vm.c revision 1.70.2.5 1 /* $NetBSD: vm.c,v 1.70.2.5 2010/11/06 08:08:51 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 2007-2010 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.70.2.5 2010/11/06 08:08:51 uebayasi Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/mman.h>
52 #include <sys/null.h>
53 #include <sys/vnode.h>
54
55 #include <machine/pmap.h>
56
57 #include <rump/rumpuser.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_ddb.h>
61 #include <uvm/uvm_pdpolicy.h>
62 #include <uvm/uvm_prot.h>
63 #include <uvm/uvm_readahead.h>
64
65 #include "rump_private.h"
66 #include "rump_vfs_private.h"
67
68 kmutex_t uvm_pageqlock;
69 kmutex_t uvm_swap_data_lock;
70
71 struct uvmexp uvmexp;
72 struct uvm uvm;
73
74 struct vm_map rump_vmmap;
75 static struct vm_map_kernel kmem_map_store;
76 struct vm_map *kmem_map = &kmem_map_store.vmk_map;
77
78 static struct vm_map_kernel kernel_map_store;
79 struct vm_map *kernel_map = &kernel_map_store.vmk_map;
80
81 static unsigned int pdaemon_waiters;
82 static kmutex_t pdaemonmtx;
83 static kcondvar_t pdaemoncv, oomwait;
84
85 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
86 static unsigned long curphysmem;
87 static unsigned long dddlim; /* 90% of memory limit used */
88 #define NEED_PAGEDAEMON() \
89 (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
90
91 /*
92 * Try to free two pages worth of pages from objects.
93 * If this succesfully frees a full page cache page, we'll
94 * free the released page plus PAGE_SIZE/sizeof(vm_page).
95 */
96 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
97
98 /*
99 * Keep a list of least recently used pages. Since the only way a
100 * rump kernel can "access" a page is via lookup, we put the page
101 * at the back of queue every time a lookup for it is done. If the
102 * page is in front of this global queue and we're short of memory,
103 * it's a candidate for pageout.
104 */
105 static struct pglist vmpage_lruqueue;
106 static unsigned vmpage_onqueue;
107
108 static int
109 pg_compare_key(void *ctx, const void *n, const void *key)
110 {
111 voff_t a = ((const struct vm_page *)n)->offset;
112 voff_t b = *(const voff_t *)key;
113
114 if (a < b)
115 return -1;
116 else if (a > b)
117 return 1;
118 else
119 return 0;
120 }
121
122 static int
123 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
124 {
125
126 return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
127 }
128
129 const rb_tree_ops_t uvm_page_tree_ops = {
130 .rbto_compare_nodes = pg_compare_nodes,
131 .rbto_compare_key = pg_compare_key,
132 .rbto_node_offset = offsetof(struct vm_page, rb_node),
133 .rbto_context = NULL
134 };
135
136 /*
137 * vm pages
138 */
139
140 static int
141 pgctor(void *arg, void *obj, int flags)
142 {
143 struct vm_page *pg = obj;
144
145 memset(pg, 0, sizeof(*pg));
146 pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE, true, "pgalloc");
147 return 0;
148 }
149
150 static void
151 pgdtor(void *arg, void *obj)
152 {
153 struct vm_page *pg = obj;
154
155 rump_hyperfree(pg->uanon, PAGE_SIZE);
156 }
157
158 static struct pool_cache pagecache;
159
160 /*
161 * Called with the object locked. We don't support anons.
162 */
163 struct vm_page *
164 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
165 int flags, int strat, int free_list)
166 {
167 struct vm_page *pg;
168
169 KASSERT(uobj && mutex_owned(&uobj->vmobjlock));
170 KASSERT(anon == NULL);
171
172 pg = pool_cache_get(&pagecache, PR_WAITOK);
173 pg->offset = off;
174 pg->uobject = uobj;
175
176 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
177 if (flags & UVM_PGA_ZERO) {
178 uvm_pagezero(pg);
179 }
180
181 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
182 (void)rb_tree_insert_node(&uobj->rb_tree, pg);
183
184 /*
185 * Don't put anons on the LRU page queue. We can't flush them
186 * (there's no concept of swap in a rump kernel), so no reason
187 * to bother with them.
188 */
189 if (!UVM_OBJ_IS_AOBJ(uobj)) {
190 atomic_inc_uint(&vmpage_onqueue);
191 mutex_enter(&uvm_pageqlock);
192 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
193 mutex_exit(&uvm_pageqlock);
194 }
195
196 uobj->uo_npages++;
197
198 return pg;
199 }
200
201 /*
202 * Release a page.
203 *
204 * Called with the vm object locked.
205 */
206 void
207 uvm_pagefree(struct vm_page *pg)
208 {
209 struct uvm_object *uobj = pg->uobject;
210
211 KASSERT(mutex_owned(&uvm_pageqlock));
212 KASSERT(mutex_owned(&uobj->vmobjlock));
213
214 if (pg->flags & PG_WANTED)
215 wakeup(pg);
216
217 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
218
219 uobj->uo_npages--;
220 rb_tree_remove_node(&uobj->rb_tree, pg);
221
222 if (!UVM_OBJ_IS_AOBJ(uobj)) {
223 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
224 atomic_dec_uint(&vmpage_onqueue);
225 }
226
227 pool_cache_put(&pagecache, pg);
228 }
229
230 void
231 uvm_pagezero(struct vm_page *pg)
232 {
233
234 pg->flags &= ~PG_CLEAN;
235 memset((void *)pg->uanon, 0, PAGE_SIZE);
236 }
237
238 /*
239 * Misc routines
240 */
241
242 static kmutex_t pagermtx;
243
244 void
245 uvm_init(void)
246 {
247 char buf[64];
248 int error;
249
250 if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
251 rump_physmemlimit = strtoll(buf, NULL, 10);
252 /* it's not like we'd get far with, say, 1 byte, but ... */
253 if (rump_physmemlimit == 0)
254 panic("uvm_init: no memory available");
255 #define HUMANIZE_BYTES 9
256 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
257 format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
258 #undef HUMANIZE_BYTES
259 dddlim = 9 * (rump_physmemlimit / 10);
260 } else {
261 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
262 }
263 aprint_verbose("total memory = %s\n", buf);
264
265 TAILQ_INIT(&vmpage_lruqueue);
266
267 uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
268
269 mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
270 mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
271 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
272
273 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
274 cv_init(&pdaemoncv, "pdaemon");
275 cv_init(&oomwait, "oomwait");
276
277 kernel_map->pmap = pmap_kernel();
278 callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
279 kmem_map->pmap = pmap_kernel();
280 callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
281
282 pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
283 "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
284 }
285
286 void
287 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
288 {
289
290 vm->vm_map.pmap = pmap_kernel();
291 vm->vm_refcnt = 1;
292 }
293
294 void
295 uvm_pagewire(struct vm_page *pg)
296 {
297
298 /* nada */
299 }
300
301 void
302 uvm_pageunwire(struct vm_page *pg)
303 {
304
305 /* nada */
306 }
307
308 /* where's your schmonz now? */
309 #define PUNLIMIT(a) \
310 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
311 void
312 uvm_init_limits(struct proc *p)
313 {
314
315 PUNLIMIT(RLIMIT_STACK);
316 PUNLIMIT(RLIMIT_DATA);
317 PUNLIMIT(RLIMIT_RSS);
318 PUNLIMIT(RLIMIT_AS);
319 /* nice, cascade */
320 }
321 #undef PUNLIMIT
322
323 /*
324 * This satisfies the "disgusting mmap hack" used by proplib.
325 * We probably should grow some more assertables to make sure we're
326 * not satisfying anything we shouldn't be satisfying. At least we
327 * should make sure it's the local machine we're mmapping ...
328 */
329 int
330 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
331 vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
332 {
333 void *uaddr;
334 int error;
335
336 if (prot != (VM_PROT_READ | VM_PROT_WRITE))
337 panic("uvm_mmap() variant unsupported");
338 if (flags != (MAP_PRIVATE | MAP_ANON))
339 panic("uvm_mmap() variant unsupported");
340
341 /* no reason in particular, but cf. uvm_default_mapaddr() */
342 if (*addr != 0)
343 panic("uvm_mmap() variant unsupported");
344
345 if (curproc->p_vmspace == &vmspace0) {
346 uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
347 } else {
348 error = rumpuser_sp_anonmmap(size, &uaddr);
349 }
350 if (uaddr == NULL)
351 return error;
352
353 *addr = (vaddr_t)uaddr;
354 return 0;
355 }
356
357 struct pagerinfo {
358 vaddr_t pgr_kva;
359 int pgr_npages;
360 struct vm_page **pgr_pgs;
361 bool pgr_read;
362
363 LIST_ENTRY(pagerinfo) pgr_entries;
364 };
365 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
366
367 /*
368 * Pager "map" in routine. Instead of mapping, we allocate memory
369 * and copy page contents there. Not optimal or even strictly
370 * correct (the caller might modify the page contents after mapping
371 * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
372 */
373 vaddr_t
374 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
375 {
376 struct pagerinfo *pgri;
377 vaddr_t curkva;
378 int i;
379
380 /* allocate structures */
381 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
382 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
383 pgri->pgr_npages = npages;
384 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
385 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
386
387 /* copy contents to "mapped" memory */
388 for (i = 0, curkva = pgri->pgr_kva;
389 i < npages;
390 i++, curkva += PAGE_SIZE) {
391 /*
392 * We need to copy the previous contents of the pages to
393 * the window even if we are reading from the
394 * device, since the device might not fill the contents of
395 * the full mapped range and we will end up corrupting
396 * data when we unmap the window.
397 */
398 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
399 pgri->pgr_pgs[i] = pgs[i];
400 }
401
402 mutex_enter(&pagermtx);
403 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
404 mutex_exit(&pagermtx);
405
406 return pgri->pgr_kva;
407 }
408
409 /*
410 * map out the pager window. return contents from VA to page storage
411 * and free structures.
412 *
413 * Note: does not currently support partial frees
414 */
415 void
416 uvm_pagermapout(vaddr_t kva, int npages)
417 {
418 struct pagerinfo *pgri;
419 vaddr_t curkva;
420 int i;
421
422 mutex_enter(&pagermtx);
423 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
424 if (pgri->pgr_kva == kva)
425 break;
426 }
427 KASSERT(pgri);
428 if (pgri->pgr_npages != npages)
429 panic("uvm_pagermapout: partial unmapping not supported");
430 LIST_REMOVE(pgri, pgr_entries);
431 mutex_exit(&pagermtx);
432
433 if (pgri->pgr_read) {
434 for (i = 0, curkva = pgri->pgr_kva;
435 i < pgri->pgr_npages;
436 i++, curkva += PAGE_SIZE) {
437 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
438 }
439 }
440
441 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
442 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
443 kmem_free(pgri, sizeof(*pgri));
444 }
445
446 /*
447 * convert va in pager window to page structure.
448 * XXX: how expensive is this (global lock, list traversal)?
449 */
450 struct vm_page *
451 uvm_pageratop(vaddr_t va)
452 {
453 struct pagerinfo *pgri;
454 struct vm_page *pg = NULL;
455 int i;
456
457 mutex_enter(&pagermtx);
458 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
459 if (pgri->pgr_kva <= va
460 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
461 break;
462 }
463 if (pgri) {
464 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
465 pg = pgri->pgr_pgs[i];
466 }
467 mutex_exit(&pagermtx);
468
469 return pg;
470 }
471
472 /*
473 * Called with the vm object locked.
474 *
475 * Put vnode object pages at the end of the access queue to indicate
476 * they have been recently accessed and should not be immediate
477 * candidates for pageout. Do not do this for lookups done by
478 * the pagedaemon to mimic pmap_kentered mappings which don't track
479 * access information.
480 */
481 struct vm_page *
482 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
483 {
484 struct vm_page *pg;
485 bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
486
487 pg = rb_tree_find_node(&uobj->rb_tree, &off);
488 if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
489 mutex_enter(&uvm_pageqlock);
490 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
491 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
492 mutex_exit(&uvm_pageqlock);
493 }
494
495 return pg;
496 }
497
498 void
499 uvm_page_unbusy(struct vm_page **pgs, int npgs)
500 {
501 struct vm_page *pg;
502 int i;
503
504 KASSERT(npgs > 0);
505 KASSERT(mutex_owned(&pgs[0]->uobject->vmobjlock));
506
507 for (i = 0; i < npgs; i++) {
508 pg = pgs[i];
509 if (pg == NULL)
510 continue;
511
512 KASSERT(pg->flags & PG_BUSY);
513 if (pg->flags & PG_WANTED)
514 wakeup(pg);
515 if (pg->flags & PG_RELEASED)
516 uvm_pagefree(pg);
517 else
518 pg->flags &= ~(PG_WANTED|PG_BUSY);
519 }
520 }
521
522 void
523 uvm_estimatepageable(int *active, int *inactive)
524 {
525
526 /* XXX: guessing game */
527 *active = 1024;
528 *inactive = 1024;
529 }
530
531 struct vm_map_kernel *
532 vm_map_to_kernel(struct vm_map *map)
533 {
534
535 return (struct vm_map_kernel *)map;
536 }
537
538 bool
539 vm_map_starved_p(struct vm_map *map)
540 {
541
542 if (map->flags & VM_MAP_WANTVA)
543 return true;
544
545 return false;
546 }
547
548 int
549 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
550 {
551
552 panic("%s: unimplemented", __func__);
553 }
554
555 void
556 uvm_unloan(void *v, int npages, int flags)
557 {
558
559 panic("%s: unimplemented", __func__);
560 }
561
562 int
563 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
564 struct vm_page **opp)
565 {
566
567 return EBUSY;
568 }
569
570 #ifdef DEBUGPRINT
571 void
572 uvm_object_printit(struct uvm_object *uobj, bool full,
573 void (*pr)(const char *, ...))
574 {
575
576 pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
577 }
578 #endif
579
580 vaddr_t
581 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
582 {
583
584 return 0;
585 }
586
587 int
588 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
589 vm_prot_t prot, bool set_max)
590 {
591
592 return EOPNOTSUPP;
593 }
594
595 /*
596 * UVM km
597 */
598
599 vaddr_t
600 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
601 {
602 void *rv, *desired = NULL;
603 int alignbit, error;
604
605 #ifdef __x86_64__
606 /*
607 * On amd64, allocate all module memory from the lowest 2GB.
608 * This is because NetBSD kernel modules are compiled
609 * with -mcmodel=kernel and reserve only 4 bytes for
610 * offsets. If we load code compiled with -mcmodel=kernel
611 * anywhere except the lowest or highest 2GB, it will not
612 * work. Since userspace does not have access to the highest
613 * 2GB, use the lowest 2GB.
614 *
615 * Note: this assumes the rump kernel resides in
616 * the lowest 2GB as well.
617 *
618 * Note2: yes, it's a quick hack, but since this the only
619 * place where we care about the map we're allocating from,
620 * just use a simple "if" instead of coming up with a fancy
621 * generic solution.
622 */
623 extern struct vm_map *module_map;
624 if (map == module_map) {
625 desired = (void *)(0x80000000 - size);
626 }
627 #endif
628
629 alignbit = 0;
630 if (align) {
631 alignbit = ffs(align)-1;
632 }
633
634 rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
635 &error);
636 if (rv == NULL) {
637 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
638 return 0;
639 else
640 panic("uvm_km_alloc failed");
641 }
642
643 if (flags & UVM_KMF_ZERO)
644 memset(rv, 0, size);
645
646 return (vaddr_t)rv;
647 }
648
649 void
650 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
651 {
652
653 rumpuser_unmap((void *)vaddr, size);
654 }
655
656 struct vm_map *
657 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
658 vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
659 {
660
661 return (struct vm_map *)417416;
662 }
663
664 vaddr_t
665 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
666 {
667
668 return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
669 waitok, "kmalloc");
670 }
671
672 void
673 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
674 {
675
676 rump_hyperfree((void *)addr, PAGE_SIZE);
677 }
678
679 vaddr_t
680 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
681 {
682
683 return uvm_km_alloc_poolpage(map, waitok);
684 }
685
686 void
687 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
688 {
689
690 uvm_km_free_poolpage(map, vaddr);
691 }
692
693 void
694 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
695 {
696
697 /* we eventually maybe want some model for available memory */
698 }
699
700 /*
701 * Mapping and vm space locking routines.
702 * XXX: these don't work for non-local vmspaces
703 */
704 int
705 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
706 {
707
708 KASSERT(vs == &vmspace0);
709 return 0;
710 }
711
712 void
713 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
714 {
715
716 KASSERT(vs == &vmspace0);
717 }
718
719 void
720 vmapbuf(struct buf *bp, vsize_t len)
721 {
722
723 bp->b_saveaddr = bp->b_data;
724 }
725
726 void
727 vunmapbuf(struct buf *bp, vsize_t len)
728 {
729
730 bp->b_data = bp->b_saveaddr;
731 bp->b_saveaddr = 0;
732 }
733
734 void
735 uvmspace_addref(struct vmspace *vm)
736 {
737
738 /*
739 * there is only vmspace0. we're not planning on
740 * feeding it to the fishes.
741 */
742 }
743
744 void
745 uvmspace_free(struct vmspace *vm)
746 {
747
748 /* nothing for now */
749 }
750
751 int
752 uvm_io(struct vm_map *map, struct uio *uio)
753 {
754
755 /*
756 * just do direct uio for now. but this needs some vmspace
757 * olympics for rump_sysproxy.
758 */
759 return uiomove((void *)(vaddr_t)uio->uio_offset, uio->uio_resid, uio);
760 }
761
762 /*
763 * page life cycle stuff. it really doesn't exist, so just stubs.
764 */
765
766 void
767 uvm_pageactivate(struct vm_page *pg)
768 {
769
770 /* nada */
771 }
772
773 void
774 uvm_pagedeactivate(struct vm_page *pg)
775 {
776
777 /* nada */
778 }
779
780 void
781 uvm_pagedequeue(struct vm_page *pg)
782 {
783
784 /* nada*/
785 }
786
787 void
788 uvm_pageenqueue(struct vm_page *pg)
789 {
790
791 /* nada */
792 }
793
794 void
795 uvmpdpol_anfree(struct vm_anon *an)
796 {
797
798 /* nada */
799 }
800
801 /*
802 * Routines related to the Page Baroness.
803 */
804
805 void
806 uvm_wait(const char *msg)
807 {
808
809 if (__predict_false(curlwp == uvm.pagedaemon_lwp))
810 panic("pagedaemon out of memory");
811 if (__predict_false(rump_threads == 0))
812 panic("pagedaemon missing (RUMP_THREADS = 0)");
813
814 mutex_enter(&pdaemonmtx);
815 pdaemon_waiters++;
816 cv_signal(&pdaemoncv);
817 cv_wait(&oomwait, &pdaemonmtx);
818 mutex_exit(&pdaemonmtx);
819 }
820
821 void
822 uvm_pageout_start(int npages)
823 {
824
825 /* we don't have the heuristics */
826 }
827
828 void
829 uvm_pageout_done(int npages)
830 {
831
832 /* could wakeup waiters, but just let the pagedaemon do it */
833 }
834
835 static bool
836 processpage(struct vm_page *pg)
837 {
838 struct uvm_object *uobj;
839
840 uobj = pg->uobject;
841 if (mutex_tryenter(&uobj->vmobjlock)) {
842 if ((pg->flags & PG_BUSY) == 0) {
843 mutex_exit(&uvm_pageqlock);
844 uobj->pgops->pgo_put(uobj, pg->offset,
845 pg->offset + PAGE_SIZE,
846 PGO_CLEANIT|PGO_FREE);
847 KASSERT(!mutex_owned(&uobj->vmobjlock));
848 return true;
849 } else {
850 mutex_exit(&uobj->vmobjlock);
851 }
852 }
853
854 return false;
855 }
856
857 /*
858 * The Diabolical pageDaemon Director (DDD).
859 */
860 void
861 uvm_pageout(void *arg)
862 {
863 struct vm_page *pg;
864 struct pool *pp, *pp_first;
865 uint64_t where;
866 int timo = 0;
867 int cleaned, skip, skipped;
868 bool succ = false;
869
870 mutex_enter(&pdaemonmtx);
871 for (;;) {
872 if (succ) {
873 kernel_map->flags &= ~VM_MAP_WANTVA;
874 kmem_map->flags &= ~VM_MAP_WANTVA;
875 timo = 0;
876 if (pdaemon_waiters) {
877 pdaemon_waiters = 0;
878 cv_broadcast(&oomwait);
879 }
880 }
881 succ = false;
882
883 cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
884 uvmexp.pdwoke++;
885
886 /* tell the world that we are hungry */
887 kernel_map->flags |= VM_MAP_WANTVA;
888 kmem_map->flags |= VM_MAP_WANTVA;
889
890 if (pdaemon_waiters == 0 && !NEED_PAGEDAEMON())
891 continue;
892 mutex_exit(&pdaemonmtx);
893
894 /*
895 * step one: reclaim the page cache. this should give
896 * us the biggest earnings since whole pages are released
897 * into backing memory.
898 */
899 pool_cache_reclaim(&pagecache);
900 if (!NEED_PAGEDAEMON()) {
901 succ = true;
902 mutex_enter(&pdaemonmtx);
903 continue;
904 }
905
906 /*
907 * Ok, so that didn't help. Next, try to hunt memory
908 * by pushing out vnode pages. The pages might contain
909 * useful cached data, but we need the memory.
910 */
911 cleaned = 0;
912 skip = 0;
913 again:
914 mutex_enter(&uvm_pageqlock);
915 while (cleaned < PAGEDAEMON_OBJCHUNK) {
916 skipped = 0;
917 TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
918
919 /*
920 * skip over pages we _might_ have tried
921 * to handle earlier. they might not be
922 * exactly the same ones, but I'm not too
923 * concerned.
924 */
925 while (skipped++ < skip)
926 continue;
927
928 if (processpage(pg)) {
929 cleaned++;
930 goto again;
931 }
932
933 skip++;
934 }
935 break;
936 }
937 mutex_exit(&uvm_pageqlock);
938
939 /*
940 * And of course we need to reclaim the page cache
941 * again to actually release memory.
942 */
943 pool_cache_reclaim(&pagecache);
944 if (!NEED_PAGEDAEMON()) {
945 succ = true;
946 mutex_enter(&pdaemonmtx);
947 continue;
948 }
949
950 /*
951 * Still not there? sleeves come off right about now.
952 * First: do reclaim on kernel/kmem map.
953 */
954 callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
955 NULL);
956 callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
957 NULL);
958
959 /*
960 * And then drain the pools. Wipe them out ... all of them.
961 */
962
963 pool_drain_start(&pp_first, &where);
964 pp = pp_first;
965 for (;;) {
966 rump_vfs_drainbufs(10 /* XXX: estimate better */);
967 succ = pool_drain_end(pp, where);
968 if (succ)
969 break;
970 pool_drain_start(&pp, &where);
971 if (pp == pp_first) {
972 succ = pool_drain_end(pp, where);
973 break;
974 }
975 }
976
977 /*
978 * Need to use PYEC on our bag of tricks.
979 * Unfortunately, the wife just borrowed it.
980 */
981
982 if (!succ) {
983 rumpuser_dprintf("pagedaemoness: failed to reclaim "
984 "memory ... sleeping (deadlock?)\n");
985 timo = hz;
986 }
987
988 mutex_enter(&pdaemonmtx);
989 }
990
991 panic("you can swap out any time you like, but you can never leave");
992 }
993
994 void
995 uvm_kick_pdaemon()
996 {
997
998 /*
999 * Wake up the diabolical pagedaemon director if we are over
1000 * 90% of the memory limit. This is a complete and utter
1001 * stetson-harrison decision which you are allowed to finetune.
1002 * Don't bother locking. If we have some unflushed caches,
1003 * other waker-uppers will deal with the issue.
1004 */
1005 if (NEED_PAGEDAEMON()) {
1006 cv_signal(&pdaemoncv);
1007 }
1008 }
1009
1010 void *
1011 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1012 {
1013 unsigned long newmem;
1014 void *rv;
1015
1016 uvm_kick_pdaemon(); /* ouch */
1017
1018 /* first we must be within the limit */
1019 limitagain:
1020 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1021 newmem = atomic_add_long_nv(&curphysmem, howmuch);
1022 if (newmem > rump_physmemlimit) {
1023 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1024 if (!waitok)
1025 return NULL;
1026 uvm_wait(wmsg);
1027 goto limitagain;
1028 }
1029 }
1030
1031 /* second, we must get something from the backend */
1032 again:
1033 rv = rumpuser_malloc(howmuch, alignment);
1034 if (__predict_false(rv == NULL && waitok)) {
1035 uvm_wait(wmsg);
1036 goto again;
1037 }
1038
1039 return rv;
1040 }
1041
1042 void
1043 rump_hyperfree(void *what, size_t size)
1044 {
1045
1046 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1047 atomic_add_long(&curphysmem, -size);
1048 }
1049 rumpuser_free(what);
1050 }
1051
1052 paddr_t
1053 uvm_vm_page_to_phys(const struct vm_page *pg)
1054 {
1055
1056 return 0;
1057 }
1058