Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.92
      1 /*	$NetBSD: vm.c,v 1.92 2010/09/08 21:02:11 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2010 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.92 2010/09/08 21:02:11 pooka Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/mman.h>
     52 #include <sys/null.h>
     53 #include <sys/vnode.h>
     54 
     55 #include <machine/pmap.h>
     56 
     57 #include <rump/rumpuser.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_ddb.h>
     61 #include <uvm/uvm_pdpolicy.h>
     62 #include <uvm/uvm_prot.h>
     63 #include <uvm/uvm_readahead.h>
     64 
     65 #include "rump_private.h"
     66 #include "rump_vfs_private.h"
     67 
     68 kmutex_t uvm_pageqlock;
     69 kmutex_t uvm_swap_data_lock;
     70 
     71 struct uvmexp uvmexp;
     72 struct uvm uvm;
     73 
     74 struct vm_map rump_vmmap;
     75 static struct vm_map_kernel kmem_map_store;
     76 struct vm_map *kmem_map = &kmem_map_store.vmk_map;
     77 
     78 static struct vm_map_kernel kernel_map_store;
     79 struct vm_map *kernel_map = &kernel_map_store.vmk_map;
     80 
     81 static unsigned int pdaemon_waiters;
     82 static kmutex_t pdaemonmtx;
     83 static kcondvar_t pdaemoncv, oomwait;
     84 
     85 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     86 static unsigned long curphysmem;
     87 static unsigned long dddlim;		/* 90% of memory limit used */
     88 #define NEED_PAGEDAEMON() \
     89     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
     90 
     91 /*
     92  * Try to free two pages worth of pages from objects.
     93  * If this succesfully frees a full page cache page, we'll
     94  * free the released page plus PAGE_SIZE/sizeof(vm_page).
     95  */
     96 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
     97 
     98 /*
     99  * Keep a list of least recently used pages.  Since the only way a
    100  * rump kernel can "access" a page is via lookup, we put the page
    101  * at the back of queue every time a lookup for it is done.  If the
    102  * page is in front of this global queue and we're short of memory,
    103  * it's a candidate for pageout.
    104  */
    105 static struct pglist vmpage_lruqueue;
    106 static unsigned vmpage_onqueue;
    107 
    108 static int
    109 pg_compare_key(const struct rb_node *n, const void *key)
    110 {
    111 	voff_t a = ((const struct vm_page *)n)->offset;
    112 	voff_t b = *(const voff_t *)key;
    113 
    114 	if (a < b)
    115 		return 1;
    116 	else if (a > b)
    117 		return -1;
    118 	else
    119 		return 0;
    120 }
    121 
    122 static int
    123 pg_compare_nodes(const struct rb_node *n1, const struct rb_node *n2)
    124 {
    125 
    126 	return pg_compare_key(n1, &((const struct vm_page *)n2)->offset);
    127 }
    128 
    129 const struct rb_tree_ops uvm_page_tree_ops = {
    130 	.rbto_compare_nodes = pg_compare_nodes,
    131 	.rbto_compare_key = pg_compare_key,
    132 };
    133 
    134 /*
    135  * vm pages
    136  */
    137 
    138 static int
    139 pgctor(void *arg, void *obj, int flags)
    140 {
    141 	struct vm_page *pg = obj;
    142 
    143 	memset(pg, 0, sizeof(*pg));
    144 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE, true, "pgalloc");
    145 	return 0;
    146 }
    147 
    148 static void
    149 pgdtor(void *arg, void *obj)
    150 {
    151 	struct vm_page *pg = obj;
    152 
    153 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    154 }
    155 
    156 static struct pool_cache pagecache;
    157 
    158 /*
    159  * Called with the object locked.  We don't support anons.
    160  */
    161 struct vm_page *
    162 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    163 	int flags, int strat, int free_list)
    164 {
    165 	struct vm_page *pg;
    166 
    167 	KASSERT(uobj && mutex_owned(&uobj->vmobjlock));
    168 	KASSERT(anon == NULL);
    169 
    170 	pg = pool_cache_get(&pagecache, PR_WAITOK);
    171 	pg->offset = off;
    172 	pg->uobject = uobj;
    173 
    174 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    175 	if (flags & UVM_PGA_ZERO) {
    176 		uvm_pagezero(pg);
    177 	}
    178 
    179 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    180 	rb_tree_insert_node(&uobj->rb_tree, &pg->rb_node);
    181 
    182 	/*
    183 	 * Put vnodes on the LRU page queue.  we can't flush others,
    184 	 * so don't bother with them.
    185 	 */
    186 	if (UVM_OBJ_IS_VNODE(uobj)) {
    187 		atomic_inc_uint(&vmpage_onqueue);
    188 		mutex_enter(&uvm_pageqlock);
    189 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    190 		mutex_exit(&uvm_pageqlock);
    191 	}
    192 
    193 	uobj->uo_npages++;
    194 
    195 	return pg;
    196 }
    197 
    198 /*
    199  * Release a page.
    200  *
    201  * Called with the vm object locked.
    202  */
    203 void
    204 uvm_pagefree(struct vm_page *pg)
    205 {
    206 	struct uvm_object *uobj = pg->uobject;
    207 
    208 	KASSERT(mutex_owned(&uvm_pageqlock));
    209 
    210 	if (pg->flags & PG_WANTED)
    211 		wakeup(pg);
    212 
    213 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    214 
    215 	uobj->uo_npages--;
    216 	rb_tree_remove_node(&uobj->rb_tree, &pg->rb_node);
    217 
    218 	if (UVM_OBJ_IS_VNODE(uobj)) {
    219 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    220 		atomic_dec_uint(&vmpage_onqueue);
    221 	}
    222 
    223 	pool_cache_put(&pagecache, pg);
    224 }
    225 
    226 void
    227 uvm_pagezero(struct vm_page *pg)
    228 {
    229 
    230 	pg->flags &= ~PG_CLEAN;
    231 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    232 }
    233 
    234 /*
    235  * Misc routines
    236  */
    237 
    238 static kmutex_t pagermtx;
    239 
    240 void
    241 uvm_init(void)
    242 {
    243 	char buf[64];
    244 	int error;
    245 
    246 	if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
    247 		rump_physmemlimit = strtoll(buf, NULL, 10);
    248 		/* it's not like we'd get far with, say, 1 byte, but ... */
    249 		if (rump_physmemlimit == 0)
    250 			panic("uvm_init: no memory available");
    251 #define HUMANIZE_BYTES 9
    252 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    253 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    254 #undef HUMANIZE_BYTES
    255 		dddlim = 9 * (rump_physmemlimit / 10);
    256 	} else {
    257 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    258 	}
    259 	aprint_verbose("total memory = %s\n", buf);
    260 
    261 	TAILQ_INIT(&vmpage_lruqueue);
    262 
    263 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    264 
    265 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    266 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    267 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
    268 
    269 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    270 	cv_init(&pdaemoncv, "pdaemon");
    271 	cv_init(&oomwait, "oomwait");
    272 
    273 	kernel_map->pmap = pmap_kernel();
    274 	callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
    275 	kmem_map->pmap = pmap_kernel();
    276 	callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
    277 
    278 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    279 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    280 }
    281 
    282 void
    283 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    284 {
    285 
    286 	vm->vm_map.pmap = pmap_kernel();
    287 	vm->vm_refcnt = 1;
    288 }
    289 
    290 void
    291 uvm_pagewire(struct vm_page *pg)
    292 {
    293 
    294 	/* nada */
    295 }
    296 
    297 void
    298 uvm_pageunwire(struct vm_page *pg)
    299 {
    300 
    301 	/* nada */
    302 }
    303 
    304 /* where's your schmonz now? */
    305 #define PUNLIMIT(a)	\
    306 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    307 void
    308 uvm_init_limits(struct proc *p)
    309 {
    310 
    311 	PUNLIMIT(RLIMIT_STACK);
    312 	PUNLIMIT(RLIMIT_DATA);
    313 	PUNLIMIT(RLIMIT_RSS);
    314 	PUNLIMIT(RLIMIT_AS);
    315 	/* nice, cascade */
    316 }
    317 #undef PUNLIMIT
    318 
    319 /*
    320  * This satisfies the "disgusting mmap hack" used by proplib.
    321  * We probably should grow some more assertables to make sure we're
    322  * not satisfying anything we shouldn't be satisfying.  At least we
    323  * should make sure it's the local machine we're mmapping ...
    324  */
    325 int
    326 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    327 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    328 {
    329 	void *uaddr;
    330 	int error;
    331 
    332 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    333 		panic("uvm_mmap() variant unsupported");
    334 	if (flags != (MAP_PRIVATE | MAP_ANON))
    335 		panic("uvm_mmap() variant unsupported");
    336 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    337 	if (*addr != 0)
    338 		panic("uvm_mmap() variant unsupported");
    339 
    340 	uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    341 	if (uaddr == NULL)
    342 		return error;
    343 
    344 	*addr = (vaddr_t)uaddr;
    345 	return 0;
    346 }
    347 
    348 struct pagerinfo {
    349 	vaddr_t pgr_kva;
    350 	int pgr_npages;
    351 	struct vm_page **pgr_pgs;
    352 	bool pgr_read;
    353 
    354 	LIST_ENTRY(pagerinfo) pgr_entries;
    355 };
    356 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    357 
    358 /*
    359  * Pager "map" in routine.  Instead of mapping, we allocate memory
    360  * and copy page contents there.  Not optimal or even strictly
    361  * correct (the caller might modify the page contents after mapping
    362  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    363  */
    364 vaddr_t
    365 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    366 {
    367 	struct pagerinfo *pgri;
    368 	vaddr_t curkva;
    369 	int i;
    370 
    371 	/* allocate structures */
    372 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    373 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    374 	pgri->pgr_npages = npages;
    375 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    376 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    377 
    378 	/* copy contents to "mapped" memory */
    379 	for (i = 0, curkva = pgri->pgr_kva;
    380 	    i < npages;
    381 	    i++, curkva += PAGE_SIZE) {
    382 		/*
    383 		 * We need to copy the previous contents of the pages to
    384 		 * the window even if we are reading from the
    385 		 * device, since the device might not fill the contents of
    386 		 * the full mapped range and we will end up corrupting
    387 		 * data when we unmap the window.
    388 		 */
    389 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    390 		pgri->pgr_pgs[i] = pgs[i];
    391 	}
    392 
    393 	mutex_enter(&pagermtx);
    394 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    395 	mutex_exit(&pagermtx);
    396 
    397 	return pgri->pgr_kva;
    398 }
    399 
    400 /*
    401  * map out the pager window.  return contents from VA to page storage
    402  * and free structures.
    403  *
    404  * Note: does not currently support partial frees
    405  */
    406 void
    407 uvm_pagermapout(vaddr_t kva, int npages)
    408 {
    409 	struct pagerinfo *pgri;
    410 	vaddr_t curkva;
    411 	int i;
    412 
    413 	mutex_enter(&pagermtx);
    414 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    415 		if (pgri->pgr_kva == kva)
    416 			break;
    417 	}
    418 	KASSERT(pgri);
    419 	if (pgri->pgr_npages != npages)
    420 		panic("uvm_pagermapout: partial unmapping not supported");
    421 	LIST_REMOVE(pgri, pgr_entries);
    422 	mutex_exit(&pagermtx);
    423 
    424 	if (pgri->pgr_read) {
    425 		for (i = 0, curkva = pgri->pgr_kva;
    426 		    i < pgri->pgr_npages;
    427 		    i++, curkva += PAGE_SIZE) {
    428 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    429 		}
    430 	}
    431 
    432 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    433 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    434 	kmem_free(pgri, sizeof(*pgri));
    435 }
    436 
    437 /*
    438  * convert va in pager window to page structure.
    439  * XXX: how expensive is this (global lock, list traversal)?
    440  */
    441 struct vm_page *
    442 uvm_pageratop(vaddr_t va)
    443 {
    444 	struct pagerinfo *pgri;
    445 	struct vm_page *pg = NULL;
    446 	int i;
    447 
    448 	mutex_enter(&pagermtx);
    449 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    450 		if (pgri->pgr_kva <= va
    451 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    452 			break;
    453 	}
    454 	if (pgri) {
    455 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    456 		pg = pgri->pgr_pgs[i];
    457 	}
    458 	mutex_exit(&pagermtx);
    459 
    460 	return pg;
    461 }
    462 
    463 /* Called with the vm object locked */
    464 struct vm_page *
    465 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    466 {
    467 	struct vm_page *pg;
    468 
    469 	pg = (struct vm_page *)rb_tree_find_node(&uobj->rb_tree, &off);
    470 	if (pg && UVM_OBJ_IS_VNODE(pg->uobject)) {
    471 		mutex_enter(&uvm_pageqlock);
    472 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    473 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    474 		mutex_exit(&uvm_pageqlock);
    475 	}
    476 
    477 	return pg;
    478 }
    479 
    480 void
    481 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    482 {
    483 	struct vm_page *pg;
    484 	int i;
    485 
    486 	for (i = 0; i < npgs; i++) {
    487 		pg = pgs[i];
    488 		if (pg == NULL)
    489 			continue;
    490 
    491 		KASSERT(pg->flags & PG_BUSY);
    492 		if (pg->flags & PG_WANTED)
    493 			wakeup(pg);
    494 		if (pg->flags & PG_RELEASED)
    495 			uvm_pagefree(pg);
    496 		else
    497 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    498 	}
    499 }
    500 
    501 void
    502 uvm_estimatepageable(int *active, int *inactive)
    503 {
    504 
    505 	/* XXX: guessing game */
    506 	*active = 1024;
    507 	*inactive = 1024;
    508 }
    509 
    510 struct vm_map_kernel *
    511 vm_map_to_kernel(struct vm_map *map)
    512 {
    513 
    514 	return (struct vm_map_kernel *)map;
    515 }
    516 
    517 bool
    518 vm_map_starved_p(struct vm_map *map)
    519 {
    520 
    521 	if (map->flags & VM_MAP_WANTVA)
    522 		return true;
    523 
    524 	return false;
    525 }
    526 
    527 int
    528 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    529 {
    530 
    531 	panic("%s: unimplemented", __func__);
    532 }
    533 
    534 void
    535 uvm_unloan(void *v, int npages, int flags)
    536 {
    537 
    538 	panic("%s: unimplemented", __func__);
    539 }
    540 
    541 int
    542 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    543 	struct vm_page **opp)
    544 {
    545 
    546 	return EBUSY;
    547 }
    548 
    549 #ifdef DEBUGPRINT
    550 void
    551 uvm_object_printit(struct uvm_object *uobj, bool full,
    552 	void (*pr)(const char *, ...))
    553 {
    554 
    555 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    556 }
    557 #endif
    558 
    559 vaddr_t
    560 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    561 {
    562 
    563 	return 0;
    564 }
    565 
    566 int
    567 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    568 	vm_prot_t prot, bool set_max)
    569 {
    570 
    571 	return EOPNOTSUPP;
    572 }
    573 
    574 /*
    575  * UVM km
    576  */
    577 
    578 vaddr_t
    579 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    580 {
    581 	void *rv, *desired = NULL;
    582 	int alignbit, error;
    583 
    584 #ifdef __x86_64__
    585 	/*
    586 	 * On amd64, allocate all module memory from the lowest 2GB.
    587 	 * This is because NetBSD kernel modules are compiled
    588 	 * with -mcmodel=kernel and reserve only 4 bytes for
    589 	 * offsets.  If we load code compiled with -mcmodel=kernel
    590 	 * anywhere except the lowest or highest 2GB, it will not
    591 	 * work.  Since userspace does not have access to the highest
    592 	 * 2GB, use the lowest 2GB.
    593 	 *
    594 	 * Note: this assumes the rump kernel resides in
    595 	 * the lowest 2GB as well.
    596 	 *
    597 	 * Note2: yes, it's a quick hack, but since this the only
    598 	 * place where we care about the map we're allocating from,
    599 	 * just use a simple "if" instead of coming up with a fancy
    600 	 * generic solution.
    601 	 */
    602 	extern struct vm_map *module_map;
    603 	if (map == module_map) {
    604 		desired = (void *)(0x80000000 - size);
    605 	}
    606 #endif
    607 
    608 	alignbit = 0;
    609 	if (align) {
    610 		alignbit = ffs(align)-1;
    611 	}
    612 
    613 	rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
    614 	    &error);
    615 	if (rv == NULL) {
    616 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    617 			return 0;
    618 		else
    619 			panic("uvm_km_alloc failed");
    620 	}
    621 
    622 	if (flags & UVM_KMF_ZERO)
    623 		memset(rv, 0, size);
    624 
    625 	return (vaddr_t)rv;
    626 }
    627 
    628 void
    629 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    630 {
    631 
    632 	rumpuser_unmap((void *)vaddr, size);
    633 }
    634 
    635 struct vm_map *
    636 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    637 	vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
    638 {
    639 
    640 	return (struct vm_map *)417416;
    641 }
    642 
    643 vaddr_t
    644 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    645 {
    646 
    647 	return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    648 	    waitok, "kmalloc");
    649 }
    650 
    651 void
    652 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    653 {
    654 
    655 	rump_hyperfree((void *)addr, PAGE_SIZE);
    656 }
    657 
    658 vaddr_t
    659 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    660 {
    661 
    662 	return uvm_km_alloc_poolpage(map, waitok);
    663 }
    664 
    665 void
    666 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
    667 {
    668 
    669 	uvm_km_free_poolpage(map, vaddr);
    670 }
    671 
    672 void
    673 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    674 {
    675 
    676 	/* we eventually maybe want some model for available memory */
    677 }
    678 
    679 /*
    680  * Mapping and vm space locking routines.
    681  * XXX: these don't work for non-local vmspaces
    682  */
    683 int
    684 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    685 {
    686 
    687 	KASSERT(vs == &vmspace0);
    688 	return 0;
    689 }
    690 
    691 void
    692 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    693 {
    694 
    695 	KASSERT(vs == &vmspace0);
    696 }
    697 
    698 void
    699 vmapbuf(struct buf *bp, vsize_t len)
    700 {
    701 
    702 	bp->b_saveaddr = bp->b_data;
    703 }
    704 
    705 void
    706 vunmapbuf(struct buf *bp, vsize_t len)
    707 {
    708 
    709 	bp->b_data = bp->b_saveaddr;
    710 	bp->b_saveaddr = 0;
    711 }
    712 
    713 void
    714 uvmspace_addref(struct vmspace *vm)
    715 {
    716 
    717 	/*
    718 	 * there is only vmspace0.  we're not planning on
    719 	 * feeding it to the fishes.
    720 	 */
    721 }
    722 
    723 void
    724 uvmspace_free(struct vmspace *vm)
    725 {
    726 
    727 	/* nothing for now */
    728 }
    729 
    730 int
    731 uvm_io(struct vm_map *map, struct uio *uio)
    732 {
    733 
    734 	/*
    735 	 * just do direct uio for now.  but this needs some vmspace
    736 	 * olympics for rump_sysproxy.
    737 	 */
    738 	return uiomove((void *)(vaddr_t)uio->uio_offset, uio->uio_resid, uio);
    739 }
    740 
    741 /*
    742  * page life cycle stuff.  it really doesn't exist, so just stubs.
    743  */
    744 
    745 void
    746 uvm_pageactivate(struct vm_page *pg)
    747 {
    748 
    749 	/* nada */
    750 }
    751 
    752 void
    753 uvm_pagedeactivate(struct vm_page *pg)
    754 {
    755 
    756 	/* nada */
    757 }
    758 
    759 void
    760 uvm_pagedequeue(struct vm_page *pg)
    761 {
    762 
    763 	/* nada*/
    764 }
    765 
    766 void
    767 uvm_pageenqueue(struct vm_page *pg)
    768 {
    769 
    770 	/* nada */
    771 }
    772 
    773 void
    774 uvmpdpol_anfree(struct vm_anon *an)
    775 {
    776 
    777 	/* nada */
    778 }
    779 
    780 /*
    781  * Routines related to the Page Baroness.
    782  */
    783 
    784 void
    785 uvm_wait(const char *msg)
    786 {
    787 
    788 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    789 		panic("pagedaemon out of memory");
    790 	if (__predict_false(rump_threads == 0))
    791 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    792 
    793 	mutex_enter(&pdaemonmtx);
    794 	pdaemon_waiters++;
    795 	cv_signal(&pdaemoncv);
    796 	cv_wait(&oomwait, &pdaemonmtx);
    797 	mutex_exit(&pdaemonmtx);
    798 }
    799 
    800 void
    801 uvm_pageout_start(int npages)
    802 {
    803 
    804 	/* we don't have the heuristics */
    805 }
    806 
    807 void
    808 uvm_pageout_done(int npages)
    809 {
    810 
    811 	/* could wakeup waiters, but just let the pagedaemon do it */
    812 }
    813 
    814 /*
    815  * The Diabolical pageDaemon Director (DDD).
    816  */
    817 void
    818 uvm_pageout(void *arg)
    819 {
    820 	struct vm_page *pg;
    821 	struct pool *pp, *pp_first;
    822 	uint64_t where;
    823 	int timo = 0;
    824 	int cleaned, skip, skipped;
    825 	bool succ = false;
    826 
    827 	mutex_enter(&pdaemonmtx);
    828 	for (;;) {
    829 		if (succ) {
    830 			kernel_map->flags &= ~VM_MAP_WANTVA;
    831 			kmem_map->flags &= VM_MAP_WANTVA;
    832 			timo = 0;
    833 		}
    834 		succ = false;
    835 
    836 		/*
    837 		 * Wake up everyone regardless of perceived success.
    838 		 * They will just resleep if we're stil out of juice.
    839 		 */
    840 		if (pdaemon_waiters) {
    841 			pdaemon_waiters = 0;
    842 			cv_broadcast(&oomwait);
    843 		}
    844 
    845 		cv_timedwait(&pdaemoncv, &pdaemonmtx, 0);
    846 		uvmexp.pdwoke++;
    847 
    848 		/* tell the world that we are hungry */
    849 		kernel_map->flags |= VM_MAP_WANTVA;
    850 		kmem_map->flags |= VM_MAP_WANTVA;
    851 
    852 		if (pdaemon_waiters == 0 && !NEED_PAGEDAEMON())
    853 			continue;
    854 		mutex_exit(&pdaemonmtx);
    855 
    856 		/*
    857 		 * step one: reclaim the page cache.  this should give
    858 		 * us the biggest earnings since whole pages are released
    859 		 * into backing memory.
    860 		 */
    861 		pool_cache_reclaim(&pagecache);
    862 		if (!NEED_PAGEDAEMON()) {
    863 			succ = true;
    864 			mutex_enter(&pdaemonmtx);
    865 			continue;
    866 		}
    867 
    868 		/*
    869 		 * Ok, so that didn't help.  Next, try to hunt memory
    870 		 * by pushing out vnode pages.  The pages might contain
    871 		 * useful cached data, but we need the memory.
    872 		 */
    873 		cleaned = 0;
    874 		skip = 0;
    875  again:
    876 		mutex_enter(&uvm_pageqlock);
    877 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
    878 			skipped = 0;
    879 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
    880 				struct uvm_object *uobj;
    881 
    882 				/*
    883 				 * skip over pages we _might_ have tried
    884 				 * to handle earlier.  they might not be
    885 				 * exactly the same ones, but I'm not too
    886 				 * concerned.
    887 				 */
    888 				while (skipped++ < skip)
    889 					continue;
    890 
    891 				uobj = pg->uobject;
    892 				if (mutex_tryenter(&uobj->vmobjlock)) {
    893 					if ((pg->flags & PG_BUSY) == 0) {
    894 						mutex_exit(&uvm_pageqlock);
    895 						uobj->pgops->pgo_put(uobj,
    896 						    pg->offset,
    897 						    pg->offset + PAGE_SIZE,
    898 						    PGO_CLEANIT|PGO_FREE);
    899 						cleaned++;
    900 						goto again;
    901 					}
    902 				}
    903 
    904 				skip++;
    905 			}
    906 			break;
    907 		}
    908 		mutex_exit(&uvm_pageqlock);
    909 
    910 		/*
    911 		 * And of course we need to reclaim the page cache
    912 		 * again to actually release memory.
    913 		 */
    914 		pool_cache_reclaim(&pagecache);
    915 		if (!NEED_PAGEDAEMON()) {
    916 			succ = true;
    917 			mutex_enter(&pdaemonmtx);
    918 			continue;
    919 		}
    920 
    921 		/*
    922 		 * Still not there?  sleeves come off right about now.
    923 		 * First: do reclaim on kernel/kmem map.
    924 		 */
    925 		callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
    926 		    NULL);
    927 		callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
    928 		    NULL);
    929 
    930 		/*
    931 		 * And then drain the pools.  Wipe them out ... all of them.
    932 		 */
    933 
    934 		pool_drain_start(&pp_first, &where);
    935 		pp = pp_first;
    936 		for (;;) {
    937 			rump_vfs_drainbufs(10 /* XXX: estimate better */);
    938 			succ = pool_drain_end(pp, where);
    939 			if (succ)
    940 				break;
    941 			pool_drain_start(&pp, &where);
    942 			if (pp == pp_first) {
    943 				succ = pool_drain_end(pp, where);
    944 				break;
    945 			}
    946 		}
    947 
    948 		/*
    949 		 * Need to use PYEC on our bag of tricks.
    950 		 * Unfortunately, the wife just borrowed it.
    951 		 */
    952 
    953 		if (!succ) {
    954 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
    955 			    "memory ... sleeping (deadlock?)\n");
    956 			kpause("dpdd", false, hz, NULL);
    957 		}
    958 
    959 		mutex_enter(&pdaemonmtx);
    960 	}
    961 
    962 	panic("you can swap out any time you like, but you can never leave");
    963 }
    964 
    965 void
    966 uvm_kick_pdaemon()
    967 {
    968 
    969 	/*
    970 	 * Wake up the diabolical pagedaemon director if we are over
    971 	 * 90% of the memory limit.  This is a complete and utter
    972 	 * stetson-harrison decision which you are allowed to finetune.
    973 	 * Don't bother locking.  If we have some unflushed caches,
    974 	 * other waker-uppers will deal with the issue.
    975 	 */
    976 	if (NEED_PAGEDAEMON()) {
    977 		cv_signal(&pdaemoncv);
    978 	}
    979 }
    980 
    981 void *
    982 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
    983 {
    984 	unsigned long newmem;
    985 	void *rv;
    986 
    987 	uvm_kick_pdaemon(); /* ouch */
    988 
    989 	/* first we must be within the limit */
    990  limitagain:
    991 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
    992 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
    993 		if (newmem > rump_physmemlimit) {
    994 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
    995 			if (!waitok)
    996 				return NULL;
    997 			uvm_wait(wmsg);
    998 			goto limitagain;
    999 		}
   1000 	}
   1001 
   1002 	/* second, we must get something from the backend */
   1003  again:
   1004 	rv = rumpuser_malloc(howmuch, alignment);
   1005 	if (__predict_false(rv == NULL && waitok)) {
   1006 		uvm_wait(wmsg);
   1007 		goto again;
   1008 	}
   1009 
   1010 	return rv;
   1011 }
   1012 
   1013 void
   1014 rump_hyperfree(void *what, size_t size)
   1015 {
   1016 
   1017 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1018 		atomic_add_long(&curphysmem, -size);
   1019 	}
   1020 	rumpuser_free(what);
   1021 }
   1022