vm.c revision 1.88 1 /* $NetBSD: vm.c,v 1.88 2010/09/06 20:10:20 pooka Exp $ */
2
3 /*
4 * Copyright (c) 2007-2010 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.88 2010/09/06 20:10:20 pooka Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/mman.h>
52 #include <sys/null.h>
53 #include <sys/vnode.h>
54
55 #include <machine/pmap.h>
56
57 #include <rump/rumpuser.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_ddb.h>
61 #include <uvm/uvm_pdpolicy.h>
62 #include <uvm/uvm_prot.h>
63 #include <uvm/uvm_readahead.h>
64
65 #include "rump_private.h"
66
67 kmutex_t uvm_pageqlock;
68 kmutex_t uvm_swap_data_lock;
69
70 struct uvmexp uvmexp;
71 struct uvm uvm;
72
73 struct vm_map rump_vmmap;
74 static struct vm_map_kernel kmem_map_store;
75 struct vm_map *kmem_map = &kmem_map_store.vmk_map;
76 const struct rb_tree_ops uvm_page_tree_ops;
77
78 static struct vm_map_kernel kernel_map_store;
79 struct vm_map *kernel_map = &kernel_map_store.vmk_map;
80
81 static unsigned int pdaemon_waiters;
82 static kmutex_t pdaemonmtx;
83 static kcondvar_t pdaemoncv, oomwait;
84
85 #define RUMPMEM_UNLIMITED ((unsigned long)-1)
86 static unsigned long physmemlimit = RUMPMEM_UNLIMITED;
87 static unsigned long curphysmem;
88
89 /*
90 * vm pages
91 */
92
93 /* called with the object locked */
94 struct vm_page *
95 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
96 int flags, int strat, int free_list)
97 {
98 struct vm_page *pg;
99
100 pg = kmem_zalloc(sizeof(struct vm_page), KM_SLEEP);
101 pg->offset = off;
102 pg->uobject = uobj;
103
104 pg->uanon = (void *)kmem_alloc(PAGE_SIZE, KM_SLEEP);
105 if (flags & UVM_PGA_ZERO)
106 memset(pg->uanon, 0, PAGE_SIZE);
107 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
108
109 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
110 uobj->uo_npages++;
111
112 return pg;
113 }
114
115 /*
116 * Release a page.
117 *
118 * Called with the vm object locked.
119 */
120 void
121 uvm_pagefree(struct vm_page *pg)
122 {
123 struct uvm_object *uobj = pg->uobject;
124
125 if (pg->flags & PG_WANTED)
126 wakeup(pg);
127
128 uobj->uo_npages--;
129 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
130 kmem_free((void *)pg->uanon, PAGE_SIZE);
131 kmem_free(pg, sizeof(*pg));
132 }
133
134 void
135 uvm_pagezero(struct vm_page *pg)
136 {
137
138 pg->flags &= ~PG_CLEAN;
139 memset((void *)pg->uanon, 0, PAGE_SIZE);
140 }
141
142 /*
143 * Misc routines
144 */
145
146 static kmutex_t pagermtx;
147
148 void
149 uvm_init(void)
150 {
151 char buf[64];
152 int error;
153
154 if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
155 physmemlimit = strtoll(buf, NULL, 10);
156 /* it's not like we'd get far with, say, 1 byte, but ... */
157 if (physmemlimit == 0)
158 panic("uvm_init: no memory available");
159 #define HUMANIZE_BYTES 9
160 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
161 format_bytes(buf, HUMANIZE_BYTES, physmemlimit);
162 #undef HUMANIZE_BYTES
163 } else {
164 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
165 }
166 aprint_verbose("total memory = %s\n", buf);
167
168 uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
169
170 mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
171 mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
172 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
173
174 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
175 cv_init(&pdaemoncv, "pdaemon");
176 cv_init(&oomwait, "oomwait");
177
178 kernel_map->pmap = pmap_kernel();
179 callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
180 kmem_map->pmap = pmap_kernel();
181 callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
182 }
183
184 void
185 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
186 {
187
188 vm->vm_map.pmap = pmap_kernel();
189 vm->vm_refcnt = 1;
190 }
191
192 void
193 uvm_pagewire(struct vm_page *pg)
194 {
195
196 /* nada */
197 }
198
199 void
200 uvm_pageunwire(struct vm_page *pg)
201 {
202
203 /* nada */
204 }
205
206 /* where's your schmonz now? */
207 #define PUNLIMIT(a) \
208 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
209 void
210 uvm_init_limits(struct proc *p)
211 {
212
213 PUNLIMIT(RLIMIT_STACK);
214 PUNLIMIT(RLIMIT_DATA);
215 PUNLIMIT(RLIMIT_RSS);
216 PUNLIMIT(RLIMIT_AS);
217 /* nice, cascade */
218 }
219 #undef PUNLIMIT
220
221 /*
222 * This satisfies the "disgusting mmap hack" used by proplib.
223 * We probably should grow some more assertables to make sure we're
224 * not satisfying anything we shouldn't be satisfying. At least we
225 * should make sure it's the local machine we're mmapping ...
226 */
227 int
228 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
229 vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
230 {
231 void *uaddr;
232 int error;
233
234 if (prot != (VM_PROT_READ | VM_PROT_WRITE))
235 panic("uvm_mmap() variant unsupported");
236 if (flags != (MAP_PRIVATE | MAP_ANON))
237 panic("uvm_mmap() variant unsupported");
238 /* no reason in particular, but cf. uvm_default_mapaddr() */
239 if (*addr != 0)
240 panic("uvm_mmap() variant unsupported");
241
242 uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
243 if (uaddr == NULL)
244 return error;
245
246 *addr = (vaddr_t)uaddr;
247 return 0;
248 }
249
250 struct pagerinfo {
251 vaddr_t pgr_kva;
252 int pgr_npages;
253 struct vm_page **pgr_pgs;
254 bool pgr_read;
255
256 LIST_ENTRY(pagerinfo) pgr_entries;
257 };
258 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
259
260 /*
261 * Pager "map" in routine. Instead of mapping, we allocate memory
262 * and copy page contents there. Not optimal or even strictly
263 * correct (the caller might modify the page contents after mapping
264 * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
265 */
266 vaddr_t
267 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
268 {
269 struct pagerinfo *pgri;
270 vaddr_t curkva;
271 int i;
272
273 /* allocate structures */
274 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
275 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
276 pgri->pgr_npages = npages;
277 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
278 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
279
280 /* copy contents to "mapped" memory */
281 for (i = 0, curkva = pgri->pgr_kva;
282 i < npages;
283 i++, curkva += PAGE_SIZE) {
284 /*
285 * We need to copy the previous contents of the pages to
286 * the window even if we are reading from the
287 * device, since the device might not fill the contents of
288 * the full mapped range and we will end up corrupting
289 * data when we unmap the window.
290 */
291 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
292 pgri->pgr_pgs[i] = pgs[i];
293 }
294
295 mutex_enter(&pagermtx);
296 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
297 mutex_exit(&pagermtx);
298
299 return pgri->pgr_kva;
300 }
301
302 /*
303 * map out the pager window. return contents from VA to page storage
304 * and free structures.
305 *
306 * Note: does not currently support partial frees
307 */
308 void
309 uvm_pagermapout(vaddr_t kva, int npages)
310 {
311 struct pagerinfo *pgri;
312 vaddr_t curkva;
313 int i;
314
315 mutex_enter(&pagermtx);
316 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
317 if (pgri->pgr_kva == kva)
318 break;
319 }
320 KASSERT(pgri);
321 if (pgri->pgr_npages != npages)
322 panic("uvm_pagermapout: partial unmapping not supported");
323 LIST_REMOVE(pgri, pgr_entries);
324 mutex_exit(&pagermtx);
325
326 if (pgri->pgr_read) {
327 for (i = 0, curkva = pgri->pgr_kva;
328 i < pgri->pgr_npages;
329 i++, curkva += PAGE_SIZE) {
330 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
331 }
332 }
333
334 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
335 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
336 kmem_free(pgri, sizeof(*pgri));
337 }
338
339 /*
340 * convert va in pager window to page structure.
341 * XXX: how expensive is this (global lock, list traversal)?
342 */
343 struct vm_page *
344 uvm_pageratop(vaddr_t va)
345 {
346 struct pagerinfo *pgri;
347 struct vm_page *pg = NULL;
348 int i;
349
350 mutex_enter(&pagermtx);
351 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
352 if (pgri->pgr_kva <= va
353 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
354 break;
355 }
356 if (pgri) {
357 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
358 pg = pgri->pgr_pgs[i];
359 }
360 mutex_exit(&pagermtx);
361
362 return pg;
363 }
364
365 /* Called with the vm object locked */
366 struct vm_page *
367 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
368 {
369 struct vm_page *pg;
370
371 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
372 if ((pg->flags & PG_MARKER) != 0)
373 continue;
374 if (pg->offset == off) {
375 return pg;
376 }
377 }
378
379 return NULL;
380 }
381
382 void
383 uvm_page_unbusy(struct vm_page **pgs, int npgs)
384 {
385 struct vm_page *pg;
386 int i;
387
388 for (i = 0; i < npgs; i++) {
389 pg = pgs[i];
390 if (pg == NULL)
391 continue;
392
393 KASSERT(pg->flags & PG_BUSY);
394 if (pg->flags & PG_WANTED)
395 wakeup(pg);
396 if (pg->flags & PG_RELEASED)
397 uvm_pagefree(pg);
398 else
399 pg->flags &= ~(PG_WANTED|PG_BUSY);
400 }
401 }
402
403 void
404 uvm_estimatepageable(int *active, int *inactive)
405 {
406
407 /* XXX: guessing game */
408 *active = 1024;
409 *inactive = 1024;
410 }
411
412 struct vm_map_kernel *
413 vm_map_to_kernel(struct vm_map *map)
414 {
415
416 return (struct vm_map_kernel *)map;
417 }
418
419 bool
420 vm_map_starved_p(struct vm_map *map)
421 {
422
423 if (map->flags & VM_MAP_WANTVA)
424 return true;
425
426 return false;
427 }
428
429 int
430 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
431 {
432
433 panic("%s: unimplemented", __func__);
434 }
435
436 void
437 uvm_unloan(void *v, int npages, int flags)
438 {
439
440 panic("%s: unimplemented", __func__);
441 }
442
443 int
444 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
445 struct vm_page **opp)
446 {
447
448 return EBUSY;
449 }
450
451 #ifdef DEBUGPRINT
452 void
453 uvm_object_printit(struct uvm_object *uobj, bool full,
454 void (*pr)(const char *, ...))
455 {
456
457 pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
458 }
459 #endif
460
461 vaddr_t
462 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
463 {
464
465 return 0;
466 }
467
468 int
469 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
470 vm_prot_t prot, bool set_max)
471 {
472
473 return EOPNOTSUPP;
474 }
475
476 /*
477 * UVM km
478 */
479
480 vaddr_t
481 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
482 {
483 void *rv, *desired = NULL;
484 int alignbit, error;
485
486 #ifdef __x86_64__
487 /*
488 * On amd64, allocate all module memory from the lowest 2GB.
489 * This is because NetBSD kernel modules are compiled
490 * with -mcmodel=kernel and reserve only 4 bytes for
491 * offsets. If we load code compiled with -mcmodel=kernel
492 * anywhere except the lowest or highest 2GB, it will not
493 * work. Since userspace does not have access to the highest
494 * 2GB, use the lowest 2GB.
495 *
496 * Note: this assumes the rump kernel resides in
497 * the lowest 2GB as well.
498 *
499 * Note2: yes, it's a quick hack, but since this the only
500 * place where we care about the map we're allocating from,
501 * just use a simple "if" instead of coming up with a fancy
502 * generic solution.
503 */
504 extern struct vm_map *module_map;
505 if (map == module_map) {
506 desired = (void *)(0x80000000 - size);
507 }
508 #endif
509
510 alignbit = 0;
511 if (align) {
512 alignbit = ffs(align)-1;
513 }
514
515 rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
516 &error);
517 if (rv == NULL) {
518 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
519 return 0;
520 else
521 panic("uvm_km_alloc failed");
522 }
523
524 if (flags & UVM_KMF_ZERO)
525 memset(rv, 0, size);
526
527 return (vaddr_t)rv;
528 }
529
530 void
531 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
532 {
533
534 rumpuser_unmap((void *)vaddr, size);
535 }
536
537 struct vm_map *
538 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
539 vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
540 {
541
542 return (struct vm_map *)417416;
543 }
544
545 vaddr_t
546 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
547 {
548
549 return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
550 waitok, "kmalloc");
551 }
552
553 void
554 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
555 {
556
557 rump_hyperfree((void *)addr, PAGE_SIZE);
558 }
559
560 vaddr_t
561 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
562 {
563
564 return uvm_km_alloc_poolpage(map, waitok);
565 }
566
567 void
568 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
569 {
570
571 uvm_km_free_poolpage(map, vaddr);
572 }
573
574 void
575 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
576 {
577
578 /* we eventually maybe want some model for available memory */
579 }
580
581 /*
582 * Mapping and vm space locking routines.
583 * XXX: these don't work for non-local vmspaces
584 */
585 int
586 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
587 {
588
589 KASSERT(vs == &vmspace0);
590 return 0;
591 }
592
593 void
594 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
595 {
596
597 KASSERT(vs == &vmspace0);
598 }
599
600 void
601 vmapbuf(struct buf *bp, vsize_t len)
602 {
603
604 bp->b_saveaddr = bp->b_data;
605 }
606
607 void
608 vunmapbuf(struct buf *bp, vsize_t len)
609 {
610
611 bp->b_data = bp->b_saveaddr;
612 bp->b_saveaddr = 0;
613 }
614
615 void
616 uvmspace_addref(struct vmspace *vm)
617 {
618
619 /*
620 * there is only vmspace0. we're not planning on
621 * feeding it to the fishes.
622 */
623 }
624
625 void
626 uvmspace_free(struct vmspace *vm)
627 {
628
629 /* nothing for now */
630 }
631
632 int
633 uvm_io(struct vm_map *map, struct uio *uio)
634 {
635
636 /*
637 * just do direct uio for now. but this needs some vmspace
638 * olympics for rump_sysproxy.
639 */
640 return uiomove((void *)(vaddr_t)uio->uio_offset, uio->uio_resid, uio);
641 }
642
643 /*
644 * page life cycle stuff. it really doesn't exist, so just stubs.
645 */
646
647 void
648 uvm_pageactivate(struct vm_page *pg)
649 {
650
651 /* nada */
652 }
653
654 void
655 uvm_pagedeactivate(struct vm_page *pg)
656 {
657
658 /* nada */
659 }
660
661 void
662 uvm_pagedequeue(struct vm_page *pg)
663 {
664
665 /* nada*/
666 }
667
668 void
669 uvm_pageenqueue(struct vm_page *pg)
670 {
671
672 /* nada */
673 }
674
675 void
676 uvmpdpol_anfree(struct vm_anon *an)
677 {
678
679 /* nada */
680 }
681
682 /*
683 * Routines related to the Page Baroness.
684 */
685
686 void
687 uvm_wait(const char *msg)
688 {
689
690 if (__predict_false(curlwp == uvm.pagedaemon_lwp))
691 panic("pagedaemon out of memory");
692 if (__predict_false(rump_threads == 0))
693 panic("pagedaemon missing (RUMP_THREADS = 0)");
694
695 mutex_enter(&pdaemonmtx);
696 pdaemon_waiters++;
697 cv_signal(&pdaemoncv);
698 cv_wait(&oomwait, &pdaemonmtx);
699 mutex_exit(&pdaemonmtx);
700 }
701
702 void
703 uvm_pageout_start(int npages)
704 {
705
706 /* we don't have the heuristics */
707 }
708
709 void
710 uvm_pageout_done(int npages)
711 {
712
713 /* could wakeup waiters, but just let the pagedaemon do it */
714 }
715
716 /*
717 * Under-construction page mistress. This is lacking vfs support, namely:
718 *
719 * 1) draining vfs buffers
720 * 2) paging out pages in vm vnode objects
721 * (we will not page out anon memory on the basis that
722 * that's the task of the host)
723 */
724
725 void
726 uvm_pageout(void *arg)
727 {
728 struct pool *pp, *pp_first;
729 uint64_t where;
730 int timo = 0;
731 bool succ;
732
733 mutex_enter(&pdaemonmtx);
734 for (;;) {
735 cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
736 uvmexp.pdwoke++;
737 kernel_map->flags |= VM_MAP_WANTVA;
738 mutex_exit(&pdaemonmtx);
739
740 succ = false;
741 pool_drain_start(&pp_first, &where);
742 pp = pp_first;
743 for (;;) {
744 succ = pool_drain_end(pp, where);
745 if (succ)
746 break;
747 pool_drain_start(&pp, &where);
748 if (pp == pp_first) {
749 succ = pool_drain_end(pp, where);
750 break;
751 }
752 }
753 mutex_enter(&pdaemonmtx);
754
755 if (!succ) {
756 rumpuser_dprintf("pagedaemoness: failed to reclaim "
757 "memory ... sleeping (deadlock?)\n");
758 timo = hz;
759 continue;
760 }
761 kernel_map->flags &= ~VM_MAP_WANTVA;
762 timo = 0;
763
764 if (pdaemon_waiters) {
765 pdaemon_waiters = 0;
766 cv_broadcast(&oomwait);
767 }
768 }
769
770 panic("you can swap out any time you like, but you can never leave");
771 }
772
773 /*
774 * In a regular kernel the pagedaemon is activated when memory becomes
775 * low. In a virtual rump kernel we do not know exactly how much memory
776 * we have available -- it depends on the conditions on the host.
777 * Therefore, we cannot preemptively kick the pagedaemon. Rather, we
778 * wait until things we desperate and we're forced to uvm_wait().
779 *
780 * The alternative would be to allocate a huge chunk of memory at
781 * startup, but that solution has a number of problems including
782 * being a resource hog, failing anyway due to host memory overcommit
783 * and core dump size.
784 */
785
786 void
787 uvm_kick_pdaemon()
788 {
789
790 /* nada */
791 }
792
793 void *
794 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
795 {
796 unsigned long newmem;
797 void *rv;
798
799 /* first we must be within the limit */
800 limitagain:
801 if (physmemlimit != RUMPMEM_UNLIMITED) {
802 newmem = atomic_add_long_nv(&curphysmem, howmuch);
803 if (newmem > physmemlimit) {
804 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
805 if (!waitok)
806 return NULL;
807 uvm_wait(wmsg);
808 goto limitagain;
809 }
810 }
811
812 /* second, we must get something from the backend */
813 again:
814 rv = rumpuser_malloc(howmuch, alignment);
815 if (__predict_false(rv == NULL && waitok)) {
816 uvm_wait(wmsg);
817 goto again;
818 }
819
820 return rv;
821 }
822
823 void
824 rump_hyperfree(void *what, size_t size)
825 {
826
827 if (physmemlimit != RUMPMEM_UNLIMITED) {
828 atomic_add_long(&curphysmem, -size);
829 }
830 rumpuser_free(what);
831 }
832