 	mutex_enter(&pdaemonmtx);
   1114 	pdaemon_waiters++;
   1115 	cv_signal(&pdaemoncv);
   1116 	cv_wait(&oomwait, &pdaemonmtx);
   1117 	mutex_exit(&pdaemonmtx);
   1118 }
   1119 
   1120 void
   1121 uvm_pageout_start(int npages)
   1122 {
   1123 
   1124 	mutex_enter(&pdaemonmtx);
   1125 	uvmexp.paging += npages;
   1126 	mutex_exit(&pdaemonmtx);
   1127 }
   1128 
   1129 void
   1130 uvm_pageout_done(int npages)
   1131 {
   1132 
   1133 	if (!npages)
   1134 		return;
   1135 
   1136 	mutex_enter(&pdaemonmtx);
   1137 	KASSERT(uvmexp.paging >= npages);
   1138 	uvmexp.paging -= npages;
   1139 
   1140 	if (pdaemon_waiters) {
   1141 		pdaemon_waiters = 0;
   1142 		cv_broadcast(&oomwait);
   1143 	}
   1144 	mutex_exit(&pdaemonmtx);
   1145 }
   1146 
   1147 static bool
   1148 processpage(struct vm_page *pg)
   1149 {
   1150 	struct uvm_object *uobj;
   1151 
   1152 	uobj = pg->uobject;
   1153 	if (rw_tryenter(uobj->vmobjlock, RW_WRITER)) {
   1154 		if ((pg->flags & PG_BUSY) == 0) {
   1155 			mutex_exit(&vmpage_lruqueue_lock);
   1156 			uobj->pgops->pgo_put(uobj, pg->offset,
   1157 			    pg->offset + PAGE_SIZE,
   1158 			    PGO_CLEANIT|PGO_FREE);
   1159 			KASSERT(!rw_write_held(uobj->vmobjlock));
   1160 			return true;
   1161 		} else {
   1162 			rw_exit(uobj->vmobjlock);
   1163 		}
   1164 	}
   1165 
   1166 	return false;
   1167 }
   1168 
   1169 /*
   1170  * The Diabolical pageDaemon Director (DDD).
   1171  *
   1172  * This routine can always use better heuristics.
   1173  */
   1174 void
   1175 uvm_pageout(void *arg)
   1176 {
   1177 	struct vm_page *pg;
   1178 	struct pool *pp, *pp_first;
   1179 	int cleaned, skip, skipped;
   1180 	bool succ;
   1181 
   1182 	mutex_enter(&pdaemonmtx);
   1183 	for (;;) {
   1184 		if (pdaemon_waiters) {
   1185 			pdaemon_waiters = 0;
   1186 			cv_broadcast(&oomwait);
   1187 		}
   1188 		if (!NEED_PAGEDAEMON()) {
   1189 			kernel_map->flags &= ~VM_MAP_WANTVA;
   1190 			cv_wait(&pdaemoncv, &pdaemonmtx);
   1191 		}
   1192 		uvmexp.pdwoke++;
   1193 
   1194 		/* tell the world that we are hungry */
   1195 		kernel_map->flags |= VM_MAP_WANTVA;
   1196 		mutex_exit(&pdaemonmtx);
   1197 
   1198 		/*
   1199 		 * step one: reclaim the page cache.  this should give
   1200 		 * us the biggest earnings since whole pages are released
   1201 		 * into backing memory.
   1202 		 */
   1203 		pool_cache_reclaim(&pagecache);
   1204 		if (!NEED_PAGEDAEMON()) {
   1205 			mutex_enter(&pdaemonmtx);
   1206 			continue;
   1207 		}
   1208 
   1209 		/*
   1210 		 * Ok, so that didn't help.  Next, try to hunt memory
   1211 		 * by pushing out vnode pages.  The pages might contain
   1212 		 * useful cached data, but we need the memory.
   1213 		 */
   1214 		cleaned = 0;
   1215 		skip = 0;
   1216  again:
   1217 		mutex_enter(&vmpage_lruqueue_lock);
   1218 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
   1219 			skipped = 0;
   1220 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
   1221 
   1222 				/*
   1223 				 * skip over pages we _might_ have tried
   1224 				 * to handle earlier.  they might not be
   1225 				 * exactly the same ones, but I'm not too
   1226 				 * concerned.
   1227 				 */
   1228 				while (skipped++ < skip)
   1229 					continue;
   1230 
   1231 				if (processpage(pg)) {
   1232 					cleaned++;
   1233 					goto again;
   1234 				}
   1235 
   1236 				skip++;
   1237 			}
   1238 			break;
   1239 		}
   1240 		mutex_exit(&vmpage_lruqueue_lock);
   1241 
   1242 		/*
   1243 		 * And of course we need to reclaim the page cache
   1244 		 * again to actually release memory.
   1245 		 */
   1246 		pool_cache_reclaim(&pagecache);
   1247 		if (!NEED_PAGEDAEMON()) {
   1248 			mutex_enter(&pdaemonmtx);
   1249 			continue;
   1250 		}
   1251 
   1252 		/*
   1253 		 * And then drain the pools.  Wipe them out ... all of them.
   1254 		 */
   1255 		for (pp_first = NULL;;) {
   1256 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
   1257 
   1258 			succ = pool_drain(&pp);
   1259 			if (succ || pp == pp_first)
   1260 				break;
   1261 
   1262 			if (pp_first == NULL)
   1263 				pp_first = pp;
   1264 		}
   1265 
   1266 		/*
   1267 		 * Need to use PYEC on our bag of tricks.
   1268 		 * Unfortunately, the wife just borrowed it.
   1269 		 */
   1270 
   1271 		mutex_enter(&pdaemonmtx);
   1272 		if (!succ && cleaned == 0 && pdaemon_waiters &&
   1273 		    uvmexp.paging == 0) {
   1274 			kpause("pddlk", false, hz, &pdaemonmtx);
   1275 		}
   1276 	}
   1277 
   1278 	panic("you can swap out any time you like, but you can never leave");
   1279 }
   1280 
   1281 void
   1282 uvm_kick_pdaemon()
   1283 {
   1284 
   1285 	/*
   1286 	 * Wake up the diabolical pagedaemon director if we are over
   1287 	 * 90% of the memory limit.  This is a complete and utter
   1288 	 * stetson-harrison decision which you are allowed to finetune.
   1289 	 * Don't bother locking.  If we have some unflushed caches,
   1290 	 * other waker-uppers will deal with the issue.
   1291 	 */
   1292 	if (NEED_PAGEDAEMON()) {
   1293 		cv_signal(&pdaemoncv);
   1294 	}
   1295 }
   1296 
   1297 void *
   1298 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
   1299 {
   1300 	const unsigned long thelimit =
   1301 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
   1302 	unsigned long newmem;
   1303 	void *rv;
   1304 	int error;
   1305 
   1306 	uvm_kick_pdaemon(); /* ouch */
   1307 
   1308 	/* first we must be within the limit */
   1309  limitagain:
   1310 	if (thelimit != RUMPMEM_UNLIMITED) {
   1311 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1312 		if (newmem > thelimit) {
   1313 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1314 			if (!waitok) {
   1315 				return NULL;
   1316 			}
   1317 			uvm_wait(wmsg);
   1318 			goto limitagain;
   1319 		}
   1320 	}
   1321 
   1322 	/* second, we must get something from the backend */
   1323  again:
   1324 	error = rumpuser_malloc(howmuch, alignment, &rv);
   1325 	if (__predict_false(error && waitok)) {
   1326 		uvm_wait(wmsg);
   1327 		goto again;
   1328 	}
   1329 
   1330 	return rv;
   1331 }
   1332 
   1333 void
   1334 rump_hyperfree(void *what, size_t size)
   1335 {
   1336 
   1337 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1338 		atomic_add_long(&curphysmem, -size);
   1339 	}
   1340 	rumpuser_free(what, size);
   1341 }
   1342 
   1343 /*
   1344  * UBC
   1345  */
   1346 
   1347 #define PAGERFLAGS (PGO_SYNCIO | PGO_NOBLOCKALLOC | PGO_NOTIMESTAMP)
   1348 
   1349 void
   1350 ubc_zerorange(struct uvm_object *uobj, off_t off, size_t len, int flags)
   1351 {
   1352 	struct vm_page **pgs;
   1353 	int maxpages = MIN(32, round_page(len) >> PAGE_SHIFT);
   1354 	int npages, i;
   1355 
   1356 	if (maxpages == 0)
   1357 		return;
   1358 
   1359 	pgs = kmem_alloc(maxpages * sizeof(pgs), KM_SLEEP);
   1360 	rw_enter(uobj->vmobjlock, RW_WRITER);
   1361 	while (len) {
   1362 		npages = MIN(maxpages, round_page(len) >> PAGE_SHIFT);
   1363 		memset(pgs, 0, npages * sizeof(struct vm_page *));
   1364 		(void)uobj->pgops->pgo_get(uobj, trunc_page(off),
   1365 		    pgs, &npages, 0, VM_PROT_READ | VM_PROT_WRITE,
   1366 		    0, PAGERFLAGS | PGO_PASTEOF);
   1367 		KASSERT(npages > 0);
   1368 
   1369 		rw_enter(uobj->vmobjlock, RW_WRITER);
   1370 		for (i = 0; i < npages; i++) {
   1371 			struct vm_page *pg;
   1372 			uint8_t *start;
   1373 			size_t chunkoff, chunklen;
   1374 
   1375 			pg = pgs[i];
   1376 			if (pg == NULL)
   1377 				break;
   1378 
   1379 			KASSERT(pg->uobject != NULL);
   1380 			KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
   1381 
   1382 			chunkoff = off & PAGE_MASK;
   1383 			chunklen = MIN(PAGE_SIZE - chunkoff, len);
   1384 			start = (uint8_t *)pg->uanon + chunkoff;
   1385 
   1386 			memset(start, 0, chunklen);
   1387 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   1388 
   1389 			off += chunklen;
   1390 			len -= chunklen;
   1391 		}
   1392 		uvm_page_unbusy(pgs, npages);
   1393 	}
   1394 	rw_exit(uobj->vmobjlock);
   1395 	kmem_free(pgs, maxpages * sizeof(pgs));
   1396 }
   1397 
   1398 #define len2npages(off, len)						\
   1399     ((round_page(off+len) - trunc_page(off)) >> PAGE_SHIFT)
   1400 
   1401 int
   1402 ubc_uiomove(struct uvm_object *uobj, struct uio *uio, vsize_t todo,
   1403 	int advice, int flags)
   1404 {
   1405 	struct vm_page **pgs;
   1406 	int npages = len2npages(uio->uio_offset, todo);
   1407 	size_t pgalloc;
   1408 	int i, rv, pagerflags;
   1409 	vm_prot_t prot;
   1410 
   1411 	pgalloc = npages * sizeof(pgs);
   1412 	pgs = kmem_alloc(pgalloc, KM_SLEEP);
   1413 
   1414 	pagerflags = PAGERFLAGS;
   1415 	if (flags & UBC_WRITE)
   1416 		pagerflags |= PGO_PASTEOF;
   1417 	if (flags & UBC_FAULTBUSY)
   1418 		pagerflags |= PGO_OVERWRITE;
   1419 
   1420 	prot = VM_PROT_READ;
   1421 	if (flags & UBC_WRITE)
   1422 		prot |= VM_PROT_WRITE;
   1423 
   1424 	rw_enter(uobj->vmobjlock, RW_WRITER);
   1425 	do {
   1426 		npages = len2npages(uio->uio_offset, todo);
   1427 		memset(pgs, 0, pgalloc);
   1428 		rv = uobj->pgops->pgo_get(uobj, trunc_page(uio->uio_offset),
   1429 		    pgs, &npages, 0, prot, 0, pagerflags);
   1430 		if (rv)
   1431 			goto out;
   1432 
   1433 		rw_enter(uobj->vmobjlock, RW_WRITER);
   1434 		for (i = 0; i < npages; i++) {
   1435 			struct vm_page *pg;
   1436 			size_t xfersize;
   1437 			off_t pageoff;
   1438 
   1439 			pg = pgs[i];
   1440 			if (pg == NULL)
   1441 				break;
   1442 
   1443 			KASSERT(pg->uobject != NULL);
   1444 			KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
   1445 			pageoff = uio->uio_offset & PAGE_MASK;
   1446 
   1447 			xfersize = MIN(MIN(todo, PAGE_SIZE), PAGE_SIZE-pageoff);
   1448 			KASSERT(xfersize > 0);
   1449 			rv = uiomove((uint8_t *)pg->uanon + pageoff,
   1450 			    xfersize, uio);
   1451 			if (rv) {
   1452 				uvm_page_unbusy(pgs, npages);
   1453 				rw_exit(uobj->vmobjlock);
   1454 				goto out;
   1455 			}
   1456 			if (uio->uio_rw == UIO_WRITE) {
   1457 				pg->flags &= ~PG_FAKE;
   1458 				uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   1459 			}
   1460 			todo -= xfersize;
   1461 		}
   1462 		uvm_page_unbusy(pgs, npages);
   1463 	} while (todo);
   1464 	rw_exit(uobj->vmobjlock);
   1465 
   1466  out:
   1467 	kmem_free(pgs, pgalloc);
   1468 	return rv;
   1469 }
   1470