Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.80
      1 /*	$NetBSD: vm.c,v 1.80 2010/06/03 10:56:20 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2010 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.  Contents:
     34  *  + anon objects & pager
     35  *  + misc support routines
     36  */
     37 
     38 /*
     39  * XXX: we abuse pg->uanon for the virtual address of the storage
     40  * for each page.  phys_addr would fit the job description better,
     41  * except that it will create unnecessary lossage on some platforms
     42  * due to not being a pointer type.
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.80 2010/06/03 10:56:20 pooka Exp $");
     47 
     48 #include <sys/param.h>
     49 #include <sys/atomic.h>
     50 #include <sys/buf.h>
     51 #include <sys/kernel.h>
     52 #include <sys/kmem.h>
     53 #include <sys/mman.h>
     54 #include <sys/null.h>
     55 #include <sys/vnode.h>
     56 
     57 #include <machine/pmap.h>
     58 
     59 #include <rump/rumpuser.h>
     60 
     61 #include <uvm/uvm.h>
     62 #include <uvm/uvm_ddb.h>
     63 #include <uvm/uvm_prot.h>
     64 #include <uvm/uvm_readahead.h>
     65 
     66 #include "rump_private.h"
     67 
     68 static int ao_get(struct uvm_object *, voff_t, struct vm_page **,
     69 	int *, int, vm_prot_t, int, int);
     70 static int ao_put(struct uvm_object *, voff_t, voff_t, int);
     71 
     72 const struct uvm_pagerops aobj_pager = {
     73 	.pgo_get = ao_get,
     74 	.pgo_put = ao_put,
     75 };
     76 
     77 kmutex_t uvm_pageqlock;
     78 
     79 struct uvmexp uvmexp;
     80 struct uvm uvm;
     81 
     82 struct vmspace rump_vmspace;
     83 struct vm_map rump_vmmap;
     84 static struct vm_map_kernel kmem_map_store;
     85 struct vm_map *kmem_map = &kmem_map_store.vmk_map;
     86 const struct rb_tree_ops uvm_page_tree_ops;
     87 
     88 static struct vm_map_kernel kernel_map_store;
     89 struct vm_map *kernel_map = &kernel_map_store.vmk_map;
     90 
     91 static unsigned int pdaemon_waiters;
     92 static kmutex_t pdaemonmtx;
     93 static kcondvar_t pdaemoncv, oomwait;
     94 
     95 /*
     96  * vm pages
     97  */
     98 
     99 /* called with the object locked */
    100 struct vm_page *
    101 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    102 	int flags, int strat, int free_list)
    103 {
    104 	struct vm_page *pg;
    105 
    106 	pg = kmem_zalloc(sizeof(struct vm_page), KM_SLEEP);
    107 	pg->offset = off;
    108 	pg->uobject = uobj;
    109 
    110 	pg->uanon = (void *)kmem_alloc(PAGE_SIZE, KM_SLEEP);
    111 	if (flags & UVM_PGA_ZERO)
    112 		memset(pg->uanon, 0, PAGE_SIZE);
    113 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    114 
    115 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    116 	uobj->uo_npages++;
    117 
    118 	return pg;
    119 }
    120 
    121 /*
    122  * Release a page.
    123  *
    124  * Called with the vm object locked.
    125  */
    126 void
    127 uvm_pagefree(struct vm_page *pg)
    128 {
    129 	struct uvm_object *uobj = pg->uobject;
    130 
    131 	if (pg->flags & PG_WANTED)
    132 		wakeup(pg);
    133 
    134 	uobj->uo_npages--;
    135 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    136 	kmem_free((void *)pg->uanon, PAGE_SIZE);
    137 	kmem_free(pg, sizeof(*pg));
    138 }
    139 
    140 void
    141 uvm_pagezero(struct vm_page *pg)
    142 {
    143 
    144 	pg->flags &= ~PG_CLEAN;
    145 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    146 }
    147 
    148 /*
    149  * Anon object stuff
    150  */
    151 
    152 static int
    153 ao_get(struct uvm_object *uobj, voff_t off, struct vm_page **pgs,
    154 	int *npages, int centeridx, vm_prot_t access_type,
    155 	int advice, int flags)
    156 {
    157 	struct vm_page *pg;
    158 	int i;
    159 
    160 	if (centeridx)
    161 		panic("%s: centeridx != 0 not supported", __func__);
    162 
    163 	/* loop over pages */
    164 	off = trunc_page(off);
    165 	for (i = 0; i < *npages; i++) {
    166  retrylookup:
    167 		pg = uvm_pagelookup(uobj, off + (i << PAGE_SHIFT));
    168 		if (pg) {
    169 			if (pg->flags & PG_BUSY) {
    170 				pg->flags |= PG_WANTED;
    171 				UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    172 				    "aogetpg", 0);
    173 				goto retrylookup;
    174 			}
    175 			pg->flags |= PG_BUSY;
    176 			pgs[i] = pg;
    177 		} else {
    178 			pg = uvm_pagealloc(uobj,
    179 			    off + (i << PAGE_SHIFT), NULL, UVM_PGA_ZERO);
    180 			pgs[i] = pg;
    181 		}
    182 	}
    183 	mutex_exit(&uobj->vmobjlock);
    184 
    185 	return 0;
    186 
    187 }
    188 
    189 static int
    190 ao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
    191 {
    192 	struct vm_page *pg;
    193 
    194 	/* we only free all pages for now */
    195 	if ((flags & PGO_FREE) == 0 || (flags & PGO_ALLPAGES) == 0) {
    196 		mutex_exit(&uobj->vmobjlock);
    197 		return 0;
    198 	}
    199 
    200 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL)
    201 		uvm_pagefree(pg);
    202 	mutex_exit(&uobj->vmobjlock);
    203 
    204 	return 0;
    205 }
    206 
    207 struct uvm_object *
    208 uao_create(vsize_t size, int flags)
    209 {
    210 	struct uvm_object *uobj;
    211 
    212 	uobj = kmem_zalloc(sizeof(struct uvm_object), KM_SLEEP);
    213 	uobj->pgops = &aobj_pager;
    214 	TAILQ_INIT(&uobj->memq);
    215 	mutex_init(&uobj->vmobjlock, MUTEX_DEFAULT, IPL_NONE);
    216 
    217 	return uobj;
    218 }
    219 
    220 void
    221 uao_detach(struct uvm_object *uobj)
    222 {
    223 
    224 	mutex_enter(&uobj->vmobjlock);
    225 	ao_put(uobj, 0, 0, PGO_ALLPAGES | PGO_FREE);
    226 	mutex_destroy(&uobj->vmobjlock);
    227 	kmem_free(uobj, sizeof(*uobj));
    228 }
    229 
    230 /*
    231  * Misc routines
    232  */
    233 
    234 static kmutex_t pagermtx;
    235 
    236 void
    237 uvm_init(void)
    238 {
    239 
    240 	uvmexp.free = 1024*1024; /* XXX */
    241 	rump_vmspace.vm_map.pmap = pmap_kernel();
    242 
    243 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    244 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    245 
    246 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    247 	cv_init(&pdaemoncv, "pdaemon");
    248 	cv_init(&oomwait, "oomwait");
    249 
    250 	kernel_map->pmap = pmap_kernel();
    251 	callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
    252 	kmem_map->pmap = pmap_kernel();
    253 	callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
    254 }
    255 
    256 
    257 void
    258 uvm_pagewire(struct vm_page *pg)
    259 {
    260 
    261 	/* nada */
    262 }
    263 
    264 void
    265 uvm_pageunwire(struct vm_page *pg)
    266 {
    267 
    268 	/* nada */
    269 }
    270 
    271 /*
    272  * This satisfies the "disgusting mmap hack" used by proplib.
    273  * We probably should grow some more assertables to make sure we're
    274  * not satisfying anything we shouldn't be satisfying.  At least we
    275  * should make sure it's the local machine we're mmapping ...
    276  */
    277 int
    278 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    279 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    280 {
    281 	void *uaddr;
    282 	int error;
    283 
    284 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    285 		panic("uvm_mmap() variant unsupported");
    286 	if (flags != (MAP_PRIVATE | MAP_ANON))
    287 		panic("uvm_mmap() variant unsupported");
    288 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    289 	if (*addr != 0)
    290 		panic("uvm_mmap() variant unsupported");
    291 
    292 	uaddr = rumpuser_anonmmap(size, 0, 0, &error);
    293 	if (uaddr == NULL)
    294 		return error;
    295 
    296 	*addr = (vaddr_t)uaddr;
    297 	return 0;
    298 }
    299 
    300 struct pagerinfo {
    301 	vaddr_t pgr_kva;
    302 	int pgr_npages;
    303 	struct vm_page **pgr_pgs;
    304 	bool pgr_read;
    305 
    306 	LIST_ENTRY(pagerinfo) pgr_entries;
    307 };
    308 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    309 
    310 /*
    311  * Pager "map" in routine.  Instead of mapping, we allocate memory
    312  * and copy page contents there.  Not optimal or even strictly
    313  * correct (the caller might modify the page contents after mapping
    314  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    315  */
    316 vaddr_t
    317 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    318 {
    319 	struct pagerinfo *pgri;
    320 	vaddr_t curkva;
    321 	int i;
    322 
    323 	/* allocate structures */
    324 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    325 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    326 	pgri->pgr_npages = npages;
    327 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    328 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    329 
    330 	/* copy contents to "mapped" memory */
    331 	for (i = 0, curkva = pgri->pgr_kva;
    332 	    i < npages;
    333 	    i++, curkva += PAGE_SIZE) {
    334 		/*
    335 		 * We need to copy the previous contents of the pages to
    336 		 * the window even if we are reading from the
    337 		 * device, since the device might not fill the contents of
    338 		 * the full mapped range and we will end up corrupting
    339 		 * data when we unmap the window.
    340 		 */
    341 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    342 		pgri->pgr_pgs[i] = pgs[i];
    343 	}
    344 
    345 	mutex_enter(&pagermtx);
    346 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    347 	mutex_exit(&pagermtx);
    348 
    349 	return pgri->pgr_kva;
    350 }
    351 
    352 /*
    353  * map out the pager window.  return contents from VA to page storage
    354  * and free structures.
    355  *
    356  * Note: does not currently support partial frees
    357  */
    358 void
    359 uvm_pagermapout(vaddr_t kva, int npages)
    360 {
    361 	struct pagerinfo *pgri;
    362 	vaddr_t curkva;
    363 	int i;
    364 
    365 	mutex_enter(&pagermtx);
    366 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    367 		if (pgri->pgr_kva == kva)
    368 			break;
    369 	}
    370 	KASSERT(pgri);
    371 	if (pgri->pgr_npages != npages)
    372 		panic("uvm_pagermapout: partial unmapping not supported");
    373 	LIST_REMOVE(pgri, pgr_entries);
    374 	mutex_exit(&pagermtx);
    375 
    376 	if (pgri->pgr_read) {
    377 		for (i = 0, curkva = pgri->pgr_kva;
    378 		    i < pgri->pgr_npages;
    379 		    i++, curkva += PAGE_SIZE) {
    380 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    381 		}
    382 	}
    383 
    384 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    385 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    386 	kmem_free(pgri, sizeof(*pgri));
    387 }
    388 
    389 /*
    390  * convert va in pager window to page structure.
    391  * XXX: how expensive is this (global lock, list traversal)?
    392  */
    393 struct vm_page *
    394 uvm_pageratop(vaddr_t va)
    395 {
    396 	struct pagerinfo *pgri;
    397 	struct vm_page *pg = NULL;
    398 	int i;
    399 
    400 	mutex_enter(&pagermtx);
    401 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    402 		if (pgri->pgr_kva <= va
    403 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    404 			break;
    405 	}
    406 	if (pgri) {
    407 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    408 		pg = pgri->pgr_pgs[i];
    409 	}
    410 	mutex_exit(&pagermtx);
    411 
    412 	return pg;
    413 }
    414 
    415 /* Called with the vm object locked */
    416 struct vm_page *
    417 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    418 {
    419 	struct vm_page *pg;
    420 
    421 	TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
    422 		if (pg->offset == off) {
    423 			return pg;
    424 		}
    425 	}
    426 
    427 	return NULL;
    428 }
    429 
    430 void
    431 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    432 {
    433 	struct vm_page *pg;
    434 	int i;
    435 
    436 	for (i = 0; i < npgs; i++) {
    437 		pg = pgs[i];
    438 		if (pg == NULL)
    439 			continue;
    440 
    441 		KASSERT(pg->flags & PG_BUSY);
    442 		if (pg->flags & PG_WANTED)
    443 			wakeup(pg);
    444 		if (pg->flags & PG_RELEASED)
    445 			uvm_pagefree(pg);
    446 		else
    447 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    448 	}
    449 }
    450 
    451 void
    452 uvm_estimatepageable(int *active, int *inactive)
    453 {
    454 
    455 	/* XXX: guessing game */
    456 	*active = 1024;
    457 	*inactive = 1024;
    458 }
    459 
    460 struct vm_map_kernel *
    461 vm_map_to_kernel(struct vm_map *map)
    462 {
    463 
    464 	return (struct vm_map_kernel *)map;
    465 }
    466 
    467 bool
    468 vm_map_starved_p(struct vm_map *map)
    469 {
    470 
    471 	if (map->flags & VM_MAP_WANTVA)
    472 		return true;
    473 
    474 	return false;
    475 }
    476 
    477 int
    478 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    479 {
    480 
    481 	panic("%s: unimplemented", __func__);
    482 }
    483 
    484 void
    485 uvm_unloan(void *v, int npages, int flags)
    486 {
    487 
    488 	panic("%s: unimplemented", __func__);
    489 }
    490 
    491 int
    492 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    493 	struct vm_page **opp)
    494 {
    495 
    496 	return EBUSY;
    497 }
    498 
    499 #ifdef DEBUGPRINT
    500 void
    501 uvm_object_printit(struct uvm_object *uobj, bool full,
    502 	void (*pr)(const char *, ...))
    503 {
    504 
    505 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    506 }
    507 #endif
    508 
    509 vaddr_t
    510 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    511 {
    512 
    513 	return 0;
    514 }
    515 
    516 int
    517 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    518 	vm_prot_t prot, bool set_max)
    519 {
    520 
    521 	return EOPNOTSUPP;
    522 }
    523 
    524 /*
    525  * UVM km
    526  */
    527 
    528 vaddr_t
    529 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    530 {
    531 	void *rv;
    532 	int alignbit, error;
    533 
    534 	alignbit = 0;
    535 	if (align) {
    536 		alignbit = ffs(align)-1;
    537 	}
    538 
    539 	rv = rumpuser_anonmmap(size, alignbit, flags & UVM_KMF_EXEC, &error);
    540 	if (rv == NULL) {
    541 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    542 			return 0;
    543 		else
    544 			panic("uvm_km_alloc failed");
    545 	}
    546 
    547 	if (flags & UVM_KMF_ZERO)
    548 		memset(rv, 0, size);
    549 
    550 	return (vaddr_t)rv;
    551 }
    552 
    553 void
    554 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    555 {
    556 
    557 	rumpuser_unmap((void *)vaddr, size);
    558 }
    559 
    560 struct vm_map *
    561 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    562 	vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
    563 {
    564 
    565 	return (struct vm_map *)417416;
    566 }
    567 
    568 vaddr_t
    569 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    570 {
    571 
    572 	return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    573 	    waitok, "kmalloc");
    574 }
    575 
    576 void
    577 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    578 {
    579 
    580 	rumpuser_free((void *)addr);
    581 }
    582 
    583 vaddr_t
    584 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    585 {
    586 
    587 	return uvm_km_alloc_poolpage(map, waitok);
    588 }
    589 
    590 void
    591 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
    592 {
    593 
    594 	uvm_km_free_poolpage(map, vaddr);
    595 }
    596 
    597 void
    598 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    599 {
    600 
    601 	/* we eventually maybe want some model for available memory */
    602 }
    603 
    604 /*
    605  * Mapping and vm space locking routines.
    606  * XXX: these don't work for non-local vmspaces
    607  */
    608 int
    609 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    610 {
    611 
    612 	KASSERT(vs == &rump_vmspace);
    613 	return 0;
    614 }
    615 
    616 void
    617 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    618 {
    619 
    620 	KASSERT(vs == &rump_vmspace);
    621 }
    622 
    623 void
    624 vmapbuf(struct buf *bp, vsize_t len)
    625 {
    626 
    627 	bp->b_saveaddr = bp->b_data;
    628 }
    629 
    630 void
    631 vunmapbuf(struct buf *bp, vsize_t len)
    632 {
    633 
    634 	bp->b_data = bp->b_saveaddr;
    635 	bp->b_saveaddr = 0;
    636 }
    637 
    638 void
    639 uvmspace_free(struct vmspace *vm)
    640 {
    641 
    642 	/* nothing for now */
    643 }
    644 
    645 int
    646 uvm_io(struct vm_map *map, struct uio *uio)
    647 {
    648 
    649 	/*
    650 	 * just do direct uio for now.  but this needs some vmspace
    651 	 * olympics for rump_sysproxy.
    652 	 */
    653 	return uiomove((void *)(vaddr_t)uio->uio_offset, uio->uio_resid, uio);
    654 }
    655 
    656 /*
    657  * page life cycle stuff.  it really doesn't exist, so just stubs.
    658  */
    659 
    660 void
    661 uvm_pageactivate(struct vm_page *pg)
    662 {
    663 
    664 	/* nada */
    665 }
    666 
    667 void
    668 uvm_pagedeactivate(struct vm_page *pg)
    669 {
    670 
    671 	/* nada */
    672 }
    673 
    674 void
    675 uvm_pagedequeue(struct vm_page *pg)
    676 {
    677 
    678 	/* nada*/
    679 }
    680 
    681 void
    682 uvm_pageenqueue(struct vm_page *pg)
    683 {
    684 
    685 	/* nada */
    686 }
    687 
    688 /*
    689  * Routines related to the Page Baroness.
    690  */
    691 
    692 void
    693 uvm_wait(const char *msg)
    694 {
    695 
    696 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    697 		panic("pagedaemon out of memory");
    698 	if (__predict_false(rump_threads == 0))
    699 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    700 
    701 	mutex_enter(&pdaemonmtx);
    702 	pdaemon_waiters++;
    703 	cv_signal(&pdaemoncv);
    704 	cv_wait(&oomwait, &pdaemonmtx);
    705 	mutex_exit(&pdaemonmtx);
    706 }
    707 
    708 void
    709 uvm_pageout_start(int npages)
    710 {
    711 
    712 	/* we don't have the heuristics */
    713 }
    714 
    715 void
    716 uvm_pageout_done(int npages)
    717 {
    718 
    719 	/* could wakeup waiters, but just let the pagedaemon do it */
    720 }
    721 
    722 /*
    723  * Under-construction page mistress.  This is lacking vfs support, namely:
    724  *
    725  *  1) draining vfs buffers
    726  *  2) paging out pages in vm vnode objects
    727  *     (we will not page out anon memory on the basis that
    728  *     that's the task of the host)
    729  */
    730 
    731 void
    732 uvm_pageout(void *arg)
    733 {
    734 	struct pool *pp, *pp_first;
    735 	uint64_t where;
    736 	int timo = 0;
    737 	bool succ;
    738 
    739 	mutex_enter(&pdaemonmtx);
    740 	for (;;) {
    741 		cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
    742 		uvmexp.pdwoke++;
    743 		kernel_map->flags |= VM_MAP_WANTVA;
    744 		mutex_exit(&pdaemonmtx);
    745 
    746 		succ = false;
    747 		pool_drain_start(&pp_first, &where);
    748 		pp = pp_first;
    749 		for (;;) {
    750 			succ = pool_drain_end(pp, where);
    751 			if (succ)
    752 				break;
    753 			pool_drain_start(&pp, &where);
    754 			if (pp == pp_first) {
    755 				succ = pool_drain_end(pp, where);
    756 				break;
    757 			}
    758 		}
    759 		mutex_enter(&pdaemonmtx);
    760 
    761 		if (!succ) {
    762 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
    763 			    "memory ... sleeping (deadlock?)\n");
    764 			timo = hz;
    765 			continue;
    766 		}
    767 		kernel_map->flags &= ~VM_MAP_WANTVA;
    768 		timo = 0;
    769 
    770 		if (pdaemon_waiters) {
    771 			pdaemon_waiters = 0;
    772 			cv_broadcast(&oomwait);
    773 		}
    774 	}
    775 
    776 	panic("you can swap out any time you like, but you can never leave");
    777 }
    778 
    779 /*
    780  * In a regular kernel the pagedaemon is activated when memory becomes
    781  * low.  In a virtual rump kernel we do not know exactly how much memory
    782  * we have available -- it depends on the conditions on the host.
    783  * Therefore, we cannot preemptively kick the pagedaemon.  Rather, we
    784  * wait until things we desperate and we're forced to uvm_wait().
    785  *
    786  * The alternative would be to allocate a huge chunk of memory at
    787  * startup, but that solution has a number of problems including
    788  * being a resource hog, failing anyway due to host memory overcommit
    789  * and core dump size.
    790  */
    791 
    792 void
    793 uvm_kick_pdaemon()
    794 {
    795 
    796 	/* nada */
    797 }
    798 
    799 void *
    800 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
    801 {
    802 	void *rv;
    803 
    804  again:
    805 	rv = rumpuser_malloc(howmuch, alignment);
    806 	if (__predict_false(rv == NULL && waitok)) {
    807 		uvm_wait(wmsg);
    808 		goto again;
    809 	}
    810 
    811 	return rv;
    812 }
    813