vm.c revision 1.70.2.4 1 /* $NetBSD: vm.c,v 1.70.2.4 2010/10/22 07:22:51 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 2007-2010 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.70.2.4 2010/10/22 07:22:51 uebayasi Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/mman.h>
52 #include <sys/null.h>
53 #include <sys/vnode.h>
54
55 #include <machine/pmap.h>
56
57 #include <rump/rumpuser.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_ddb.h>
61 #include <uvm/uvm_pdpolicy.h>
62 #include <uvm/uvm_prot.h>
63 #include <uvm/uvm_readahead.h>
64
65 #include "rump_private.h"
66 #include "rump_vfs_private.h"
67
68 kmutex_t uvm_pageqlock;
69 kmutex_t uvm_swap_data_lock;
70
71 struct uvmexp uvmexp;
72 struct uvm uvm;
73
74 struct vm_map rump_vmmap;
75 static struct vm_map_kernel kmem_map_store;
76 struct vm_map *kmem_map = &kmem_map_store.vmk_map;
77
78 static struct vm_map_kernel kernel_map_store;
79 struct vm_map *kernel_map = &kernel_map_store.vmk_map;
80
81 static unsigned int pdaemon_waiters;
82 static kmutex_t pdaemonmtx;
83 static kcondvar_t pdaemoncv, oomwait;
84
85 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
86 static unsigned long curphysmem;
87 static unsigned long dddlim; /* 90% of memory limit used */
88 #define NEED_PAGEDAEMON() \
89 (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
90
91 /*
92 * Try to free two pages worth of pages from objects.
93 * If this succesfully frees a full page cache page, we'll
94 * free the released page plus PAGE_SIZE/sizeof(vm_page).
95 */
96 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
97
98 /*
99 * Keep a list of least recently used pages. Since the only way a
100 * rump kernel can "access" a page is via lookup, we put the page
101 * at the back of queue every time a lookup for it is done. If the
102 * page is in front of this global queue and we're short of memory,
103 * it's a candidate for pageout.
104 */
105 static struct pglist vmpage_lruqueue;
106 static unsigned vmpage_onqueue;
107
108 static int
109 pg_compare_key(void *ctx, const void *n, const void *key)
110 {
111 voff_t a = ((const struct vm_page *)n)->offset;
112 voff_t b = *(const voff_t *)key;
113
114 if (a < b)
115 return -1;
116 else if (a > b)
117 return 1;
118 else
119 return 0;
120 }
121
122 static int
123 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
124 {
125
126 return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
127 }
128
129 const rb_tree_ops_t uvm_page_tree_ops = {
130 .rbto_compare_nodes = pg_compare_nodes,
131 .rbto_compare_key = pg_compare_key,
132 .rbto_node_offset = offsetof(struct vm_page, rb_node),
133 .rbto_context = NULL
134 };
135
136 /*
137 * vm pages
138 */
139
140 static int
141 pgctor(void *arg, void *obj, int flags)
142 {
143 struct vm_page *pg = obj;
144
145 memset(pg, 0, sizeof(*pg));
146 pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE, true, "pgalloc");
147 return 0;
148 }
149
150 static void
151 pgdtor(void *arg, void *obj)
152 {
153 struct vm_page *pg = obj;
154
155 rump_hyperfree(pg->uanon, PAGE_SIZE);
156 }
157
158 static struct pool_cache pagecache;
159
160 /*
161 * Called with the object locked. We don't support anons.
162 */
163 struct vm_page *
164 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
165 int flags, int strat, int free_list)
166 {
167 struct vm_page *pg;
168
169 KASSERT(uobj && mutex_owned(&uobj->vmobjlock));
170 KASSERT(anon == NULL);
171
172 pg = pool_cache_get(&pagecache, PR_WAITOK);
173 pg->offset = off;
174 pg->uobject = uobj;
175
176 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
177 if (flags & UVM_PGA_ZERO) {
178 uvm_pagezero(pg);
179 }
180
181 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
182 (void)rb_tree_insert_node(&uobj->rb_tree, pg);
183
184 /*
185 * Don't put anons on the LRU page queue. We can't flush them
186 * (there's no concept of swap in a rump kernel), so no reason
187 * to bother with them.
188 */
189 if (!UVM_OBJ_IS_AOBJ(uobj)) {
190 atomic_inc_uint(&vmpage_onqueue);
191 mutex_enter(&uvm_pageqlock);
192 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
193 mutex_exit(&uvm_pageqlock);
194 }
195
196 uobj->uo_npages++;
197
198 return pg;
199 }
200
201 /*
202 * Release a page.
203 *
204 * Called with the vm object locked.
205 */
206 void
207 uvm_pagefree(struct vm_page *pg)
208 {
209 struct uvm_object *uobj = pg->uobject;
210
211 KASSERT(mutex_owned(&uvm_pageqlock));
212 KASSERT(mutex_owned(&uobj->vmobjlock));
213
214 if (pg->flags & PG_WANTED)
215 wakeup(pg);
216
217 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
218
219 uobj->uo_npages--;
220 rb_tree_remove_node(&uobj->rb_tree, pg);
221
222 if (!UVM_OBJ_IS_AOBJ(uobj)) {
223 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
224 atomic_dec_uint(&vmpage_onqueue);
225 }
226
227 pool_cache_put(&pagecache, pg);
228 }
229
230 void
231 uvm_pagezero(struct vm_page *pg)
232 {
233
234 pg->flags &= ~PG_CLEAN;
235 memset((void *)pg->uanon, 0, PAGE_SIZE);
236 }
237
238 /*
239 * Misc routines
240 */
241
242 static kmutex_t pagermtx;
243
244 void
245 uvm_init(void)
246 {
247 char buf[64];
248 int error;
249
250 if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
251 rump_physmemlimit = strtoll(buf, NULL, 10);
252 /* it's not like we'd get far with, say, 1 byte, but ... */
253 if (rump_physmemlimit == 0)
254 panic("uvm_init: no memory available");
255 #define HUMANIZE_BYTES 9
256 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
257 format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
258 #undef HUMANIZE_BYTES
259 dddlim = 9 * (rump_physmemlimit / 10);
260 } else {
261 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
262 }
263 aprint_verbose("total memory = %s\n", buf);
264
265 TAILQ_INIT(&vmpage_lruqueue);
266
267 uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
268
269 mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
270 mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
271 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
272
273 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
274 cv_init(&pdaemoncv, "pdaemon");
275 cv_init(&oomwait, "oomwait");
276
277 kernel_map->pmap = pmap_kernel();
278 callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
279 kmem_map->pmap = pmap_kernel();
280 callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
281
282 pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
283 "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
284 }
285
286 void
287 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
288 {
289
290 vm->vm_map.pmap = pmap_kernel();
291 vm->vm_refcnt = 1;
292 }
293
294 void
295 uvm_pagewire(struct vm_page *pg)
296 {
297
298 /* nada */
299 }
300
301 void
302 uvm_pageunwire(struct vm_page *pg)
303 {
304
305 /* nada */
306 }
307
308 /* where's your schmonz now? */
309 #define PUNLIMIT(a) \
310 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
311 void
312 uvm_init_limits(struct proc *p)
313 {
314
315 PUNLIMIT(RLIMIT_STACK);
316 PUNLIMIT(RLIMIT_DATA);
317 PUNLIMIT(RLIMIT_RSS);
318 PUNLIMIT(RLIMIT_AS);
319 /* nice, cascade */
320 }
321 #undef PUNLIMIT
322
323 /*
324 * This satisfies the "disgusting mmap hack" used by proplib.
325 * We probably should grow some more assertables to make sure we're
326 * not satisfying anything we shouldn't be satisfying. At least we
327 * should make sure it's the local machine we're mmapping ...
328 */
329 int
330 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
331 vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
332 {
333 void *uaddr;
334 int error;
335
336 if (prot != (VM_PROT_READ | VM_PROT_WRITE))
337 panic("uvm_mmap() variant unsupported");
338 if (flags != (MAP_PRIVATE | MAP_ANON))
339 panic("uvm_mmap() variant unsupported");
340 /* no reason in particular, but cf. uvm_default_mapaddr() */
341 if (*addr != 0)
342 panic("uvm_mmap() variant unsupported");
343
344 uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
345 if (uaddr == NULL)
346 return error;
347
348 *addr = (vaddr_t)uaddr;
349 return 0;
350 }
351
352 struct pagerinfo {
353 vaddr_t pgr_kva;
354 int pgr_npages;
355 struct vm_page **pgr_pgs;
356 bool pgr_read;
357
358 LIST_ENTRY(pagerinfo) pgr_entries;
359 };
360 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
361
362 /*
363 * Pager "map" in routine. Instead of mapping, we allocate memory
364 * and copy page contents there. Not optimal or even strictly
365 * correct (the caller might modify the page contents after mapping
366 * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
367 */
368 vaddr_t
369 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
370 {
371 struct pagerinfo *pgri;
372 vaddr_t curkva;
373 int i;
374
375 /* allocate structures */
376 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
377 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
378 pgri->pgr_npages = npages;
379 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
380 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
381
382 /* copy contents to "mapped" memory */
383 for (i = 0, curkva = pgri->pgr_kva;
384 i < npages;
385 i++, curkva += PAGE_SIZE) {
386 /*
387 * We need to copy the previous contents of the pages to
388 * the window even if we are reading from the
389 * device, since the device might not fill the contents of
390 * the full mapped range and we will end up corrupting
391 * data when we unmap the window.
392 */
393 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
394 pgri->pgr_pgs[i] = pgs[i];
395 }
396
397 mutex_enter(&pagermtx);
398 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
399 mutex_exit(&pagermtx);
400
401 return pgri->pgr_kva;
402 }
403
404 /*
405 * map out the pager window. return contents from VA to page storage
406 * and free structures.
407 *
408 * Note: does not currently support partial frees
409 */
410 void
411 uvm_pagermapout(vaddr_t kva, int npages)
412 {
413 struct pagerinfo *pgri;
414 vaddr_t curkva;
415 int i;
416
417 mutex_enter(&pagermtx);
418 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
419 if (pgri->pgr_kva == kva)
420 break;
421 }
422 KASSERT(pgri);
423 if (pgri->pgr_npages != npages)
424 panic("uvm_pagermapout: partial unmapping not supported");
425 LIST_REMOVE(pgri, pgr_entries);
426 mutex_exit(&pagermtx);
427
428 if (pgri->pgr_read) {
429 for (i = 0, curkva = pgri->pgr_kva;
430 i < pgri->pgr_npages;
431 i++, curkva += PAGE_SIZE) {
432 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
433 }
434 }
435
436 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
437 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
438 kmem_free(pgri, sizeof(*pgri));
439 }
440
441 /*
442 * convert va in pager window to page structure.
443 * XXX: how expensive is this (global lock, list traversal)?
444 */
445 struct vm_page *
446 uvm_pageratop(vaddr_t va)
447 {
448 struct pagerinfo *pgri;
449 struct vm_page *pg = NULL;
450 int i;
451
452 mutex_enter(&pagermtx);
453 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
454 if (pgri->pgr_kva <= va
455 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
456 break;
457 }
458 if (pgri) {
459 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
460 pg = pgri->pgr_pgs[i];
461 }
462 mutex_exit(&pagermtx);
463
464 return pg;
465 }
466
467 /*
468 * Called with the vm object locked.
469 *
470 * Put vnode object pages at the end of the access queue to indicate
471 * they have been recently accessed and should not be immediate
472 * candidates for pageout. Do not do this for lookups done by
473 * the pagedaemon to mimic pmap_kentered mappings which don't track
474 * access information.
475 */
476 struct vm_page *
477 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
478 {
479 struct vm_page *pg;
480 bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
481
482 pg = rb_tree_find_node(&uobj->rb_tree, &off);
483 if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
484 mutex_enter(&uvm_pageqlock);
485 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
486 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
487 mutex_exit(&uvm_pageqlock);
488 }
489
490 return pg;
491 }
492
493 void
494 uvm_page_unbusy(struct vm_page **pgs, int npgs)
495 {
496 struct vm_page *pg;
497 int i;
498
499 KASSERT(npgs > 0);
500 KASSERT(mutex_owned(&pgs[0]->uobject->vmobjlock));
501
502 for (i = 0; i < npgs; i++) {
503 pg = pgs[i];
504 if (pg == NULL)
505 continue;
506
507 KASSERT(pg->flags & PG_BUSY);
508 if (pg->flags & PG_WANTED)
509 wakeup(pg);
510 if (pg->flags & PG_RELEASED)
511 uvm_pagefree(pg);
512 else
513 pg->flags &= ~(PG_WANTED|PG_BUSY);
514 }
515 }
516
517 void
518 uvm_estimatepageable(int *active, int *inactive)
519 {
520
521 /* XXX: guessing game */
522 *active = 1024;
523 *inactive = 1024;
524 }
525
526 struct vm_map_kernel *
527 vm_map_to_kernel(struct vm_map *map)
528 {
529
530 return (struct vm_map_kernel *)map;
531 }
532
533 bool
534 vm_map_starved_p(struct vm_map *map)
535 {
536
537 if (map->flags & VM_MAP_WANTVA)
538 return true;
539
540 return false;
541 }
542
543 int
544 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
545 {
546
547 panic("%s: unimplemented", __func__);
548 }
549
550 void
551 uvm_unloan(void *v, int npages, int flags)
552 {
553
554 panic("%s: unimplemented", __func__);
555 }
556
557 int
558 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
559 struct vm_page **opp)
560 {
561
562 return EBUSY;
563 }
564
565 #ifdef DEBUGPRINT
566 void
567 uvm_object_printit(struct uvm_object *uobj, bool full,
568 void (*pr)(const char *, ...))
569 {
570
571 pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
572 }
573 #endif
574
575 vaddr_t
576 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
577 {
578
579 return 0;
580 }
581
582 int
583 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
584 vm_prot_t prot, bool set_max)
585 {
586
587 return EOPNOTSUPP;
588 }
589
590 /*
591 * UVM km
592 */
593
594 vaddr_t
595 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
596 {
597 void *rv, *desired = NULL;
598 int alignbit, error;
599
600 #ifdef __x86_64__
601 /*
602 * On amd64, allocate all module memory from the lowest 2GB.
603 * This is because NetBSD kernel modules are compiled
604 * with -mcmodel=kernel and reserve only 4 bytes for
605 * offsets. If we load code compiled with -mcmodel=kernel
606 * anywhere except the lowest or highest 2GB, it will not
607 * work. Since userspace does not have access to the highest
608 * 2GB, use the lowest 2GB.
609 *
610 * Note: this assumes the rump kernel resides in
611 * the lowest 2GB as well.
612 *
613 * Note2: yes, it's a quick hack, but since this the only
614 * place where we care about the map we're allocating from,
615 * just use a simple "if" instead of coming up with a fancy
616 * generic solution.
617 */
618 extern struct vm_map *module_map;
619 if (map == module_map) {
620 desired = (void *)(0x80000000 - size);
621 }
622 #endif
623
624 alignbit = 0;
625 if (align) {
626 alignbit = ffs(align)-1;
627 }
628
629 rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
630 &error);
631 if (rv == NULL) {
632 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
633 return 0;
634 else
635 panic("uvm_km_alloc failed");
636 }
637
638 if (flags & UVM_KMF_ZERO)
639 memset(rv, 0, size);
640
641 return (vaddr_t)rv;
642 }
643
644 void
645 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
646 {
647
648 rumpuser_unmap((void *)vaddr, size);
649 }
650
651 struct vm_map *
652 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
653 vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
654 {
655
656 return (struct vm_map *)417416;
657 }
658
659 vaddr_t
660 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
661 {
662
663 return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
664 waitok, "kmalloc");
665 }
666
667 void
668 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
669 {
670
671 rump_hyperfree((void *)addr, PAGE_SIZE);
672 }
673
674 vaddr_t
675 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
676 {
677
678 return uvm_km_alloc_poolpage(map, waitok);
679 }
680
681 void
682 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
683 {
684
685 uvm_km_free_poolpage(map, vaddr);
686 }
687
688 void
689 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
690 {
691
692 /* we eventually maybe want some model for available memory */
693 }
694
695 /*
696 * Mapping and vm space locking routines.
697 * XXX: these don't work for non-local vmspaces
698 */
699 int
700 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
701 {
702
703 KASSERT(vs == &vmspace0);
704 return 0;
705 }
706
707 void
708 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
709 {
710
711 KASSERT(vs == &vmspace0);
712 }
713
714 void
715 vmapbuf(struct buf *bp, vsize_t len)
716 {
717
718 bp->b_saveaddr = bp->b_data;
719 }
720
721 void
722 vunmapbuf(struct buf *bp, vsize_t len)
723 {
724
725 bp->b_data = bp->b_saveaddr;
726 bp->b_saveaddr = 0;
727 }
728
729 void
730 uvmspace_addref(struct vmspace *vm)
731 {
732
733 /*
734 * there is only vmspace0. we're not planning on
735 * feeding it to the fishes.
736 */
737 }
738
739 void
740 uvmspace_free(struct vmspace *vm)
741 {
742
743 /* nothing for now */
744 }
745
746 int
747 uvm_io(struct vm_map *map, struct uio *uio)
748 {
749
750 /*
751 * just do direct uio for now. but this needs some vmspace
752 * olympics for rump_sysproxy.
753 */
754 return uiomove((void *)(vaddr_t)uio->uio_offset, uio->uio_resid, uio);
755 }
756
757 /*
758 * page life cycle stuff. it really doesn't exist, so just stubs.
759 */
760
761 void
762 uvm_pageactivate(struct vm_page *pg)
763 {
764
765 /* nada */
766 }
767
768 void
769 uvm_pagedeactivate(struct vm_page *pg)
770 {
771
772 /* nada */
773 }
774
775 void
776 uvm_pagedequeue(struct vm_page *pg)
777 {
778
779 /* nada*/
780 }
781
782 void
783 uvm_pageenqueue(struct vm_page *pg)
784 {
785
786 /* nada */
787 }
788
789 void
790 uvmpdpol_anfree(struct vm_anon *an)
791 {
792
793 /* nada */
794 }
795
796 /*
797 * Routines related to the Page Baroness.
798 */
799
800 void
801 uvm_wait(const char *msg)
802 {
803
804 if (__predict_false(curlwp == uvm.pagedaemon_lwp))
805 panic("pagedaemon out of memory");
806 if (__predict_false(rump_threads == 0))
807 panic("pagedaemon missing (RUMP_THREADS = 0)");
808
809 mutex_enter(&pdaemonmtx);
810 pdaemon_waiters++;
811 cv_signal(&pdaemoncv);
812 cv_wait(&oomwait, &pdaemonmtx);
813 mutex_exit(&pdaemonmtx);
814 }
815
816 void
817 uvm_pageout_start(int npages)
818 {
819
820 /* we don't have the heuristics */
821 }
822
823 void
824 uvm_pageout_done(int npages)
825 {
826
827 /* could wakeup waiters, but just let the pagedaemon do it */
828 }
829
830 static bool
831 processpage(struct vm_page *pg)
832 {
833 struct uvm_object *uobj;
834
835 uobj = pg->uobject;
836 if (mutex_tryenter(&uobj->vmobjlock)) {
837 if ((pg->flags & PG_BUSY) == 0) {
838 mutex_exit(&uvm_pageqlock);
839 uobj->pgops->pgo_put(uobj, pg->offset,
840 pg->offset + PAGE_SIZE,
841 PGO_CLEANIT|PGO_FREE);
842 KASSERT(!mutex_owned(&uobj->vmobjlock));
843 return true;
844 } else {
845 mutex_exit(&uobj->vmobjlock);
846 }
847 }
848
849 return false;
850 }
851
852 /*
853 * The Diabolical pageDaemon Director (DDD).
854 */
855 void
856 uvm_pageout(void *arg)
857 {
858 struct vm_page *pg;
859 struct pool *pp, *pp_first;
860 uint64_t where;
861 int timo = 0;
862 int cleaned, skip, skipped;
863 bool succ = false;
864
865 mutex_enter(&pdaemonmtx);
866 for (;;) {
867 if (succ) {
868 kernel_map->flags &= ~VM_MAP_WANTVA;
869 kmem_map->flags &= ~VM_MAP_WANTVA;
870 timo = 0;
871 if (pdaemon_waiters) {
872 pdaemon_waiters = 0;
873 cv_broadcast(&oomwait);
874 }
875 }
876 succ = false;
877
878 cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
879 uvmexp.pdwoke++;
880
881 /* tell the world that we are hungry */
882 kernel_map->flags |= VM_MAP_WANTVA;
883 kmem_map->flags |= VM_MAP_WANTVA;
884
885 if (pdaemon_waiters == 0 && !NEED_PAGEDAEMON())
886 continue;
887 mutex_exit(&pdaemonmtx);
888
889 /*
890 * step one: reclaim the page cache. this should give
891 * us the biggest earnings since whole pages are released
892 * into backing memory.
893 */
894 pool_cache_reclaim(&pagecache);
895 if (!NEED_PAGEDAEMON()) {
896 succ = true;
897 mutex_enter(&pdaemonmtx);
898 continue;
899 }
900
901 /*
902 * Ok, so that didn't help. Next, try to hunt memory
903 * by pushing out vnode pages. The pages might contain
904 * useful cached data, but we need the memory.
905 */
906 cleaned = 0;
907 skip = 0;
908 again:
909 mutex_enter(&uvm_pageqlock);
910 while (cleaned < PAGEDAEMON_OBJCHUNK) {
911 skipped = 0;
912 TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
913
914 /*
915 * skip over pages we _might_ have tried
916 * to handle earlier. they might not be
917 * exactly the same ones, but I'm not too
918 * concerned.
919 */
920 while (skipped++ < skip)
921 continue;
922
923 if (processpage(pg)) {
924 cleaned++;
925 goto again;
926 }
927
928 skip++;
929 }
930 break;
931 }
932 mutex_exit(&uvm_pageqlock);
933
934 /*
935 * And of course we need to reclaim the page cache
936 * again to actually release memory.
937 */
938 pool_cache_reclaim(&pagecache);
939 if (!NEED_PAGEDAEMON()) {
940 succ = true;
941 mutex_enter(&pdaemonmtx);
942 continue;
943 }
944
945 /*
946 * Still not there? sleeves come off right about now.
947 * First: do reclaim on kernel/kmem map.
948 */
949 callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
950 NULL);
951 callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
952 NULL);
953
954 /*
955 * And then drain the pools. Wipe them out ... all of them.
956 */
957
958 pool_drain_start(&pp_first, &where);
959 pp = pp_first;
960 for (;;) {
961 rump_vfs_drainbufs(10 /* XXX: estimate better */);
962 succ = pool_drain_end(pp, where);
963 if (succ)
964 break;
965 pool_drain_start(&pp, &where);
966 if (pp == pp_first) {
967 succ = pool_drain_end(pp, where);
968 break;
969 }
970 }
971
972 /*
973 * Need to use PYEC on our bag of tricks.
974 * Unfortunately, the wife just borrowed it.
975 */
976
977 if (!succ) {
978 rumpuser_dprintf("pagedaemoness: failed to reclaim "
979 "memory ... sleeping (deadlock?)\n");
980 timo = hz;
981 }
982
983 mutex_enter(&pdaemonmtx);
984 }
985
986 panic("you can swap out any time you like, but you can never leave");
987 }
988
989 void
990 uvm_kick_pdaemon()
991 {
992
993 /*
994 * Wake up the diabolical pagedaemon director if we are over
995 * 90% of the memory limit. This is a complete and utter
996 * stetson-harrison decision which you are allowed to finetune.
997 * Don't bother locking. If we have some unflushed caches,
998 * other waker-uppers will deal with the issue.
999 */
1000 if (NEED_PAGEDAEMON()) {
1001 cv_signal(&pdaemoncv);
1002 }
1003 }
1004
1005 void *
1006 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1007 {
1008 unsigned long newmem;
1009 void *rv;
1010
1011 uvm_kick_pdaemon(); /* ouch */
1012
1013 /* first we must be within the limit */
1014 limitagain:
1015 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1016 newmem = atomic_add_long_nv(&curphysmem, howmuch);
1017 if (newmem > rump_physmemlimit) {
1018 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1019 if (!waitok)
1020 return NULL;
1021 uvm_wait(wmsg);
1022 goto limitagain;
1023 }
1024 }
1025
1026 /* second, we must get something from the backend */
1027 again:
1028 rv = rumpuser_malloc(howmuch, alignment);
1029 if (__predict_false(rv == NULL && waitok)) {
1030 uvm_wait(wmsg);
1031 goto again;
1032 }
1033
1034 return rv;
1035 }
1036
1037 void
1038 rump_hyperfree(void *what, size_t size)
1039 {
1040
1041 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1042 atomic_add_long(&curphysmem, -size);
1043 }
1044 rumpuser_free(what);
1045 }
1046
1047 paddr_t
1048 uvm_vm_page_to_phys(const struct vm_page *pg)
1049 {
1050
1051 return 0;
1052 }
1053