vm.c revision 1.89 1 /* $NetBSD: vm.c,v 1.89 2010/09/07 06:06:54 pooka Exp $ */
2
3 /*
4 * Copyright (c) 2007-2010 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.89 2010/09/07 06:06:54 pooka Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/mman.h>
52 #include <sys/null.h>
53 #include <sys/vnode.h>
54
55 #include <machine/pmap.h>
56
57 #include <rump/rumpuser.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_ddb.h>
61 #include <uvm/uvm_pdpolicy.h>
62 #include <uvm/uvm_prot.h>
63 #include <uvm/uvm_readahead.h>
64
65 #include "rump_private.h"
66
67 kmutex_t uvm_pageqlock;
68 kmutex_t uvm_swap_data_lock;
69
70 struct uvmexp uvmexp;
71 struct uvm uvm;
72
73 struct vm_map rump_vmmap;
74 static struct vm_map_kernel kmem_map_store;
75 struct vm_map *kmem_map = &kmem_map_store.vmk_map;
76
77 static struct vm_map_kernel kernel_map_store;
78 struct vm_map *kernel_map = &kernel_map_store.vmk_map;
79
80 static unsigned int pdaemon_waiters;
81 static kmutex_t pdaemonmtx;
82 static kcondvar_t pdaemoncv, oomwait;
83
84 #define RUMPMEM_UNLIMITED ((unsigned long)-1)
85 static unsigned long physmemlimit = RUMPMEM_UNLIMITED;
86 static unsigned long curphysmem;
87
88 static int
89 pg_compare_key(const struct rb_node *n, const void *key)
90 {
91 voff_t a = ((const struct vm_page *)n)->offset;
92 voff_t b = *(const voff_t *)key;
93
94 if (a < b)
95 return 1;
96 else if (a > b)
97 return -1;
98 else
99 return 0;
100 }
101
102 static int
103 pg_compare_nodes(const struct rb_node *n1, const struct rb_node *n2)
104 {
105
106 return pg_compare_key(n1, &((const struct vm_page *)n2)->offset);
107 }
108
109 const struct rb_tree_ops uvm_page_tree_ops = {
110 .rbto_compare_nodes = pg_compare_nodes,
111 .rbto_compare_key = pg_compare_key,
112 };
113
114 /*
115 * vm pages
116 */
117
118 /* called with the object locked */
119 struct vm_page *
120 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
121 int flags, int strat, int free_list)
122 {
123 struct vm_page *pg;
124
125 pg = kmem_zalloc(sizeof(struct vm_page), KM_SLEEP);
126 pg->offset = off;
127 pg->uobject = uobj;
128
129 pg->uanon = (void *)kmem_alloc(PAGE_SIZE, KM_SLEEP);
130 if (flags & UVM_PGA_ZERO)
131 memset(pg->uanon, 0, PAGE_SIZE);
132 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
133
134 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
135 rb_tree_insert_node(&uobj->rb_tree, &pg->rb_node);
136
137 uobj->uo_npages++;
138
139 return pg;
140 }
141
142 /*
143 * Release a page.
144 *
145 * Called with the vm object locked.
146 */
147 void
148 uvm_pagefree(struct vm_page *pg)
149 {
150 struct uvm_object *uobj = pg->uobject;
151
152 if (pg->flags & PG_WANTED)
153 wakeup(pg);
154
155 uobj->uo_npages--;
156 rb_tree_remove_node(&uobj->rb_tree, &pg->rb_node);
157 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
158 kmem_free((void *)pg->uanon, PAGE_SIZE);
159 kmem_free(pg, sizeof(*pg));
160 }
161
162 void
163 uvm_pagezero(struct vm_page *pg)
164 {
165
166 pg->flags &= ~PG_CLEAN;
167 memset((void *)pg->uanon, 0, PAGE_SIZE);
168 }
169
170 /*
171 * Misc routines
172 */
173
174 static kmutex_t pagermtx;
175
176 void
177 uvm_init(void)
178 {
179 char buf[64];
180 int error;
181
182 if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
183 physmemlimit = strtoll(buf, NULL, 10);
184 /* it's not like we'd get far with, say, 1 byte, but ... */
185 if (physmemlimit == 0)
186 panic("uvm_init: no memory available");
187 #define HUMANIZE_BYTES 9
188 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
189 format_bytes(buf, HUMANIZE_BYTES, physmemlimit);
190 #undef HUMANIZE_BYTES
191 } else {
192 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
193 }
194 aprint_verbose("total memory = %s\n", buf);
195
196 uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
197
198 mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
199 mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
200 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
201
202 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
203 cv_init(&pdaemoncv, "pdaemon");
204 cv_init(&oomwait, "oomwait");
205
206 kernel_map->pmap = pmap_kernel();
207 callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
208 kmem_map->pmap = pmap_kernel();
209 callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
210 }
211
212 void
213 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
214 {
215
216 vm->vm_map.pmap = pmap_kernel();
217 vm->vm_refcnt = 1;
218 }
219
220 void
221 uvm_pagewire(struct vm_page *pg)
222 {
223
224 /* nada */
225 }
226
227 void
228 uvm_pageunwire(struct vm_page *pg)
229 {
230
231 /* nada */
232 }
233
234 /* where's your schmonz now? */
235 #define PUNLIMIT(a) \
236 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
237 void
238 uvm_init_limits(struct proc *p)
239 {
240
241 PUNLIMIT(RLIMIT_STACK);
242 PUNLIMIT(RLIMIT_DATA);
243 PUNLIMIT(RLIMIT_RSS);
244 PUNLIMIT(RLIMIT_AS);
245 /* nice, cascade */
246 }
247 #undef PUNLIMIT
248
249 /*
250 * This satisfies the "disgusting mmap hack" used by proplib.
251 * We probably should grow some more assertables to make sure we're
252 * not satisfying anything we shouldn't be satisfying. At least we
253 * should make sure it's the local machine we're mmapping ...
254 */
255 int
256 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
257 vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
258 {
259 void *uaddr;
260 int error;
261
262 if (prot != (VM_PROT_READ | VM_PROT_WRITE))
263 panic("uvm_mmap() variant unsupported");
264 if (flags != (MAP_PRIVATE | MAP_ANON))
265 panic("uvm_mmap() variant unsupported");
266 /* no reason in particular, but cf. uvm_default_mapaddr() */
267 if (*addr != 0)
268 panic("uvm_mmap() variant unsupported");
269
270 uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
271 if (uaddr == NULL)
272 return error;
273
274 *addr = (vaddr_t)uaddr;
275 return 0;
276 }
277
278 struct pagerinfo {
279 vaddr_t pgr_kva;
280 int pgr_npages;
281 struct vm_page **pgr_pgs;
282 bool pgr_read;
283
284 LIST_ENTRY(pagerinfo) pgr_entries;
285 };
286 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
287
288 /*
289 * Pager "map" in routine. Instead of mapping, we allocate memory
290 * and copy page contents there. Not optimal or even strictly
291 * correct (the caller might modify the page contents after mapping
292 * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
293 */
294 vaddr_t
295 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
296 {
297 struct pagerinfo *pgri;
298 vaddr_t curkva;
299 int i;
300
301 /* allocate structures */
302 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
303 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
304 pgri->pgr_npages = npages;
305 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
306 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
307
308 /* copy contents to "mapped" memory */
309 for (i = 0, curkva = pgri->pgr_kva;
310 i < npages;
311 i++, curkva += PAGE_SIZE) {
312 /*
313 * We need to copy the previous contents of the pages to
314 * the window even if we are reading from the
315 * device, since the device might not fill the contents of
316 * the full mapped range and we will end up corrupting
317 * data when we unmap the window.
318 */
319 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
320 pgri->pgr_pgs[i] = pgs[i];
321 }
322
323 mutex_enter(&pagermtx);
324 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
325 mutex_exit(&pagermtx);
326
327 return pgri->pgr_kva;
328 }
329
330 /*
331 * map out the pager window. return contents from VA to page storage
332 * and free structures.
333 *
334 * Note: does not currently support partial frees
335 */
336 void
337 uvm_pagermapout(vaddr_t kva, int npages)
338 {
339 struct pagerinfo *pgri;
340 vaddr_t curkva;
341 int i;
342
343 mutex_enter(&pagermtx);
344 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
345 if (pgri->pgr_kva == kva)
346 break;
347 }
348 KASSERT(pgri);
349 if (pgri->pgr_npages != npages)
350 panic("uvm_pagermapout: partial unmapping not supported");
351 LIST_REMOVE(pgri, pgr_entries);
352 mutex_exit(&pagermtx);
353
354 if (pgri->pgr_read) {
355 for (i = 0, curkva = pgri->pgr_kva;
356 i < pgri->pgr_npages;
357 i++, curkva += PAGE_SIZE) {
358 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
359 }
360 }
361
362 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
363 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
364 kmem_free(pgri, sizeof(*pgri));
365 }
366
367 /*
368 * convert va in pager window to page structure.
369 * XXX: how expensive is this (global lock, list traversal)?
370 */
371 struct vm_page *
372 uvm_pageratop(vaddr_t va)
373 {
374 struct pagerinfo *pgri;
375 struct vm_page *pg = NULL;
376 int i;
377
378 mutex_enter(&pagermtx);
379 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
380 if (pgri->pgr_kva <= va
381 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
382 break;
383 }
384 if (pgri) {
385 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
386 pg = pgri->pgr_pgs[i];
387 }
388 mutex_exit(&pagermtx);
389
390 return pg;
391 }
392
393 /* Called with the vm object locked */
394 struct vm_page *
395 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
396 {
397
398 return (struct vm_page *)rb_tree_find_node(&uobj->rb_tree, &off);
399 }
400
401 void
402 uvm_page_unbusy(struct vm_page **pgs, int npgs)
403 {
404 struct vm_page *pg;
405 int i;
406
407 for (i = 0; i < npgs; i++) {
408 pg = pgs[i];
409 if (pg == NULL)
410 continue;
411
412 KASSERT(pg->flags & PG_BUSY);
413 if (pg->flags & PG_WANTED)
414 wakeup(pg);
415 if (pg->flags & PG_RELEASED)
416 uvm_pagefree(pg);
417 else
418 pg->flags &= ~(PG_WANTED|PG_BUSY);
419 }
420 }
421
422 void
423 uvm_estimatepageable(int *active, int *inactive)
424 {
425
426 /* XXX: guessing game */
427 *active = 1024;
428 *inactive = 1024;
429 }
430
431 struct vm_map_kernel *
432 vm_map_to_kernel(struct vm_map *map)
433 {
434
435 return (struct vm_map_kernel *)map;
436 }
437
438 bool
439 vm_map_starved_p(struct vm_map *map)
440 {
441
442 if (map->flags & VM_MAP_WANTVA)
443 return true;
444
445 return false;
446 }
447
448 int
449 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
450 {
451
452 panic("%s: unimplemented", __func__);
453 }
454
455 void
456 uvm_unloan(void *v, int npages, int flags)
457 {
458
459 panic("%s: unimplemented", __func__);
460 }
461
462 int
463 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
464 struct vm_page **opp)
465 {
466
467 return EBUSY;
468 }
469
470 #ifdef DEBUGPRINT
471 void
472 uvm_object_printit(struct uvm_object *uobj, bool full,
473 void (*pr)(const char *, ...))
474 {
475
476 pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
477 }
478 #endif
479
480 vaddr_t
481 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
482 {
483
484 return 0;
485 }
486
487 int
488 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
489 vm_prot_t prot, bool set_max)
490 {
491
492 return EOPNOTSUPP;
493 }
494
495 /*
496 * UVM km
497 */
498
499 vaddr_t
500 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
501 {
502 void *rv, *desired = NULL;
503 int alignbit, error;
504
505 #ifdef __x86_64__
506 /*
507 * On amd64, allocate all module memory from the lowest 2GB.
508 * This is because NetBSD kernel modules are compiled
509 * with -mcmodel=kernel and reserve only 4 bytes for
510 * offsets. If we load code compiled with -mcmodel=kernel
511 * anywhere except the lowest or highest 2GB, it will not
512 * work. Since userspace does not have access to the highest
513 * 2GB, use the lowest 2GB.
514 *
515 * Note: this assumes the rump kernel resides in
516 * the lowest 2GB as well.
517 *
518 * Note2: yes, it's a quick hack, but since this the only
519 * place where we care about the map we're allocating from,
520 * just use a simple "if" instead of coming up with a fancy
521 * generic solution.
522 */
523 extern struct vm_map *module_map;
524 if (map == module_map) {
525 desired = (void *)(0x80000000 - size);
526 }
527 #endif
528
529 alignbit = 0;
530 if (align) {
531 alignbit = ffs(align)-1;
532 }
533
534 rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
535 &error);
536 if (rv == NULL) {
537 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
538 return 0;
539 else
540 panic("uvm_km_alloc failed");
541 }
542
543 if (flags & UVM_KMF_ZERO)
544 memset(rv, 0, size);
545
546 return (vaddr_t)rv;
547 }
548
549 void
550 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
551 {
552
553 rumpuser_unmap((void *)vaddr, size);
554 }
555
556 struct vm_map *
557 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
558 vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
559 {
560
561 return (struct vm_map *)417416;
562 }
563
564 vaddr_t
565 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
566 {
567
568 return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
569 waitok, "kmalloc");
570 }
571
572 void
573 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
574 {
575
576 rump_hyperfree((void *)addr, PAGE_SIZE);
577 }
578
579 vaddr_t
580 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
581 {
582
583 return uvm_km_alloc_poolpage(map, waitok);
584 }
585
586 void
587 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
588 {
589
590 uvm_km_free_poolpage(map, vaddr);
591 }
592
593 void
594 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
595 {
596
597 /* we eventually maybe want some model for available memory */
598 }
599
600 /*
601 * Mapping and vm space locking routines.
602 * XXX: these don't work for non-local vmspaces
603 */
604 int
605 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
606 {
607
608 KASSERT(vs == &vmspace0);
609 return 0;
610 }
611
612 void
613 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
614 {
615
616 KASSERT(vs == &vmspace0);
617 }
618
619 void
620 vmapbuf(struct buf *bp, vsize_t len)
621 {
622
623 bp->b_saveaddr = bp->b_data;
624 }
625
626 void
627 vunmapbuf(struct buf *bp, vsize_t len)
628 {
629
630 bp->b_data = bp->b_saveaddr;
631 bp->b_saveaddr = 0;
632 }
633
634 void
635 uvmspace_addref(struct vmspace *vm)
636 {
637
638 /*
639 * there is only vmspace0. we're not planning on
640 * feeding it to the fishes.
641 */
642 }
643
644 void
645 uvmspace_free(struct vmspace *vm)
646 {
647
648 /* nothing for now */
649 }
650
651 int
652 uvm_io(struct vm_map *map, struct uio *uio)
653 {
654
655 /*
656 * just do direct uio for now. but this needs some vmspace
657 * olympics for rump_sysproxy.
658 */
659 return uiomove((void *)(vaddr_t)uio->uio_offset, uio->uio_resid, uio);
660 }
661
662 /*
663 * page life cycle stuff. it really doesn't exist, so just stubs.
664 */
665
666 void
667 uvm_pageactivate(struct vm_page *pg)
668 {
669
670 /* nada */
671 }
672
673 void
674 uvm_pagedeactivate(struct vm_page *pg)
675 {
676
677 /* nada */
678 }
679
680 void
681 uvm_pagedequeue(struct vm_page *pg)
682 {
683
684 /* nada*/
685 }
686
687 void
688 uvm_pageenqueue(struct vm_page *pg)
689 {
690
691 /* nada */
692 }
693
694 void
695 uvmpdpol_anfree(struct vm_anon *an)
696 {
697
698 /* nada */
699 }
700
701 /*
702 * Routines related to the Page Baroness.
703 */
704
705 void
706 uvm_wait(const char *msg)
707 {
708
709 if (__predict_false(curlwp == uvm.pagedaemon_lwp))
710 panic("pagedaemon out of memory");
711 if (__predict_false(rump_threads == 0))
712 panic("pagedaemon missing (RUMP_THREADS = 0)");
713
714 mutex_enter(&pdaemonmtx);
715 pdaemon_waiters++;
716 cv_signal(&pdaemoncv);
717 cv_wait(&oomwait, &pdaemonmtx);
718 mutex_exit(&pdaemonmtx);
719 }
720
721 void
722 uvm_pageout_start(int npages)
723 {
724
725 /* we don't have the heuristics */
726 }
727
728 void
729 uvm_pageout_done(int npages)
730 {
731
732 /* could wakeup waiters, but just let the pagedaemon do it */
733 }
734
735 /*
736 * Under-construction page mistress. This is lacking vfs support, namely:
737 *
738 * 1) draining vfs buffers
739 * 2) paging out pages in vm vnode objects
740 * (we will not page out anon memory on the basis that
741 * that's the task of the host)
742 */
743
744 void
745 uvm_pageout(void *arg)
746 {
747 struct pool *pp, *pp_first;
748 uint64_t where;
749 int timo = 0;
750 bool succ;
751
752 mutex_enter(&pdaemonmtx);
753 for (;;) {
754 cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
755 uvmexp.pdwoke++;
756 kernel_map->flags |= VM_MAP_WANTVA;
757 mutex_exit(&pdaemonmtx);
758
759 succ = false;
760 pool_drain_start(&pp_first, &where);
761 pp = pp_first;
762 for (;;) {
763 succ = pool_drain_end(pp, where);
764 if (succ)
765 break;
766 pool_drain_start(&pp, &where);
767 if (pp == pp_first) {
768 succ = pool_drain_end(pp, where);
769 break;
770 }
771 }
772 mutex_enter(&pdaemonmtx);
773
774 if (!succ) {
775 rumpuser_dprintf("pagedaemoness: failed to reclaim "
776 "memory ... sleeping (deadlock?)\n");
777 timo = hz;
778 continue;
779 }
780 kernel_map->flags &= ~VM_MAP_WANTVA;
781 timo = 0;
782
783 if (pdaemon_waiters) {
784 pdaemon_waiters = 0;
785 cv_broadcast(&oomwait);
786 }
787 }
788
789 panic("you can swap out any time you like, but you can never leave");
790 }
791
792 /*
793 * In a regular kernel the pagedaemon is activated when memory becomes
794 * low. In a virtual rump kernel we do not know exactly how much memory
795 * we have available -- it depends on the conditions on the host.
796 * Therefore, we cannot preemptively kick the pagedaemon. Rather, we
797 * wait until things we desperate and we're forced to uvm_wait().
798 *
799 * The alternative would be to allocate a huge chunk of memory at
800 * startup, but that solution has a number of problems including
801 * being a resource hog, failing anyway due to host memory overcommit
802 * and core dump size.
803 */
804
805 void
806 uvm_kick_pdaemon()
807 {
808
809 /* nada */
810 }
811
812 void *
813 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
814 {
815 unsigned long newmem;
816 void *rv;
817
818 /* first we must be within the limit */
819 limitagain:
820 if (physmemlimit != RUMPMEM_UNLIMITED) {
821 newmem = atomic_add_long_nv(&curphysmem, howmuch);
822 if (newmem > physmemlimit) {
823 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
824 if (!waitok)
825 return NULL;
826 uvm_wait(wmsg);
827 goto limitagain;
828 }
829 }
830
831 /* second, we must get something from the backend */
832 again:
833 rv = rumpuser_malloc(howmuch, alignment);
834 if (__predict_false(rv == NULL && waitok)) {
835 uvm_wait(wmsg);
836 goto again;
837 }
838
839 return rv;
840 }
841
842 void
843 rump_hyperfree(void *what, size_t size)
844 {
845
846 if (physmemlimit != RUMPMEM_UNLIMITED) {
847 atomic_add_long(&curphysmem, -size);
848 }
849 rumpuser_free(what);
850 }
851