Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.91
      1 /*	$NetBSD: vm.c,v 1.91 2010/09/07 21:11:10 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2010 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.91 2010/09/07 21:11:10 pooka Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/mman.h>
     52 #include <sys/null.h>
     53 #include <sys/vnode.h>
     54 
     55 #include <machine/pmap.h>
     56 
     57 #include <rump/rumpuser.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_ddb.h>
     61 #include <uvm/uvm_pdpolicy.h>
     62 #include <uvm/uvm_prot.h>
     63 #include <uvm/uvm_readahead.h>
     64 
     65 #include "rump_private.h"
     66 #include "rump_vfs_private.h"
     67 
     68 kmutex_t uvm_pageqlock;
     69 kmutex_t uvm_swap_data_lock;
     70 
     71 struct uvmexp uvmexp;
     72 struct uvm uvm;
     73 
     74 struct vm_map rump_vmmap;
     75 static struct vm_map_kernel kmem_map_store;
     76 struct vm_map *kmem_map = &kmem_map_store.vmk_map;
     77 
     78 static struct vm_map_kernel kernel_map_store;
     79 struct vm_map *kernel_map = &kernel_map_store.vmk_map;
     80 
     81 static unsigned int pdaemon_waiters;
     82 static kmutex_t pdaemonmtx;
     83 static kcondvar_t pdaemoncv, oomwait;
     84 
     85 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     86 static unsigned long curphysmem;
     87 
     88 static int
     89 pg_compare_key(const struct rb_node *n, const void *key)
     90 {
     91 	voff_t a = ((const struct vm_page *)n)->offset;
     92 	voff_t b = *(const voff_t *)key;
     93 
     94 	if (a < b)
     95 		return 1;
     96 	else if (a > b)
     97 		return -1;
     98 	else
     99 		return 0;
    100 }
    101 
    102 static int
    103 pg_compare_nodes(const struct rb_node *n1, const struct rb_node *n2)
    104 {
    105 
    106 	return pg_compare_key(n1, &((const struct vm_page *)n2)->offset);
    107 }
    108 
    109 const struct rb_tree_ops uvm_page_tree_ops = {
    110 	.rbto_compare_nodes = pg_compare_nodes,
    111 	.rbto_compare_key = pg_compare_key,
    112 };
    113 
    114 /*
    115  * vm pages
    116  */
    117 
    118 static int
    119 pgctor(void *arg, void *obj, int flags)
    120 {
    121 	struct vm_page *pg = obj;
    122 
    123 	memset(pg, 0, sizeof(*pg));
    124 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE, true, "pgalloc");
    125 	return 0;
    126 }
    127 
    128 static void
    129 pgdtor(void *arg, void *obj)
    130 {
    131 	struct vm_page *pg = obj;
    132 
    133 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    134 }
    135 
    136 static struct pool_cache pagecache;
    137 
    138 /* called with the object locked */
    139 struct vm_page *
    140 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    141 	int flags, int strat, int free_list)
    142 {
    143 	struct vm_page *pg;
    144 
    145 	pg = pool_cache_get(&pagecache, PR_WAITOK);
    146 	pg->offset = off;
    147 	pg->uobject = uobj;
    148 
    149 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    150 	if (flags & UVM_PGA_ZERO) {
    151 		uvm_pagezero(pg);
    152 	}
    153 
    154 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    155 	rb_tree_insert_node(&uobj->rb_tree, &pg->rb_node);
    156 
    157 	uobj->uo_npages++;
    158 
    159 	return pg;
    160 }
    161 
    162 /*
    163  * Release a page.
    164  *
    165  * Called with the vm object locked.
    166  */
    167 void
    168 uvm_pagefree(struct vm_page *pg)
    169 {
    170 	struct uvm_object *uobj = pg->uobject;
    171 
    172 	if (pg->flags & PG_WANTED)
    173 		wakeup(pg);
    174 
    175 	uobj->uo_npages--;
    176 	rb_tree_remove_node(&uobj->rb_tree, &pg->rb_node);
    177 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    178 	pool_cache_put(&pagecache, pg);
    179 }
    180 
    181 void
    182 uvm_pagezero(struct vm_page *pg)
    183 {
    184 
    185 	pg->flags &= ~PG_CLEAN;
    186 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    187 }
    188 
    189 /*
    190  * Misc routines
    191  */
    192 
    193 static kmutex_t pagermtx;
    194 
    195 void
    196 uvm_init(void)
    197 {
    198 	char buf[64];
    199 	int error;
    200 
    201 	if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
    202 		rump_physmemlimit = strtoll(buf, NULL, 10);
    203 		/* it's not like we'd get far with, say, 1 byte, but ... */
    204 		if (rump_physmemlimit == 0)
    205 			panic("uvm_init: no memory available");
    206 #define HUMANIZE_BYTES 9
    207 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    208 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    209 #undef HUMANIZE_BYTES
    210 	} else {
    211 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    212 	}
    213 	aprint_verbose("total memory = %s\n", buf);
    214 
    215 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    216 
    217 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    218 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    219 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
    220 
    221 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    222 	cv_init(&pdaemoncv, "pdaemon");
    223 	cv_init(&oomwait, "oomwait");
    224 
    225 	kernel_map->pmap = pmap_kernel();
    226 	callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
    227 	kmem_map->pmap = pmap_kernel();
    228 	callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
    229 
    230 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    231 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    232 }
    233 
    234 void
    235 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    236 {
    237 
    238 	vm->vm_map.pmap = pmap_kernel();
    239 	vm->vm_refcnt = 1;
    240 }
    241 
    242 void
    243 uvm_pagewire(struct vm_page *pg)
    244 {
    245 
    246 	/* nada */
    247 }
    248 
    249 void
    250 uvm_pageunwire(struct vm_page *pg)
    251 {
    252 
    253 	/* nada */
    254 }
    255 
    256 /* where's your schmonz now? */
    257 #define PUNLIMIT(a)	\
    258 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    259 void
    260 uvm_init_limits(struct proc *p)
    261 {
    262 
    263 	PUNLIMIT(RLIMIT_STACK);
    264 	PUNLIMIT(RLIMIT_DATA);
    265 	PUNLIMIT(RLIMIT_RSS);
    266 	PUNLIMIT(RLIMIT_AS);
    267 	/* nice, cascade */
    268 }
    269 #undef PUNLIMIT
    270 
    271 /*
    272  * This satisfies the "disgusting mmap hack" used by proplib.
    273  * We probably should grow some more assertables to make sure we're
    274  * not satisfying anything we shouldn't be satisfying.  At least we
    275  * should make sure it's the local machine we're mmapping ...
    276  */
    277 int
    278 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    279 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    280 {
    281 	void *uaddr;
    282 	int error;
    283 
    284 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    285 		panic("uvm_mmap() variant unsupported");
    286 	if (flags != (MAP_PRIVATE | MAP_ANON))
    287 		panic("uvm_mmap() variant unsupported");
    288 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    289 	if (*addr != 0)
    290 		panic("uvm_mmap() variant unsupported");
    291 
    292 	uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    293 	if (uaddr == NULL)
    294 		return error;
    295 
    296 	*addr = (vaddr_t)uaddr;
    297 	return 0;
    298 }
    299 
    300 struct pagerinfo {
    301 	vaddr_t pgr_kva;
    302 	int pgr_npages;
    303 	struct vm_page **pgr_pgs;
    304 	bool pgr_read;
    305 
    306 	LIST_ENTRY(pagerinfo) pgr_entries;
    307 };
    308 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    309 
    310 /*
    311  * Pager "map" in routine.  Instead of mapping, we allocate memory
    312  * and copy page contents there.  Not optimal or even strictly
    313  * correct (the caller might modify the page contents after mapping
    314  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    315  */
    316 vaddr_t
    317 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    318 {
    319 	struct pagerinfo *pgri;
    320 	vaddr_t curkva;
    321 	int i;
    322 
    323 	/* allocate structures */
    324 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    325 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    326 	pgri->pgr_npages = npages;
    327 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    328 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    329 
    330 	/* copy contents to "mapped" memory */
    331 	for (i = 0, curkva = pgri->pgr_kva;
    332 	    i < npages;
    333 	    i++, curkva += PAGE_SIZE) {
    334 		/*
    335 		 * We need to copy the previous contents of the pages to
    336 		 * the window even if we are reading from the
    337 		 * device, since the device might not fill the contents of
    338 		 * the full mapped range and we will end up corrupting
    339 		 * data when we unmap the window.
    340 		 */
    341 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    342 		pgri->pgr_pgs[i] = pgs[i];
    343 	}
    344 
    345 	mutex_enter(&pagermtx);
    346 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    347 	mutex_exit(&pagermtx);
    348 
    349 	return pgri->pgr_kva;
    350 }
    351 
    352 /*
    353  * map out the pager window.  return contents from VA to page storage
    354  * and free structures.
    355  *
    356  * Note: does not currently support partial frees
    357  */
    358 void
    359 uvm_pagermapout(vaddr_t kva, int npages)
    360 {
    361 	struct pagerinfo *pgri;
    362 	vaddr_t curkva;
    363 	int i;
    364 
    365 	mutex_enter(&pagermtx);
    366 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    367 		if (pgri->pgr_kva == kva)
    368 			break;
    369 	}
    370 	KASSERT(pgri);
    371 	if (pgri->pgr_npages != npages)
    372 		panic("uvm_pagermapout: partial unmapping not supported");
    373 	LIST_REMOVE(pgri, pgr_entries);
    374 	mutex_exit(&pagermtx);
    375 
    376 	if (pgri->pgr_read) {
    377 		for (i = 0, curkva = pgri->pgr_kva;
    378 		    i < pgri->pgr_npages;
    379 		    i++, curkva += PAGE_SIZE) {
    380 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    381 		}
    382 	}
    383 
    384 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    385 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    386 	kmem_free(pgri, sizeof(*pgri));
    387 }
    388 
    389 /*
    390  * convert va in pager window to page structure.
    391  * XXX: how expensive is this (global lock, list traversal)?
    392  */
    393 struct vm_page *
    394 uvm_pageratop(vaddr_t va)
    395 {
    396 	struct pagerinfo *pgri;
    397 	struct vm_page *pg = NULL;
    398 	int i;
    399 
    400 	mutex_enter(&pagermtx);
    401 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    402 		if (pgri->pgr_kva <= va
    403 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    404 			break;
    405 	}
    406 	if (pgri) {
    407 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    408 		pg = pgri->pgr_pgs[i];
    409 	}
    410 	mutex_exit(&pagermtx);
    411 
    412 	return pg;
    413 }
    414 
    415 /* Called with the vm object locked */
    416 struct vm_page *
    417 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    418 {
    419 
    420 	return (struct vm_page *)rb_tree_find_node(&uobj->rb_tree, &off);
    421 }
    422 
    423 void
    424 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    425 {
    426 	struct vm_page *pg;
    427 	int i;
    428 
    429 	for (i = 0; i < npgs; i++) {
    430 		pg = pgs[i];
    431 		if (pg == NULL)
    432 			continue;
    433 
    434 		KASSERT(pg->flags & PG_BUSY);
    435 		if (pg->flags & PG_WANTED)
    436 			wakeup(pg);
    437 		if (pg->flags & PG_RELEASED)
    438 			uvm_pagefree(pg);
    439 		else
    440 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    441 	}
    442 }
    443 
    444 void
    445 uvm_estimatepageable(int *active, int *inactive)
    446 {
    447 
    448 	/* XXX: guessing game */
    449 	*active = 1024;
    450 	*inactive = 1024;
    451 }
    452 
    453 struct vm_map_kernel *
    454 vm_map_to_kernel(struct vm_map *map)
    455 {
    456 
    457 	return (struct vm_map_kernel *)map;
    458 }
    459 
    460 bool
    461 vm_map_starved_p(struct vm_map *map)
    462 {
    463 
    464 	if (map->flags & VM_MAP_WANTVA)
    465 		return true;
    466 
    467 	return false;
    468 }
    469 
    470 int
    471 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    472 {
    473 
    474 	panic("%s: unimplemented", __func__);
    475 }
    476 
    477 void
    478 uvm_unloan(void *v, int npages, int flags)
    479 {
    480 
    481 	panic("%s: unimplemented", __func__);
    482 }
    483 
    484 int
    485 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    486 	struct vm_page **opp)
    487 {
    488 
    489 	return EBUSY;
    490 }
    491 
    492 #ifdef DEBUGPRINT
    493 void
    494 uvm_object_printit(struct uvm_object *uobj, bool full,
    495 	void (*pr)(const char *, ...))
    496 {
    497 
    498 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    499 }
    500 #endif
    501 
    502 vaddr_t
    503 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    504 {
    505 
    506 	return 0;
    507 }
    508 
    509 int
    510 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    511 	vm_prot_t prot, bool set_max)
    512 {
    513 
    514 	return EOPNOTSUPP;
    515 }
    516 
    517 /*
    518  * UVM km
    519  */
    520 
    521 vaddr_t
    522 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    523 {
    524 	void *rv, *desired = NULL;
    525 	int alignbit, error;
    526 
    527 #ifdef __x86_64__
    528 	/*
    529 	 * On amd64, allocate all module memory from the lowest 2GB.
    530 	 * This is because NetBSD kernel modules are compiled
    531 	 * with -mcmodel=kernel and reserve only 4 bytes for
    532 	 * offsets.  If we load code compiled with -mcmodel=kernel
    533 	 * anywhere except the lowest or highest 2GB, it will not
    534 	 * work.  Since userspace does not have access to the highest
    535 	 * 2GB, use the lowest 2GB.
    536 	 *
    537 	 * Note: this assumes the rump kernel resides in
    538 	 * the lowest 2GB as well.
    539 	 *
    540 	 * Note2: yes, it's a quick hack, but since this the only
    541 	 * place where we care about the map we're allocating from,
    542 	 * just use a simple "if" instead of coming up with a fancy
    543 	 * generic solution.
    544 	 */
    545 	extern struct vm_map *module_map;
    546 	if (map == module_map) {
    547 		desired = (void *)(0x80000000 - size);
    548 	}
    549 #endif
    550 
    551 	alignbit = 0;
    552 	if (align) {
    553 		alignbit = ffs(align)-1;
    554 	}
    555 
    556 	rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
    557 	    &error);
    558 	if (rv == NULL) {
    559 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    560 			return 0;
    561 		else
    562 			panic("uvm_km_alloc failed");
    563 	}
    564 
    565 	if (flags & UVM_KMF_ZERO)
    566 		memset(rv, 0, size);
    567 
    568 	return (vaddr_t)rv;
    569 }
    570 
    571 void
    572 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    573 {
    574 
    575 	rumpuser_unmap((void *)vaddr, size);
    576 }
    577 
    578 struct vm_map *
    579 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    580 	vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
    581 {
    582 
    583 	return (struct vm_map *)417416;
    584 }
    585 
    586 vaddr_t
    587 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    588 {
    589 
    590 	return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    591 	    waitok, "kmalloc");
    592 }
    593 
    594 void
    595 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    596 {
    597 
    598 	rump_hyperfree((void *)addr, PAGE_SIZE);
    599 }
    600 
    601 vaddr_t
    602 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    603 {
    604 
    605 	return uvm_km_alloc_poolpage(map, waitok);
    606 }
    607 
    608 void
    609 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
    610 {
    611 
    612 	uvm_km_free_poolpage(map, vaddr);
    613 }
    614 
    615 void
    616 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    617 {
    618 
    619 	/* we eventually maybe want some model for available memory */
    620 }
    621 
    622 /*
    623  * Mapping and vm space locking routines.
    624  * XXX: these don't work for non-local vmspaces
    625  */
    626 int
    627 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    628 {
    629 
    630 	KASSERT(vs == &vmspace0);
    631 	return 0;
    632 }
    633 
    634 void
    635 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    636 {
    637 
    638 	KASSERT(vs == &vmspace0);
    639 }
    640 
    641 void
    642 vmapbuf(struct buf *bp, vsize_t len)
    643 {
    644 
    645 	bp->b_saveaddr = bp->b_data;
    646 }
    647 
    648 void
    649 vunmapbuf(struct buf *bp, vsize_t len)
    650 {
    651 
    652 	bp->b_data = bp->b_saveaddr;
    653 	bp->b_saveaddr = 0;
    654 }
    655 
    656 void
    657 uvmspace_addref(struct vmspace *vm)
    658 {
    659 
    660 	/*
    661 	 * there is only vmspace0.  we're not planning on
    662 	 * feeding it to the fishes.
    663 	 */
    664 }
    665 
    666 void
    667 uvmspace_free(struct vmspace *vm)
    668 {
    669 
    670 	/* nothing for now */
    671 }
    672 
    673 int
    674 uvm_io(struct vm_map *map, struct uio *uio)
    675 {
    676 
    677 	/*
    678 	 * just do direct uio for now.  but this needs some vmspace
    679 	 * olympics for rump_sysproxy.
    680 	 */
    681 	return uiomove((void *)(vaddr_t)uio->uio_offset, uio->uio_resid, uio);
    682 }
    683 
    684 /*
    685  * page life cycle stuff.  it really doesn't exist, so just stubs.
    686  */
    687 
    688 void
    689 uvm_pageactivate(struct vm_page *pg)
    690 {
    691 
    692 	/* nada */
    693 }
    694 
    695 void
    696 uvm_pagedeactivate(struct vm_page *pg)
    697 {
    698 
    699 	/* nada */
    700 }
    701 
    702 void
    703 uvm_pagedequeue(struct vm_page *pg)
    704 {
    705 
    706 	/* nada*/
    707 }
    708 
    709 void
    710 uvm_pageenqueue(struct vm_page *pg)
    711 {
    712 
    713 	/* nada */
    714 }
    715 
    716 void
    717 uvmpdpol_anfree(struct vm_anon *an)
    718 {
    719 
    720 	/* nada */
    721 }
    722 
    723 /*
    724  * Routines related to the Page Baroness.
    725  */
    726 
    727 void
    728 uvm_wait(const char *msg)
    729 {
    730 
    731 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    732 		panic("pagedaemon out of memory");
    733 	if (__predict_false(rump_threads == 0))
    734 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    735 
    736 	mutex_enter(&pdaemonmtx);
    737 	pdaemon_waiters++;
    738 	cv_signal(&pdaemoncv);
    739 	cv_wait(&oomwait, &pdaemonmtx);
    740 	mutex_exit(&pdaemonmtx);
    741 }
    742 
    743 void
    744 uvm_pageout_start(int npages)
    745 {
    746 
    747 	/* we don't have the heuristics */
    748 }
    749 
    750 void
    751 uvm_pageout_done(int npages)
    752 {
    753 
    754 	/* could wakeup waiters, but just let the pagedaemon do it */
    755 }
    756 
    757 /*
    758  * Under-construction page mistress.  This is lacking vfs support, namely:
    759  *
    760  *  1) draining vfs buffers
    761  *  2) paging out pages in vm vnode objects
    762  *     (we will not page out anon memory on the basis that
    763  *     that's the task of the host)
    764  */
    765 
    766 void
    767 uvm_pageout(void *arg)
    768 {
    769 	struct pool *pp, *pp_first;
    770 	uint64_t where;
    771 	int timo = 0;
    772 	bool succ;
    773 
    774 	mutex_enter(&pdaemonmtx);
    775 	for (;;) {
    776 		cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
    777 		uvmexp.pdwoke++;
    778 		kernel_map->flags |= VM_MAP_WANTVA;
    779 		mutex_exit(&pdaemonmtx);
    780 
    781 		succ = false;
    782 		pool_drain_start(&pp_first, &where);
    783 		pp = pp_first;
    784 		for (;;) {
    785 			rump_vfs_drainbufs(10 /* XXX: estimate better */);
    786 			succ = pool_drain_end(pp, where);
    787 			if (succ)
    788 				break;
    789 			pool_drain_start(&pp, &where);
    790 			if (pp == pp_first) {
    791 				succ = pool_drain_end(pp, where);
    792 				break;
    793 			}
    794 		}
    795 		mutex_enter(&pdaemonmtx);
    796 
    797 		if (!succ) {
    798 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
    799 			    "memory ... sleeping (deadlock?)\n");
    800 			timo = hz;
    801 			continue;
    802 		}
    803 		kernel_map->flags &= ~VM_MAP_WANTVA;
    804 		timo = 0;
    805 
    806 		if (pdaemon_waiters) {
    807 			pdaemon_waiters = 0;
    808 			cv_broadcast(&oomwait);
    809 		}
    810 	}
    811 
    812 	panic("you can swap out any time you like, but you can never leave");
    813 }
    814 
    815 /*
    816  * In a regular kernel the pagedaemon is activated when memory becomes
    817  * low.  In a virtual rump kernel we do not know exactly how much memory
    818  * we have available -- it depends on the conditions on the host.
    819  * Therefore, we cannot preemptively kick the pagedaemon.  Rather, we
    820  * wait until things we desperate and we're forced to uvm_wait().
    821  *
    822  * The alternative would be to allocate a huge chunk of memory at
    823  * startup, but that solution has a number of problems including
    824  * being a resource hog, failing anyway due to host memory overcommit
    825  * and core dump size.
    826  */
    827 
    828 void
    829 uvm_kick_pdaemon()
    830 {
    831 
    832 	/* nada */
    833 }
    834 
    835 void *
    836 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
    837 {
    838 	unsigned long newmem;
    839 	void *rv;
    840 
    841 	/* first we must be within the limit */
    842  limitagain:
    843 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
    844 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
    845 		if (newmem > rump_physmemlimit) {
    846 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
    847 			if (!waitok)
    848 				return NULL;
    849 			uvm_wait(wmsg);
    850 			goto limitagain;
    851 		}
    852 	}
    853 
    854 	/* second, we must get something from the backend */
    855  again:
    856 	rv = rumpuser_malloc(howmuch, alignment);
    857 	if (__predict_false(rv == NULL && waitok)) {
    858 		uvm_wait(wmsg);
    859 		goto again;
    860 	}
    861 
    862 	return rv;
    863 }
    864 
    865 void
    866 rump_hyperfree(void *what, size_t size)
    867 {
    868 
    869 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
    870 		atomic_add_long(&curphysmem, -size);
    871 	}
    872 	rumpuser_free(what);
    873 }
    874