Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.83
      1 /*	$NetBSD: vm.c,v 1.83 2010/06/10 21:40:42 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2010 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.  Contents:
     34  *  + anon objects & pager
     35  *  + misc support routines
     36  */
     37 
     38 /*
     39  * XXX: we abuse pg->uanon for the virtual address of the storage
     40  * for each page.  phys_addr would fit the job description better,
     41  * except that it will create unnecessary lossage on some platforms
     42  * due to not being a pointer type.
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.83 2010/06/10 21:40:42 pooka Exp $");
     47 
     48 #include <sys/param.h>
     49 #include <sys/atomic.h>
     50 #include <sys/buf.h>
     51 #include <sys/kernel.h>
     52 #include <sys/kmem.h>
     53 #include <sys/mman.h>
     54 #include <sys/null.h>
     55 #include <sys/vnode.h>
     56 
     57 #include <machine/pmap.h>
     58 
     59 #include <rump/rumpuser.h>
     60 
     61 #include <uvm/uvm.h>
     62 #include <uvm/uvm_ddb.h>
     63 #include <uvm/uvm_prot.h>
     64 #include <uvm/uvm_readahead.h>
     65 
     66 #include "rump_private.h"
     67 
     68 static int ao_get(struct uvm_object *, voff_t, struct vm_page **,
     69 	int *, int, vm_prot_t, int, int);
     70 static int ao_put(struct uvm_object *, voff_t, voff_t, int);
     71 
     72 const struct uvm_pagerops aobj_pager = {
     73 	.pgo_get = ao_get,
     74 	.pgo_put = ao_put,
     75 };
     76 
     77 kmutex_t uvm_pageqlock;
     78 
     79 struct uvmexp uvmexp;
     80 struct uvm uvm;
     81 
     82 struct vm_map rump_vmmap;
     83 static struct vm_map_kernel kmem_map_store;
     84 struct vm_map *kmem_map = &kmem_map_store.vmk_map;
     85 const struct rb_tree_ops uvm_page_tree_ops;
     86 
     87 static struct vm_map_kernel kernel_map_store;
     88 struct vm_map *kernel_map = &kernel_map_store.vmk_map;
     89 
     90 static unsigned int pdaemon_waiters;
     91 static kmutex_t pdaemonmtx;
     92 static kcondvar_t pdaemoncv, oomwait;
     93 
     94 /*
     95  * vm pages
     96  */
     97 
     98 /* called with the object locked */
     99 struct vm_page *
    100 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    101 	int flags, int strat, int free_list)
    102 {
    103 	struct vm_page *pg;
    104 
    105 	pg = kmem_zalloc(sizeof(struct vm_page), KM_SLEEP);
    106 	pg->offset = off;
    107 	pg->uobject = uobj;
    108 
    109 	pg->uanon = (void *)kmem_alloc(PAGE_SIZE, KM_SLEEP);
    110 	if (flags & UVM_PGA_ZERO)
    111 		memset(pg->uanon, 0, PAGE_SIZE);
    112 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    113 
    114 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    115 	uobj->uo_npages++;
    116 
    117 	return pg;
    118 }
    119 
    120 /*
    121  * Release a page.
    122  *
    123  * Called with the vm object locked.
    124  */
    125 void
    126 uvm_pagefree(struct vm_page *pg)
    127 {
    128 	struct uvm_object *uobj = pg->uobject;
    129 
    130 	if (pg->flags & PG_WANTED)
    131 		wakeup(pg);
    132 
    133 	uobj->uo_npages--;
    134 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    135 	kmem_free((void *)pg->uanon, PAGE_SIZE);
    136 	kmem_free(pg, sizeof(*pg));
    137 }
    138 
    139 void
    140 uvm_pagezero(struct vm_page *pg)
    141 {
    142 
    143 	pg->flags &= ~PG_CLEAN;
    144 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    145 }
    146 
    147 /*
    148  * Anon object stuff
    149  */
    150 
    151 static int
    152 ao_get(struct uvm_object *uobj, voff_t off, struct vm_page **pgs,
    153 	int *npages, int centeridx, vm_prot_t access_type,
    154 	int advice, int flags)
    155 {
    156 	struct vm_page *pg;
    157 	int i;
    158 
    159 	if (centeridx)
    160 		panic("%s: centeridx != 0 not supported", __func__);
    161 
    162 	/* loop over pages */
    163 	off = trunc_page(off);
    164 	for (i = 0; i < *npages; i++) {
    165  retrylookup:
    166 		pg = uvm_pagelookup(uobj, off + (i << PAGE_SHIFT));
    167 		if (pg) {
    168 			if (pg->flags & PG_BUSY) {
    169 				pg->flags |= PG_WANTED;
    170 				UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    171 				    "aogetpg", 0);
    172 				goto retrylookup;
    173 			}
    174 			pg->flags |= PG_BUSY;
    175 			pgs[i] = pg;
    176 		} else {
    177 			pg = uvm_pagealloc(uobj,
    178 			    off + (i << PAGE_SHIFT), NULL, UVM_PGA_ZERO);
    179 			pgs[i] = pg;
    180 		}
    181 	}
    182 	mutex_exit(&uobj->vmobjlock);
    183 
    184 	return 0;
    185 
    186 }
    187 
    188 static int
    189 ao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
    190 {
    191 	struct vm_page *pg;
    192 
    193 	/* we only free all pages for now */
    194 	if ((flags & PGO_FREE) == 0 || (flags & PGO_ALLPAGES) == 0) {
    195 		mutex_exit(&uobj->vmobjlock);
    196 		return 0;
    197 	}
    198 
    199 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL)
    200 		uvm_pagefree(pg);
    201 	mutex_exit(&uobj->vmobjlock);
    202 
    203 	return 0;
    204 }
    205 
    206 struct uvm_object *
    207 uao_create(vsize_t size, int flags)
    208 {
    209 	struct uvm_object *uobj;
    210 
    211 	uobj = kmem_zalloc(sizeof(struct uvm_object), KM_SLEEP);
    212 	uobj->pgops = &aobj_pager;
    213 	TAILQ_INIT(&uobj->memq);
    214 	mutex_init(&uobj->vmobjlock, MUTEX_DEFAULT, IPL_NONE);
    215 
    216 	return uobj;
    217 }
    218 
    219 void
    220 uao_detach(struct uvm_object *uobj)
    221 {
    222 
    223 	mutex_enter(&uobj->vmobjlock);
    224 	ao_put(uobj, 0, 0, PGO_ALLPAGES | PGO_FREE);
    225 	mutex_destroy(&uobj->vmobjlock);
    226 	kmem_free(uobj, sizeof(*uobj));
    227 }
    228 
    229 /*
    230  * Misc routines
    231  */
    232 
    233 static kmutex_t pagermtx;
    234 
    235 void
    236 uvm_init(void)
    237 {
    238 
    239 	uvmexp.free = 1024*1024; /* XXX */
    240 
    241 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    242 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    243 
    244 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    245 	cv_init(&pdaemoncv, "pdaemon");
    246 	cv_init(&oomwait, "oomwait");
    247 
    248 	kernel_map->pmap = pmap_kernel();
    249 	callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
    250 	kmem_map->pmap = pmap_kernel();
    251 	callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
    252 }
    253 
    254 void
    255 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    256 {
    257 
    258 	vm->vm_map.pmap = pmap_kernel();
    259 	vm->vm_refcnt = 1;
    260 }
    261 
    262 void
    263 uvm_pagewire(struct vm_page *pg)
    264 {
    265 
    266 	/* nada */
    267 }
    268 
    269 void
    270 uvm_pageunwire(struct vm_page *pg)
    271 {
    272 
    273 	/* nada */
    274 }
    275 
    276 /* where's your schmonz now? */
    277 #define PUNLIMIT(a)	\
    278 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    279 void
    280 uvm_init_limits(struct proc *p)
    281 {
    282 
    283 	PUNLIMIT(RLIMIT_STACK);
    284 	PUNLIMIT(RLIMIT_DATA);
    285 	PUNLIMIT(RLIMIT_RSS);
    286 	PUNLIMIT(RLIMIT_AS);
    287 	/* nice, cascade */
    288 }
    289 #undef PUNLIMIT
    290 
    291 /*
    292  * This satisfies the "disgusting mmap hack" used by proplib.
    293  * We probably should grow some more assertables to make sure we're
    294  * not satisfying anything we shouldn't be satisfying.  At least we
    295  * should make sure it's the local machine we're mmapping ...
    296  */
    297 int
    298 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    299 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    300 {
    301 	void *uaddr;
    302 	int error;
    303 
    304 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    305 		panic("uvm_mmap() variant unsupported");
    306 	if (flags != (MAP_PRIVATE | MAP_ANON))
    307 		panic("uvm_mmap() variant unsupported");
    308 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    309 	if (*addr != 0)
    310 		panic("uvm_mmap() variant unsupported");
    311 
    312 	uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    313 	if (uaddr == NULL)
    314 		return error;
    315 
    316 	*addr = (vaddr_t)uaddr;
    317 	return 0;
    318 }
    319 
    320 struct pagerinfo {
    321 	vaddr_t pgr_kva;
    322 	int pgr_npages;
    323 	struct vm_page **pgr_pgs;
    324 	bool pgr_read;
    325 
    326 	LIST_ENTRY(pagerinfo) pgr_entries;
    327 };
    328 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    329 
    330 /*
    331  * Pager "map" in routine.  Instead of mapping, we allocate memory
    332  * and copy page contents there.  Not optimal or even strictly
    333  * correct (the caller might modify the page contents after mapping
    334  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    335  */
    336 vaddr_t
    337 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    338 {
    339 	struct pagerinfo *pgri;
    340 	vaddr_t curkva;
    341 	int i;
    342 
    343 	/* allocate structures */
    344 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    345 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    346 	pgri->pgr_npages = npages;
    347 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    348 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    349 
    350 	/* copy contents to "mapped" memory */
    351 	for (i = 0, curkva = pgri->pgr_kva;
    352 	    i < npages;
    353 	    i++, curkva += PAGE_SIZE) {
    354 		/*
    355 		 * We need to copy the previous contents of the pages to
    356 		 * the window even if we are reading from the
    357 		 * device, since the device might not fill the contents of
    358 		 * the full mapped range and we will end up corrupting
    359 		 * data when we unmap the window.
    360 		 */
    361 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    362 		pgri->pgr_pgs[i] = pgs[i];
    363 	}
    364 
    365 	mutex_enter(&pagermtx);
    366 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    367 	mutex_exit(&pagermtx);
    368 
    369 	return pgri->pgr_kva;
    370 }
    371 
    372 /*
    373  * map out the pager window.  return contents from VA to page storage
    374  * and free structures.
    375  *
    376  * Note: does not currently support partial frees
    377  */
    378 void
    379 uvm_pagermapout(vaddr_t kva, int npages)
    380 {
    381 	struct pagerinfo *pgri;
    382 	vaddr_t curkva;
    383 	int i;
    384 
    385 	mutex_enter(&pagermtx);
    386 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    387 		if (pgri->pgr_kva == kva)
    388 			break;
    389 	}
    390 	KASSERT(pgri);
    391 	if (pgri->pgr_npages != npages)
    392 		panic("uvm_pagermapout: partial unmapping not supported");
    393 	LIST_REMOVE(pgri, pgr_entries);
    394 	mutex_exit(&pagermtx);
    395 
    396 	if (pgri->pgr_read) {
    397 		for (i = 0, curkva = pgri->pgr_kva;
    398 		    i < pgri->pgr_npages;
    399 		    i++, curkva += PAGE_SIZE) {
    400 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    401 		}
    402 	}
    403 
    404 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    405 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    406 	kmem_free(pgri, sizeof(*pgri));
    407 }
    408 
    409 /*
    410  * convert va in pager window to page structure.
    411  * XXX: how expensive is this (global lock, list traversal)?
    412  */
    413 struct vm_page *
    414 uvm_pageratop(vaddr_t va)
    415 {
    416 	struct pagerinfo *pgri;
    417 	struct vm_page *pg = NULL;
    418 	int i;
    419 
    420 	mutex_enter(&pagermtx);
    421 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    422 		if (pgri->pgr_kva <= va
    423 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    424 			break;
    425 	}
    426 	if (pgri) {
    427 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    428 		pg = pgri->pgr_pgs[i];
    429 	}
    430 	mutex_exit(&pagermtx);
    431 
    432 	return pg;
    433 }
    434 
    435 /* Called with the vm object locked */
    436 struct vm_page *
    437 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    438 {
    439 	struct vm_page *pg;
    440 
    441 	TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
    442 		if (pg->offset == off) {
    443 			return pg;
    444 		}
    445 	}
    446 
    447 	return NULL;
    448 }
    449 
    450 void
    451 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    452 {
    453 	struct vm_page *pg;
    454 	int i;
    455 
    456 	for (i = 0; i < npgs; i++) {
    457 		pg = pgs[i];
    458 		if (pg == NULL)
    459 			continue;
    460 
    461 		KASSERT(pg->flags & PG_BUSY);
    462 		if (pg->flags & PG_WANTED)
    463 			wakeup(pg);
    464 		if (pg->flags & PG_RELEASED)
    465 			uvm_pagefree(pg);
    466 		else
    467 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    468 	}
    469 }
    470 
    471 void
    472 uvm_estimatepageable(int *active, int *inactive)
    473 {
    474 
    475 	/* XXX: guessing game */
    476 	*active = 1024;
    477 	*inactive = 1024;
    478 }
    479 
    480 struct vm_map_kernel *
    481 vm_map_to_kernel(struct vm_map *map)
    482 {
    483 
    484 	return (struct vm_map_kernel *)map;
    485 }
    486 
    487 bool
    488 vm_map_starved_p(struct vm_map *map)
    489 {
    490 
    491 	if (map->flags & VM_MAP_WANTVA)
    492 		return true;
    493 
    494 	return false;
    495 }
    496 
    497 int
    498 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    499 {
    500 
    501 	panic("%s: unimplemented", __func__);
    502 }
    503 
    504 void
    505 uvm_unloan(void *v, int npages, int flags)
    506 {
    507 
    508 	panic("%s: unimplemented", __func__);
    509 }
    510 
    511 int
    512 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    513 	struct vm_page **opp)
    514 {
    515 
    516 	return EBUSY;
    517 }
    518 
    519 #ifdef DEBUGPRINT
    520 void
    521 uvm_object_printit(struct uvm_object *uobj, bool full,
    522 	void (*pr)(const char *, ...))
    523 {
    524 
    525 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    526 }
    527 #endif
    528 
    529 vaddr_t
    530 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    531 {
    532 
    533 	return 0;
    534 }
    535 
    536 int
    537 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    538 	vm_prot_t prot, bool set_max)
    539 {
    540 
    541 	return EOPNOTSUPP;
    542 }
    543 
    544 /*
    545  * UVM km
    546  */
    547 
    548 vaddr_t
    549 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    550 {
    551 	void *rv, *desired = NULL;
    552 	int alignbit, error;
    553 
    554 #ifdef __x86_64__
    555 	/*
    556 	 * On amd64, allocate all module memory from the lowest 2GB.
    557 	 * This is because NetBSD kernel modules are compiled
    558 	 * with -mcmodel=kernel and reserve only 4 bytes for
    559 	 * offsets.  If we load code compiled with -mcmodel=kernel
    560 	 * anywhere except the lowest or highest 2GB, it will not
    561 	 * work.  Since userspace does not have access to the highest
    562 	 * 2GB, use the lowest 2GB.
    563 	 *
    564 	 * Note: this assumes the rump kernel resides in
    565 	 * the lowest 2GB as well.
    566 	 *
    567 	 * Note2: yes, it's a quick hack, but since this the only
    568 	 * place where we care about the map we're allocating from,
    569 	 * just use a simple "if" instead of coming up with a fancy
    570 	 * generic solution.
    571 	 */
    572 	extern struct vm_map *module_map;
    573 	if (map == module_map) {
    574 		desired = (void *)(0x80000000 - size);
    575 	}
    576 #endif
    577 
    578 	alignbit = 0;
    579 	if (align) {
    580 		alignbit = ffs(align)-1;
    581 	}
    582 
    583 	rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
    584 	    &error);
    585 	if (rv == NULL) {
    586 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    587 			return 0;
    588 		else
    589 			panic("uvm_km_alloc failed");
    590 	}
    591 
    592 	if (flags & UVM_KMF_ZERO)
    593 		memset(rv, 0, size);
    594 
    595 	return (vaddr_t)rv;
    596 }
    597 
    598 void
    599 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    600 {
    601 
    602 	rumpuser_unmap((void *)vaddr, size);
    603 }
    604 
    605 struct vm_map *
    606 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    607 	vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
    608 {
    609 
    610 	return (struct vm_map *)417416;
    611 }
    612 
    613 vaddr_t
    614 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    615 {
    616 
    617 	return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    618 	    waitok, "kmalloc");
    619 }
    620 
    621 void
    622 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    623 {
    624 
    625 	rumpuser_free((void *)addr);
    626 }
    627 
    628 vaddr_t
    629 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    630 {
    631 
    632 	return uvm_km_alloc_poolpage(map, waitok);
    633 }
    634 
    635 void
    636 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
    637 {
    638 
    639 	uvm_km_free_poolpage(map, vaddr);
    640 }
    641 
    642 void
    643 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    644 {
    645 
    646 	/* we eventually maybe want some model for available memory */
    647 }
    648 
    649 /*
    650  * Mapping and vm space locking routines.
    651  * XXX: these don't work for non-local vmspaces
    652  */
    653 int
    654 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    655 {
    656 
    657 	KASSERT(vs == &vmspace0);
    658 	return 0;
    659 }
    660 
    661 void
    662 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    663 {
    664 
    665 	KASSERT(vs == &vmspace0);
    666 }
    667 
    668 void
    669 vmapbuf(struct buf *bp, vsize_t len)
    670 {
    671 
    672 	bp->b_saveaddr = bp->b_data;
    673 }
    674 
    675 void
    676 vunmapbuf(struct buf *bp, vsize_t len)
    677 {
    678 
    679 	bp->b_data = bp->b_saveaddr;
    680 	bp->b_saveaddr = 0;
    681 }
    682 
    683 void
    684 uvmspace_addref(struct vmspace *vm)
    685 {
    686 
    687 	/*
    688 	 * there is only vmspace0.  we're not planning on
    689 	 * feeding it to the fishes.
    690 	 */
    691 }
    692 
    693 void
    694 uvmspace_free(struct vmspace *vm)
    695 {
    696 
    697 	/* nothing for now */
    698 }
    699 
    700 int
    701 uvm_io(struct vm_map *map, struct uio *uio)
    702 {
    703 
    704 	/*
    705 	 * just do direct uio for now.  but this needs some vmspace
    706 	 * olympics for rump_sysproxy.
    707 	 */
    708 	return uiomove((void *)(vaddr_t)uio->uio_offset, uio->uio_resid, uio);
    709 }
    710 
    711 /*
    712  * page life cycle stuff.  it really doesn't exist, so just stubs.
    713  */
    714 
    715 void
    716 uvm_pageactivate(struct vm_page *pg)
    717 {
    718 
    719 	/* nada */
    720 }
    721 
    722 void
    723 uvm_pagedeactivate(struct vm_page *pg)
    724 {
    725 
    726 	/* nada */
    727 }
    728 
    729 void
    730 uvm_pagedequeue(struct vm_page *pg)
    731 {
    732 
    733 	/* nada*/
    734 }
    735 
    736 void
    737 uvm_pageenqueue(struct vm_page *pg)
    738 {
    739 
    740 	/* nada */
    741 }
    742 
    743 /*
    744  * Routines related to the Page Baroness.
    745  */
    746 
    747 void
    748 uvm_wait(const char *msg)
    749 {
    750 
    751 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    752 		panic("pagedaemon out of memory");
    753 	if (__predict_false(rump_threads == 0))
    754 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    755 
    756 	mutex_enter(&pdaemonmtx);
    757 	pdaemon_waiters++;
    758 	cv_signal(&pdaemoncv);
    759 	cv_wait(&oomwait, &pdaemonmtx);
    760 	mutex_exit(&pdaemonmtx);
    761 }
    762 
    763 void
    764 uvm_pageout_start(int npages)
    765 {
    766 
    767 	/* we don't have the heuristics */
    768 }
    769 
    770 void
    771 uvm_pageout_done(int npages)
    772 {
    773 
    774 	/* could wakeup waiters, but just let the pagedaemon do it */
    775 }
    776 
    777 /*
    778  * Under-construction page mistress.  This is lacking vfs support, namely:
    779  *
    780  *  1) draining vfs buffers
    781  *  2) paging out pages in vm vnode objects
    782  *     (we will not page out anon memory on the basis that
    783  *     that's the task of the host)
    784  */
    785 
    786 void
    787 uvm_pageout(void *arg)
    788 {
    789 	struct pool *pp, *pp_first;
    790 	uint64_t where;
    791 	int timo = 0;
    792 	bool succ;
    793 
    794 	mutex_enter(&pdaemonmtx);
    795 	for (;;) {
    796 		cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
    797 		uvmexp.pdwoke++;
    798 		kernel_map->flags |= VM_MAP_WANTVA;
    799 		mutex_exit(&pdaemonmtx);
    800 
    801 		succ = false;
    802 		pool_drain_start(&pp_first, &where);
    803 		pp = pp_first;
    804 		for (;;) {
    805 			succ = pool_drain_end(pp, where);
    806 			if (succ)
    807 				break;
    808 			pool_drain_start(&pp, &where);
    809 			if (pp == pp_first) {
    810 				succ = pool_drain_end(pp, where);
    811 				break;
    812 			}
    813 		}
    814 		mutex_enter(&pdaemonmtx);
    815 
    816 		if (!succ) {
    817 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
    818 			    "memory ... sleeping (deadlock?)\n");
    819 			timo = hz;
    820 			continue;
    821 		}
    822 		kernel_map->flags &= ~VM_MAP_WANTVA;
    823 		timo = 0;
    824 
    825 		if (pdaemon_waiters) {
    826 			pdaemon_waiters = 0;
    827 			cv_broadcast(&oomwait);
    828 		}
    829 	}
    830 
    831 	panic("you can swap out any time you like, but you can never leave");
    832 }
    833 
    834 /*
    835  * In a regular kernel the pagedaemon is activated when memory becomes
    836  * low.  In a virtual rump kernel we do not know exactly how much memory
    837  * we have available -- it depends on the conditions on the host.
    838  * Therefore, we cannot preemptively kick the pagedaemon.  Rather, we
    839  * wait until things we desperate and we're forced to uvm_wait().
    840  *
    841  * The alternative would be to allocate a huge chunk of memory at
    842  * startup, but that solution has a number of problems including
    843  * being a resource hog, failing anyway due to host memory overcommit
    844  * and core dump size.
    845  */
    846 
    847 void
    848 uvm_kick_pdaemon()
    849 {
    850 
    851 	/* nada */
    852 }
    853 
    854 void *
    855 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
    856 {
    857 	void *rv;
    858 
    859  again:
    860 	rv = rumpuser_malloc(howmuch, alignment);
    861 	if (__predict_false(rv == NULL && waitok)) {
    862 		uvm_wait(wmsg);
    863 		goto again;
    864 	}
    865 
    866 	return rv;
    867 }
    868